JPH01250735A - Apparatus for measuring particle size - Google Patents
Apparatus for measuring particle sizeInfo
- Publication number
- JPH01250735A JPH01250735A JP63076611A JP7661188A JPH01250735A JP H01250735 A JPH01250735 A JP H01250735A JP 63076611 A JP63076611 A JP 63076611A JP 7661188 A JP7661188 A JP 7661188A JP H01250735 A JPH01250735 A JP H01250735A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- measured
- particles
- pulse signal
- light pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 77
- 238000005259 measurement Methods 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000013213 extrapolation Methods 0.000 abstract description 3
- 230000000630 rising effect Effects 0.000 abstract 3
- 230000000007 visual effect Effects 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、微小な粒子の粒径を測定する粒径測定装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a particle size measuring device for measuring the particle size of minute particles.
(従来の技術) 従来、微小粒子の粒径を測定する方法として。(Conventional technology) Conventionally, as a method to measure the particle size of microparticles.
被測定粒子による光の散乱を利用する方法が知られてい
る。そして、その中の1つにフォトカウント法と呼ばれ
ている方法がある。このフォトカウント法を採用した粒
径測定装置の主要部は、第4図に示すように構成されて
いる。すなわち、この装置は測定点をPとし、このP点
を境にして一方に照射光学系Aを設け、ft!!方に受
光光学系Bを設けている。照射光学系Aは光源1を備え
ている。A method using scattering of light by particles to be measured is known. One of them is a method called the photo counting method. The main part of a particle size measuring apparatus employing this photocount method is constructed as shown in FIG. That is, in this device, the measurement point is set to P, and the irradiation optical system A is provided on one side with this point P as the boundary, and ft! ! A light receiving optical system B is provided on one side. The irradiation optical system A includes a light source 1.
この光源1から出た光は、レンズ2を介して光ファイバ
3に入射され、この光ファイバ3によって測定点近rf
lまで導かれた後、角形導波路4に入射される。そして
、角形導波路4を出た光は、レンズ5およびプリズム6
を介してP点に導かれる。The light emitted from this light source 1 enters an optical fiber 3 via a lens 2, and this optical fiber 3 transmits an RF signal near the measurement point.
After being guided to l, the light is input to the rectangular waveguide 4. Then, the light exiting the rectangular waveguide 4 passes through a lens 5 and a prism 6.
is guided to point P via
レンズ5およびプリズム6は、角形導波路4の出口の像
がP点に結像される関係に配置されている。The lens 5 and the prism 6 are arranged in such a relationship that an image of the exit of the rectangular waveguide 4 is formed on a point P.
一方1受光光学系Bにおいては、P点の像がレンズ7お
よびスリット8を介して光ファイバ9に入射される。レ
ンズ7は、スリット8の像をP点に結像する関係に配置
されている。したかって、P点の回りには、第5図(a
)に示すように照射光学針Aと受光光学針Bとによって
規定される立方体の測定視!!Eが形成される。この場
合、角形導波′f#14の存在によって、測定視野E内
の光強度分布は、第5図(b)に示すように一定に医た
れる。On the other hand, in the first light-receiving optical system B, the image of point P is incident on the optical fiber 9 via the lens 7 and the slit 8. The lens 7 is arranged in such a manner that the image of the slit 8 is focused on a point P. Therefore, around point P, there is a
), the measurement view of the cube defined by the irradiating optical needle A and the receiving optical needle B! ! E is formed. In this case, due to the presence of the rectangular waveguide 'f#14, the light intensity distribution within the measurement field of view E is kept constant as shown in FIG. 5(b).
この装!では、第5図(a)に示すように測定視野E内
を被測定粒子Mが通過したとき、この被測定粒子Mによ
る散乱光がレンズ7、スリット8を介して光ファイバ9
に導かれる。そして、光ファイバ9に導かれた光は光電
子増倍管などからなる光検出器10に導かれ、この光検
出器10によって電気信号に変換される。すなわち、散
乱光の強度に対応した大きさの散乱光パルス信号Sに変
換される。そして、散乱光パルス信号Sは1図示しない
信号処理装置に導入される。この信号処理装置は、散乱
光パルス信号Sの大きさと粒径との間に第6図に示す関
係、つまり散乱光パルス信号Sの高さが粒径のほぼ2乗
に比例することを利用して粒径を算出するようにしてい
る。This outfit! Now, as shown in FIG. 5(a), when a particle to be measured M passes within the measurement field of view E, the scattered light by this particle to be measured M passes through a lens 7 and a slit 8 to an optical fiber 9.
guided by. The light guided to the optical fiber 9 is then guided to a photodetector 10 made of a photomultiplier tube or the like, and converted into an electrical signal by the photodetector 10. That is, it is converted into a scattered light pulse signal S having a magnitude corresponding to the intensity of the scattered light. The scattered light pulse signal S is then introduced into a signal processing device (not shown). This signal processing device utilizes the relationship shown in FIG. 6 between the magnitude of the scattered light pulse signal S and the particle size, that is, the height of the scattered light pulse signal S is approximately proportional to the square of the particle size. The particle size is calculated using
しかしながら、上記のように構成された粒径測定装置に
あっては次のような問題があった。すなわち、被測定粒
子Mは、常に測定視野Eの中央部を通過するとは限らな
い、たとえば、ある粒径の被測定粒子M1が第7図中実
線で示すように測定視野Eの中央部を通過したとき高さ
I IaXの散乱光パルス信号Slが得られたとしても
、同じ粒径の被測定粒子M1が図中破線で示すように半
分しか測定視野E内を通過しない場合には得られる散乱
光パルス信号Sの高さら図中破線で示すようにI na
xの172となる。したがって1粒径を正しく測定でき
る範囲が狭く、信頼性に欠けると言う問題があった。However, the particle size measuring device configured as described above has the following problems. That is, the particles to be measured M do not always pass through the center of the measurement field of view E. For example, a particle to be measured M1 of a certain particle size may pass through the center of the measurement field of view E as shown by the solid line in FIG. Even if a scattered light pulse signal Sl of height IIaX is obtained, if only half of the measured particle M1 of the same particle size passes through the measurement field of view E as shown by the broken line in the figure, the resulting scattering As shown by the broken line in the height of the optical pulse signal S, I na
It becomes 172 of x. Therefore, there was a problem in that the range in which one particle size could be accurately measured was narrow and reliability was lacking.
(発明が解決しようとする課題)
上述の如く、従来の粒径測定装置では、被測定粒子が測
定視野内に正しく入らないiま通過した場合には誤った
測定結果を出力してしまい、信頼性に欠けると言う問題
があった。(Problems to be Solved by the Invention) As mentioned above, in conventional particle size measuring devices, if the particle to be measured does not enter the measurement field of view correctly, it outputs an erroneous measurement result, making it unreliable. The problem was that it lacked sex.
そこで本発明は、被測定粒子が測定視野内を正しく通過
しない場合、つまり被測定粒子の全体が測定視野内に入
らない場合でも、その被測定粒子の正しい粒径値を出力
できる粒径測定装置を提供することを目的としている。Therefore, the present invention provides a particle size measuring device that can output the correct particle size value of the measured particle even when the measured particle does not pass through the measurement field of view correctly, that is, even when the entire measured particle does not fall within the measurement field of view. is intended to provide.
[発明の構成]
(課題を解決するための手段)
上記目的を達成するために1本発明装置では散乱光パル
ス信号の立上がり時間に着目している。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the apparatus of the present invention focuses on the rise time of the scattered light pulse signal.
すなわち1本発明装置では散乱光パルス信号の立上がり
時間から被測定粒子の粒径を算出するようにしている。That is, in the apparatus of the present invention, the particle diameter of the particle to be measured is calculated from the rise time of the scattered light pulse signal.
(作 用)
照射光学系と受光光学系とで立方体状の測定視野を規定
した場合、この測定視野の被測定粒子・通過方向の光強
度分布を一様にすることは角形導波路の使用によって容
易に実現できる。このような測定視野を被測定粒子が通
過したときに得られる散乱光パルス信号の波形と測定視
野との間には第1図に示す関係がある。すなわち1図中
Eは測定視野を示し1Mは被測定粒子を示し、Sは得ら
れた散乱光パルス信号の波形を示している。(Function) When a cubic measurement field of view is defined by the irradiation optical system and the light receiving optical system, the use of a rectangular waveguide can make the light intensity distribution in the measurement field of view uniform in the direction of passage of the particle to be measured. It can be easily achieved. There is a relationship shown in FIG. 1 between the waveform of a scattered light pulse signal obtained when a particle to be measured passes through such a measurement field of view and the measurement field of view. That is, in Figure 1, E indicates the measurement field of view, 1M indicates the particle to be measured, and S indicates the waveform of the obtained scattered light pulse signal.
今、被測定粒子Mか時点t1において長さIzの測定視
野E内に入り始め1時点t3において完全に入りきった
とすると、散乱光パルス信号Sの立上がり時間Dwはt
lとt3とで決まる。一方、被測定粒子Mが測定視野E
内を通過するに要する時間tvは。Now, suppose that the particle to be measured M begins to enter the measurement field of view E of length Iz at time t1 and completely enters at one time t3, then the rise time Dw of the scattered light pulse signal S is t.
It is determined by l and t3. On the other hand, the particle to be measured M is in the measurement field of view E.
The time tv required to pass through is.
散乱光パルス信号Sのピーク@ Inaxに対するso
’<の値を示す2箇所の間の時間差、つまりt2と14
とから求めることができる。また、測定視野Eの長さI
zは光学系より容易に知ることができる。したがって、
tvとIzより被測定粒子Mが測定視野E内を通過す
る速度■が求まり1結局、被測定粒子Mの粒径りは。peak of scattered light pulse signal S @so for Inax
The time difference between two points showing the value of '<, i.e. t2 and 14
It can be found from. Also, the length I of the measurement field of view E
z can be easily determined from the optical system. therefore,
From tv and Iz, the velocity (2) at which the particle M to be measured passes within the measurement field of view E can be determined.1In the end, the diameter of the particle M to be measured is:
D=Owxv ・・・(1)として
算出できることになる0本発明装置ではこのような算出
手法を使って粒径を測定している。D=Owxv (1) This can be calculated as 0. The apparatus of the present invention uses such a calculation method to measure the particle size.
散乱光パルス信号Sの立上がり時間は、被測定粒子Mの
粒径が等しい場合には、被測定粒子Mが測定視野Eの端
を通過した場合でも変化しない。したがって、散乱光パ
ルス信号Sの高さから粒径を求める従来の装置とは違っ
て、J!I定視野Eの端を被測定粒子Mが通過した場合
でも粒径を正確に測定でき、信頼性の向上が可能となる
。The rise time of the scattered light pulse signal S does not change even if the particle to be measured M passes through the edge of the measurement field of view E when the particle size of the particle to be measured M is the same. Therefore, unlike conventional devices that determine the particle size from the height of the scattered light pulse signal S, J! Even when the particle M to be measured passes through the edge of the constant field E, the particle size can be accurately measured, and reliability can be improved.
(実施例) 以下9図面を参照しながら実施例を説明する。(Example) Examples will be described below with reference to nine drawings.
第2図は一実施例に係る粒径測定装!の概略的な構成図
であり、第4図と同一部分は同一符号で示しである。し
たがって1重複する部分の詳しい説明は省略する。Figure 2 shows a particle size measuring device according to one embodiment! FIG. 4 is a schematic diagram of the configuration of FIG. 4, and the same parts as in FIG. Therefore, a detailed explanation of the overlapping portion will be omitted.
この実施例に係る粒径測定装置が従来のものと異なる点
は5光検出器10から出力された散乱光パルス信号Sを
処理する処理系Cにある。The difference between the particle size measuring apparatus according to this embodiment and the conventional one lies in the processing system C that processes the scattered light pulse signal S output from the five-photodetector 10.
すなわち、光検出器10から出力された散乱光パルス信
号Sを増幅器11によって電流−電圧変換した後、波形
記憶装置12に導入している。波形記憶装置12は、入
力された散乱光パルス信号をA/D変換した後、ディジ
タルメモリに記憶する。That is, the scattered light pulse signal S output from the photodetector 10 is subjected to current-to-voltage conversion by the amplifier 11 and then introduced into the waveform storage device 12. The waveform storage device 12 performs A/D conversion on the input scattered light pulse signal and then stores it in a digital memory.
そして、波形記憶装置12に記憶された散乱光パルス信
号Sは、演算装置13によって次のように処理される。The scattered light pulse signal S stored in the waveform storage device 12 is processed by the arithmetic unit 13 as follows.
演算装置13は、波形記憶装置12から読み出された散
乱光パルス信号Sのデータから、まず第3図に示すよう
に散乱光パルス信号Sのピーク値Inaxを求める0次
に、求められたピーク値IIaxに対して予め定められ
た割合いのスレッショルドレベル、たとえばl1axに
対して90%と10%のスレッショルドレベルを設定す
る。モして1散乱光パルス信号Sの値が設定したスレッ
ショルドレベルと交わる点x1.x2を求め、このXl
。The arithmetic unit 13 first calculates the peak value Inax of the scattered light pulse signal S from the data of the scattered light pulse signal S read out from the waveform storage device 12, as shown in FIG. Threshold levels are set at predetermined percentages for the value IIax, for example threshold levels of 90% and 10% for l1ax. Point x1 where the value of one scattered light pulse signal S intersects with the set threshold level. Find x2, and this
.
×2間を直線で結んで散乱光パルス信号Sの立上がり時
間Ow ′を外挿によって求める。次に、求められた立
上がり時間DI ′は外挿しない実際の立上がり時間D
vに比べて小さい値となるので。x2 is connected with a straight line, and the rise time Ow' of the scattered light pulse signal S is determined by extrapolation. Next, the determined rise time DI′ is the actual rise time D without extrapolation.
Because it is a small value compared to v.
これを補正して正しい立上がり時間Dwを得るために予
め実験的に求められている比例定数kを使い次式でOW
を算出する。In order to correct this and obtain the correct rise time Dw, we use the proportionality constant k, which has been determined experimentally in advance, and use the following formula to calculate OW.
Calculate.
DW = k x DW ′・(2)
次に、 Inaxに対して50%のスレッショルドレ
ベルを設定し、散乱光パルス信号Sの値が上記スレッシ
ョルドレベルと交わる点X3.X4を求め。DW = k x DW' (2) Next, a 50% threshold level is set for Inax, and the point X3. where the value of the scattered light pulse signal S intersects with the threshold level is set. Find X4.
このχ3.X4間の時間tvを算出する。そして。This χ3. Calculate the time tv between X4. and.
予め判明している測定視野Eの長さIzと上記時間1v
とから被測定粒子Mの通過速度Vを算出する。The length Iz of the measurement field of view E, which is known in advance, and the above time 1v
From this, the passing velocity V of the particle M to be measured is calculated.
次に、この通過速度■とすでに算出されている立上がり
時間Dwとを使い1(1)式にしたがって被測定粒子M
の粒径りを算出する。そして、上記のようにして算出さ
れた被測定粒子Mの粒径りを表示゛装置14に表示する
ようにしている。Next, using this passing speed ■ and the rise time Dw that has already been calculated, the measured particle M is determined according to equation 1(1).
Calculate the particle size. Then, the particle size of the particles M to be measured calculated as described above is displayed on the display device 14.
このように構成された装置では、被測定粒子Mかその大
きさの1/2以上を測定視野Eに入り込ませた状態で通
過した場合の全てについて、それら被測定粒子Mの粒径
を正確に測定できることになる。したがって、従来の装
置に比べて、測定装置としての信頼性を向上させること
かできる。With the device configured in this way, the particle size of the particles M to be measured can be accurately determined for all cases where particles M to be measured or 1/2 or more of their size enter the measurement field of view E. This means that it can be measured. Therefore, reliability as a measuring device can be improved compared to conventional devices.
[発明の効果1
以上のように1本発明によれば2被測定粒子が測定視野
を通過する際に得られる散乱光パルス信号の立上がり時
間に基いて粒径を測定するようにしているので、被測定
粒子が測定視野の端を通過するような場合でもその粒径
を正確に測定でき。[Effect of the Invention 1] As described above, according to the present invention, the particle diameter is measured based on the rise time of the scattered light pulse signal obtained when the particle to be measured passes through the measurement field. The particle size can be accurately measured even when the particle to be measured passes through the edge of the measurement field of view.
装置としての信頼性を向上させることができる。The reliability of the device can be improved.
第1図は本発明に係る粒径測定装置の測定原理を説明す
るための図、第2図は一実施例に係る粒径測定装置の概
略構成図、第3図は同装置での実際の処理手法を説明す
るための図、第4図は従来の粒径測定装置の概略構成図
、第5図および第6図は同装置における測定原理を説明
するための図、第7図は同装置の問題点を説明するため
の図である。
A・・・照射光学系、B・・・受光光学系、C・・・処
理系。
P・・・測定点、1・・・光源、2.5.7・・・レン
ズ、3゜9・・・光ファイバ、4・・・角形導波路、6
・・・プリズム。
10・・・光検出器、11・・・増幅器、12・・・波
形記憶装置、13・・・演算装置、14・・・表示装置
。
出頭人代理人 弁理士 鈴江武彦
t1t2t3t4
A 月三!l↑メi学1手。
第3図
A J1!fi七光掌糸
第4rM
(a)
長で □
(b)
第5 図
鬼紅径 <pm )FIG. 1 is a diagram for explaining the measurement principle of the particle size measuring device according to the present invention, FIG. 2 is a schematic configuration diagram of a particle size measuring device according to an embodiment, and FIG. 3 is an illustration of the actual measurement using the same device. A diagram for explaining the processing method, Figure 4 is a schematic configuration diagram of a conventional particle size measuring device, Figures 5 and 6 are diagrams for explaining the measurement principle in the same device, and Figure 7 is a diagram of the same device. FIG. 2 is a diagram for explaining the problem. A... Irradiation optical system, B... Light receiving optical system, C... Processing system. P...Measurement point, 1...Light source, 2.5.7...Lens, 3°9...Optical fiber, 4...Square waveguide, 6
···prism. 10... Photodetector, 11... Amplifier, 12... Waveform storage device, 13... Arithmetic device, 14... Display device. Appearing agent Patent attorney Takehiko Suzue t1t2t3t4 A Three times a month! l↑Mei Studies 1st move. Figure 3 A J1! fi Seven Light Palm Thread 4rM (a) Long □ (b) Figure 5 Demon Red Diameter <pm)
Claims (1)
系と、前記測定視野内を通過する被測定粒子による散乱
光のうち前記受光光学系を介して導かれた光の強さに対
応した大きさの電気信号に変換する光検出器と、この光
検出器から出力された散乱光パルス信号から前記被測定
粒子の粒径を算出する粒径算出手段とを備えた粒径測定
装置において、前記粒径算出手段は、前記散乱光パルス
信号の立上がり時間から粒径を算出していることを特徴
とする粒径測定装置。An irradiation optical system and a light receiving optical system that define a measurement field of view as a cube, and a size corresponding to the intensity of light guided through the light receiving optical system among the scattered light caused by the particles to be measured passing within the measurement field of view. A particle size measuring device comprising a photodetector that converts the particle size into an electric signal, and a particle size calculation means that calculates the particle size of the particle to be measured from the scattered light pulse signal output from the photodetector. A particle size measuring device characterized in that the diameter calculation means calculates the particle size from the rise time of the scattered light pulse signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63076611A JPH01250735A (en) | 1988-03-31 | 1988-03-31 | Apparatus for measuring particle size |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63076611A JPH01250735A (en) | 1988-03-31 | 1988-03-31 | Apparatus for measuring particle size |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01250735A true JPH01250735A (en) | 1989-10-05 |
Family
ID=13610138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63076611A Pending JPH01250735A (en) | 1988-03-31 | 1988-03-31 | Apparatus for measuring particle size |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01250735A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1050220A (en) * | 1996-07-31 | 1998-02-20 | Nec Kansai Ltd | Adjusting device for color cathode-ray tube |
JP2015210188A (en) * | 2014-04-25 | 2015-11-24 | パナソニックIpマネジメント株式会社 | Particle measuring apparatus |
JP2016128795A (en) * | 2015-01-09 | 2016-07-14 | パナソニックIpマネジメント株式会社 | Particle measurement device, air cleaning machine, and particle measurement method |
-
1988
- 1988-03-31 JP JP63076611A patent/JPH01250735A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1050220A (en) * | 1996-07-31 | 1998-02-20 | Nec Kansai Ltd | Adjusting device for color cathode-ray tube |
JP2015210188A (en) * | 2014-04-25 | 2015-11-24 | パナソニックIpマネジメント株式会社 | Particle measuring apparatus |
JP2016128795A (en) * | 2015-01-09 | 2016-07-14 | パナソニックIpマネジメント株式会社 | Particle measurement device, air cleaning machine, and particle measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2641927B2 (en) | Particle measurement device | |
JP2815435B2 (en) | Particle analyzer and blood cell counter | |
JPS61139747A (en) | Particle analyser | |
EP0487189A2 (en) | Particle diameter and velocity measuring apparatus | |
US4264206A (en) | Dust particle analyzer | |
JPH01250735A (en) | Apparatus for measuring particle size | |
US5742382A (en) | Refractometer | |
JPS63201554A (en) | Particle analyzing device | |
JPH03186732A (en) | Particle size measuring instrument | |
JPS5972012A (en) | Method and device for detecting gap and angle | |
JPS61884A (en) | Fluid particle sensor | |
JPH01301146A (en) | Fine particulate characteristic measuring instrument | |
JPS5833107A (en) | Device for measuring size of particle | |
JPH02245638A (en) | Specimen testing apparatus | |
JP2006064405A (en) | Light absorption measuring method, light absorption measuring instrument and optical waveguide usable in them | |
JP2817283B2 (en) | Characteristic measuring device for cable with optical connector | |
JP3025787B2 (en) | Lens meter | |
RU2006827C1 (en) | Device for measuring bulk concentration of solid particles in flows | |
JP2001330551A (en) | Particle measuring instrument | |
JP2003315243A (en) | Apparatus for measuring distribution of particle sizes | |
JPH0226054Y2 (en) | ||
JPS6135335A (en) | Particle analyzing device | |
JPH0261538A (en) | Fine particle measuring apparatus | |
RU1099728C (en) | Device for measuring felocity of particle flow | |
SU699403A1 (en) | Pulsed reflectometer |