JPH01301146A - Fine particulate characteristic measuring instrument - Google Patents

Fine particulate characteristic measuring instrument

Info

Publication number
JPH01301146A
JPH01301146A JP63130122A JP13012288A JPH01301146A JP H01301146 A JPH01301146 A JP H01301146A JP 63130122 A JP63130122 A JP 63130122A JP 13012288 A JP13012288 A JP 13012288A JP H01301146 A JPH01301146 A JP H01301146A
Authority
JP
Japan
Prior art keywords
optical fiber
light
lens
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63130122A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Ito
嘉敏 伊藤
Kazuo Takeda
一男 武田
Motoo Hourai
泉雄 蓬莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP63130122A priority Critical patent/JPH01301146A/en
Publication of JPH01301146A publication Critical patent/JPH01301146A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure characteristic of fine particulates with high accuracy by constituting an optical system which uses a multi-mode optical fiber between a laser light source and a condenser lens. CONSTITUTION:Laser luminous flux 12 emitted by an argon laser device 11 has a Gaussian intensity distribution in its luminous flux section and is converged on an end surface of the multi-mode optical fiber 14 through a lens 13. The laser light passed through the multi-mode optical fiber 14 is converted by a condenser lens 15. Water which contains fine particulates flows from a glass-made nozzle 16 in a water thread shape and this water thread 17 flows crossing the convergence point of laser light converged through the condenser lens 15. Further, scattered light 19 from fine particulates 18 in the water is converged on a secondary electron multipiler tube 21 through a lens 20. The secondary electron multiplier tube 21 converts the incident light into an electric signal, which is sent to a measuring instrument 23 through a cable 22. The measuring instrument 23 measures the level and frequency of the electric signal, calculates characteristics such as the size and quantity of fine particulates from the measured values, and displays them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光散乱を利用した微粒子の特性計測装置、特に
それに用いる光照射光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a particle characteristic measuring device using light scattering, and particularly to a light irradiation optical system used therein.

〔従来の技術〕[Conventional technology]

微粒子に光を照射し、微粒子による散乱光強度を利用し
てその微粒子の特性を測定する方法は光散乱法として知
られている。従来、この方法では微粒子に光を照射する
手段として第2図に示すように(特開昭62−4465
1号公報参照)レーザ光をレンズで集光し集光部に微粒
子を含んだ流体を流すようにしていた。
A method of irradiating light onto microparticles and measuring the characteristics of the microparticles using the intensity of light scattered by the microparticles is known as a light scattering method. Conventionally, in this method, as a means of irradiating light to fine particles, as shown in FIG.
(Refer to Publication No. 1) Laser light is focused by a lens, and a fluid containing fine particles is caused to flow through the focusing section.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光散乱法で微粒子の特性を測定する場合、同じ特性の微
粒子による散乱光の強度は常に同じでなければならない
、そのためには、微粒子に照射する光の強度は空間的に
一様でなければならない。
When measuring the characteristics of microparticles using light scattering, the intensity of light scattered by particles with the same characteristics must always be the same. To do this, the intensity of light irradiating the particles must be spatially uniform. .

もし、−様でないとすると、微粒子に照射される光の強
度が微粒子の位置によって変わり、散乱光も微粒子の位
置によって変化するためである。
If this is not the case, the intensity of the light irradiated to the fine particles will change depending on the position of the fine particles, and the scattered light will also change depending on the position of the fine particles.

従来は第2図に示す様にレーザ装置からの光束を単にレ
ンズで集光することにより微粒子への光照射を行ってい
た。
Conventionally, as shown in FIG. 2, fine particles were irradiated with light by simply condensing the light beam from a laser device with a lens.

しかし、このような方法で集光すると、集光部における
レーザ光束断面の光強度分布は、集光レンズに入射する
レーザ光の断面強度分布が反映して一様でなくなる。そ
のため、微粒子による散乱光強度は同じ粒径の微粒子で
あってもレーザ光束中の微粒子の位置によって異なる。
However, when the light is focused using such a method, the light intensity distribution in the cross section of the laser beam at the light focusing portion becomes non-uniform as it reflects the cross-sectional intensity distribution of the laser beam incident on the focusing lens. Therefore, the intensity of light scattered by fine particles differs depending on the position of the fine particles in the laser beam even if the fine particles have the same particle size.

その結果、散乱光強度から微粒子の特性を精度良く求め
る事ができないという問題が生じていた。
As a result, a problem has arisen in that the characteristics of fine particles cannot be accurately determined from the intensity of scattered light.

本発明の目的は上記の問題点を解決し、高精度で微粒子
の特性を測定できる微粒子特性測定装置を提供する事に
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a particle characteristic measuring device that can measure the characteristics of fine particles with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光学系はレーザ光源と集光レンズ間にマルチモ
ード光ファイバを用いた構成とする。
The optical system of the present invention uses a multimode optical fiber between a laser light source and a condenser lens.

〔作用〕[Effect]

レーザ光源から射出されたレーザ光束では、断面内の光
強度は一様ではなく、レーザ光源のレーザ発振モードに
応じた強度分布となっている。このようなレーザ光束を
レンズで集光した場合には、レンズの焦点位置に集光さ
れたレーザ光の強度分布も一様にはならない。
In the laser beam emitted from the laser light source, the light intensity within the cross section is not uniform, but has an intensity distribution depending on the laser oscillation mode of the laser light source. When such a laser beam is focused by a lens, the intensity distribution of the laser beam focused at the focal position of the lens is not uniform.

本発明では、レーザ光源から射出されたレーザ光束をマ
ルチモード光ファイバを通してからレンズで集光する。
In the present invention, a laser beam emitted from a laser light source is passed through a multimode optical fiber and then condensed by a lens.

マルチモード光ファイバは透過するレーザ光束を入射時
のモードに係わらずマルチモードに変換する。そのため
、マルチモード光ファイバを透過したレーザ光は、多く
のモードのレーザ光束が重なり合った状態になる。その
結果、その光束断面内の強度も各モードの強度の和とな
って平均化され空間的に一様となる。従って、マルチモ
ードに変換されたレーザ光をレンズで集光すると集光部
の断面的強度分布は一様となり、レーザビーム内の微粒
子の位置によって散乱光の強度が変化することが無くな
り、同じ粒径の微粒子からは同じ強度の散乱光が散乱さ
れるようになる。
A multimode optical fiber converts the transmitted laser beam into multimode regardless of the mode of incidence. Therefore, the laser beam transmitted through the multimode optical fiber becomes a state in which laser beams of many modes overlap. As a result, the intensity within the beam cross section also becomes the sum of the intensities of each mode, is averaged, and becomes spatially uniform. Therefore, when the multi-mode laser beam is focused with a lens, the cross-sectional intensity distribution of the focused part becomes uniform, and the intensity of the scattered light does not change depending on the position of the fine particles in the laser beam, and the same particle Scattered light of the same intensity will be scattered from fine particles of the same diameter.

その結果、この散乱光を利用して微粒子特性の算出を行
う際にその精度を向上させることができる。
As a result, accuracy can be improved when calculating particle characteristics using this scattered light.

〔実施例〕〔Example〕

[実施例1] 以下、本発明を実施例により説明する。第1図は本発明
による微粒子計測装置の構成図である。
[Example 1] Hereinafter, the present invention will be explained with reference to Examples. FIG. 1 is a configuration diagram of a particle measuring device according to the present invention.

第1図において11はアルゴンレーザ装置、12はレー
ザ光束でありその波長は488nme直径は1m、光束
断面内の強度分布はガウス分布である。13はレーザ光
束をマルチモード光ファイバ14の端面に集光するため
のレンズで、その焦点距離は10IIllIである。マ
ルチモード光ファイバ14はコア形状が円形でその直径
は75μmのファイバである。集光レンズ15はマルチ
モード光ファイバを透過したレーザ光を集光するための
レンズで、その焦点距離は30mである。16は微粒子
を含んだ水を水系状に流す為のガラス製のノズルでノズ
ル内径は0.3mである。17はノズルから流された水
系で、この水系はレンズ15によって集光されるレーザ
光の集光点と交差する場所に流す、18は水に含まれる
微粒子である。微粒子による散乱光19は、レンズ20
により二次電子増倍管21に集光される。レンズ20は
焦点距離50m、Fナンバ0.8 の非球面レンズであ
る。二次電子増倍管21は入射した光を電気信号に変換
し、その電気信号をケーブル22を通して測定器23に
伝える。測定器23はケーブル22を通して送られる電
気信号の大きさと、度数を計測しその値から微粒子のサ
イズと個数等の特性を算出して表示する。
In FIG. 1, 11 is an argon laser device, 12 is a laser beam whose wavelength is 488 nm, diameter is 1 m, and the intensity distribution within the cross section of the beam is a Gaussian distribution. Reference numeral 13 denotes a lens for focusing the laser beam onto the end face of the multimode optical fiber 14, and its focal length is 10IIIllI. The multimode optical fiber 14 has a circular core shape and a diameter of 75 μm. The condensing lens 15 is a lens for condensing the laser light transmitted through the multimode optical fiber, and its focal length is 30 m. Reference numeral 16 denotes a glass nozzle for flowing water containing fine particles into an aqueous system, and the inner diameter of the nozzle is 0.3 m. Reference numeral 17 indicates a water system flowed from a nozzle, and this water system flows to a place where it intersects the focal point of the laser beam focused by the lens 15. Reference numeral 18 indicates fine particles contained in the water. The scattered light 19 caused by the fine particles is transmitted through the lens 20.
The light is focused on the secondary electron multiplier tube 21. The lens 20 is an aspherical lens with a focal length of 50 m and an F number of 0.8. The secondary electron multiplier tube 21 converts the incident light into an electrical signal, and transmits the electrical signal to the measuring device 23 through the cable 22. The measuring device 23 measures the magnitude and frequency of the electrical signal sent through the cable 22, and calculates and displays characteristics such as the size and number of particles from the measured values.

第3図はレーザ光束12の断面的強度分布を表す図であ
り、横軸がレーザ光束の中心Oから光軸に垂直方向への
距離を表す。縦軸はレーザ光の強度を表す。
FIG. 3 is a diagram showing the cross-sectional intensity distribution of the laser beam 12, in which the horizontal axis represents the distance from the center O of the laser beam in the direction perpendicular to the optical axis. The vertical axis represents the intensity of laser light.

この分布は一般的にガウス型分布となっているものが多
い、ガウス型分布のレーザ光は集光点における光束断面
内の強度分布もガウス型となり一様にはならない。しか
し1本発明ではそのレーザ光をマルチモード光ファイバ
14に入射させ透過させる。レーザ光はマルチモード光
ファイバを透過する途中でその光強度分布が変化し、マ
ルチモード光ファイバの出力側端面内ではその強度が第
4図に示すように均一になる。従って、レンズ15によ
りマルチモード光ファイバの出力側端面の像を結像させ
るとその像の明るさが均一となり。
This distribution is generally a Gaussian distribution in many cases. In the case of a laser beam having a Gaussian distribution, the intensity distribution within the cross section of the beam at the focal point is also Gaussian and is not uniform. However, in one aspect of the present invention, the laser beam is made incident on the multimode optical fiber 14 and transmitted therethrough. The light intensity distribution of the laser beam changes while passing through the multimode optical fiber, and the intensity becomes uniform within the output end face of the multimode optical fiber as shown in FIG. Therefore, when an image of the output side end face of the multimode optical fiber is formed by the lens 15, the brightness of the image becomes uniform.

その像を構成する光束の断面円強度も結像部では均一と
なる。その結果、この結像部に交差してながれろ水系中
の微粒子は水系中のどの部分に含まれていても同じ強度
の光で照射されるようになりその位置による散乱光の強
度変化がなくなる。
The cross-sectional circular intensity of the light beam constituting the image is also uniform in the imaging section. As a result, fine particles in the aqueous system that flow across this imaging area are irradiated with light of the same intensity no matter where in the aqueous system they are contained, eliminating changes in the intensity of scattered light depending on their position. .

[実施例2コ 本実施例で示す装置の構成は実施例1と同じである。異
なる点は、マルチモード光ファイバ14の仕様である。
[Example 2] The configuration of the apparatus shown in this example is the same as that in Example 1. The difference is the specifications of the multimode optical fiber 14.

具体的には光ファイバのコア形状が異なっており、実施
例1では円形コアの光ファイバを用いたが本実施例では
光ファイバの射出端側の形状が矩形になった光ファイバ
を用いる。
Specifically, the core shapes of the optical fibers are different; in Example 1, an optical fiber with a circular core was used, but in this example, an optical fiber with a rectangular shape at the exit end side of the optical fiber is used.

マルチモード光ファイバを透過したレーザ光をレンズ1
5により集光するとその集光部Pにはその光ファイバの
レーザ光射出側端面の像が結像される。
The laser beam transmitted through the multimode optical fiber is passed through lens 1.
5, an image of the end face of the optical fiber on the laser beam emission side is formed on the condensing portion P.

従ってこの像を結像する光束と水系との交差の様子は第
5図に示すようになる。比較のために実施例1の場合の
レーザ光束と水系の交差の様子を第6図に示す。第5図
と第6図の比較から判るように光ファイバの端面が矩形
の場合のほうが照射光は効率よく水系に照射される。そ
のため、この二つの場合について同じ粒径の微粒子によ
る散乱光の強度を比較すると、矩形型光ファイバを用い
た方が大きくなり測定が容易になるという特長がある。
Therefore, the manner in which the light beam that forms this image intersects with the water system is as shown in FIG. For comparison, FIG. 6 shows how the laser beam and the water system intersect in Example 1. As can be seen from the comparison between FIG. 5 and FIG. 6, when the end face of the optical fiber is rectangular, the irradiated light is more efficiently irradiated onto the water system. Therefore, when comparing the intensity of scattered light by fine particles of the same particle size in these two cases, the use of a rectangular optical fiber has the advantage of being larger and easier to measure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば光散乱法により微粒子寸法を計測すると
きその計測精度を向上させることができる。
According to the present invention, it is possible to improve the measurement accuracy when measuring particle size using a light scattering method.

本発明ではレーザ装置と散乱光計測部が光ファイバで結
合されている。−船釣に光ファイバは可どう性があるた
め1本発明による装置にはレーザ装置と散乱光測定部と
の相対的な位置関係を自由に選べるという利点もある。
In the present invention, the laser device and the scattered light measuring section are coupled through an optical fiber. - Optical fibers can be used for boat fishing, so the device according to the present invention also has the advantage that the relative positional relationship between the laser device and the scattered light measuring section can be freely selected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した微粒子特性計測装置の基本構
成の説明図、第2図(a)は光散乱法をもちいた従来の
微粒子特性計測装置の光学系配置図、同図(b)はフロ
ーセルの断面図、第3図はレーザ光束の一般的な断面円
強度分布図、第4図はレーザ光を透過させたマルチモー
ド光ファイバの出力側端面における光強度分布図、第5
図は矩形状端面のマルチモード光ファイバを透過した一
ザ光の集光部と水系との交差の状況を示す正面図、第6
図は円形状端面のマルチモード光ファイバを透過したレ
ーザ光の集光部と水系との交差の状況を示す正面図であ
る。 11・・・レーザ装置、14・・・マルチモード光ファ
イバ、15・・・集光レンズ、16・・・ノズル、17
・・・水系、18・・・微粒子、19・・・散乱光、2
1・・・2次電第 1  口
Fig. 1 is an explanatory diagram of the basic configuration of a particle characteristic measuring device embodying the present invention, Fig. 2 (a) is an optical system layout diagram of a conventional particle characteristic measuring device using a light scattering method, and Fig. 2 (b) is a cross-sectional view of a flow cell, Fig. 3 is a general cross-sectional circular intensity distribution diagram of a laser beam, Fig. 4 is a light intensity distribution diagram at the output side end face of a multimode optical fiber through which laser light is transmitted, and Fig. 5
The figure is a front view showing the intersection between the condensing part of the single light transmitted through the multimode optical fiber with the rectangular end face and the water system.
The figure is a front view showing the intersection of a water system and a condensing section of laser light transmitted through a multimode optical fiber with a circular end face. DESCRIPTION OF SYMBOLS 11... Laser device, 14... Multimode optical fiber, 15... Condensing lens, 16... Nozzle, 17
...aqueous, 18...fine particles, 19...scattered light, 2
1...Secondary electricity 1st port

Claims (1)

【特許請求の範囲】[Claims] 1、微粒子にレーザ光を照射し該微粒子による散乱光強
度を測定し、該散乱光強度を利用して該微粒子の特性を
算出する装置において、レーザ装置から射出したレーザ
光をマルチモード光ファイバに入射させ、該マルチモー
ド光ファイバを透過したレーザ光を集光し、該集光部に
於て該微粒子にレーザ光を照射することを特徴とする微
粒子特性測定装置。
1. In a device that irradiates laser light onto fine particles, measures the intensity of scattered light by the fine particles, and calculates the characteristics of the fine particles using the scattered light intensity, the laser beam emitted from the laser device is connected to a multimode optical fiber. A particle characteristic measuring device characterized in that a laser beam is made incident and transmitted through the multimode optical fiber, and the particle is irradiated with the laser beam in the condensing section.
JP63130122A 1988-05-30 1988-05-30 Fine particulate characteristic measuring instrument Pending JPH01301146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130122A JPH01301146A (en) 1988-05-30 1988-05-30 Fine particulate characteristic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130122A JPH01301146A (en) 1988-05-30 1988-05-30 Fine particulate characteristic measuring instrument

Publications (1)

Publication Number Publication Date
JPH01301146A true JPH01301146A (en) 1989-12-05

Family

ID=15026475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130122A Pending JPH01301146A (en) 1988-05-30 1988-05-30 Fine particulate characteristic measuring instrument

Country Status (1)

Country Link
JP (1) JPH01301146A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214652A (en) * 2004-01-27 2005-08-11 Kurita Water Ind Ltd Flocculation sensor and flocculated state measuring instrument
JP2006250686A (en) * 2005-03-10 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Flow site meter and laser beam irradiation method
JP2012013690A (en) * 2010-07-01 2012-01-19 Sony Corp Fine particle analyzer and fine particle analysis method
JP2012519278A (en) * 2009-02-27 2012-08-23 ベックマン コールター, インコーポレイテッド Stabilized optical system for flow cytometry
JP2013246023A (en) * 2012-05-25 2013-12-09 Azbil Corp Optical particle detector and particle detection method
JP2015519575A (en) * 2012-06-15 2015-07-09 ハンディエム・インコーポレーテッド Method and flow cell for characterizing particles with non-Gaussian temporal signals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155839A (en) * 1984-12-28 1986-07-15 Toshiba Corp Measuring instrument for grain size

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155839A (en) * 1984-12-28 1986-07-15 Toshiba Corp Measuring instrument for grain size

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214652A (en) * 2004-01-27 2005-08-11 Kurita Water Ind Ltd Flocculation sensor and flocculated state measuring instrument
JP2006250686A (en) * 2005-03-10 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Flow site meter and laser beam irradiation method
JP2012519278A (en) * 2009-02-27 2012-08-23 ベックマン コールター, インコーポレイテッド Stabilized optical system for flow cytometry
JP2012013690A (en) * 2010-07-01 2012-01-19 Sony Corp Fine particle analyzer and fine particle analysis method
EP2402734A3 (en) * 2010-07-01 2017-04-26 Sony Corporation Minute particle analyzing device and method
JP2013246023A (en) * 2012-05-25 2013-12-09 Azbil Corp Optical particle detector and particle detection method
JP2015519575A (en) * 2012-06-15 2015-07-09 ハンディエム・インコーポレーテッド Method and flow cell for characterizing particles with non-Gaussian temporal signals

Similar Documents

Publication Publication Date Title
US4876458A (en) Apparatus for measuring particles in liquid
KR101857950B1 (en) High accuracy real-time particle counter
US5446532A (en) Measuring apparatus with optically conjugate radiation fulcrum and irradiated area
JPH0260256B2 (en)
JPH0258585B2 (en)
JPH1151843A (en) Fiber detector for detecting scattering light or fluorescent light of suspension
JPS63241336A (en) Particle size measuring apparatus
JPH01301146A (en) Fine particulate characteristic measuring instrument
JP2694304B2 (en) Light diffraction, scattering type particle size distribution analyzer
CN110986836A (en) High-precision roughness measuring device based on annular core optical fiber
JPH01132932A (en) Signal beam detecting optical system of flow type particle analyser
US11204310B2 (en) Optical flow cytometer for epi fluorescence measurement
JP2013195208A (en) Fine particle measuring instrument
JPH0231817B2 (en)
JPH0225448B2 (en)
JPS63201554A (en) Particle analyzing device
JPS6370148A (en) Apparatus for measuring size distribution of fine particle
JP6249049B2 (en) Fine particle measuring device
JPH0565020B2 (en)
JP3025051B2 (en) Scattered light measurement cell
JPH06241974A (en) Grain size distribution measuring device
SU1404900A1 (en) Method of measuring fractional particle-size composition of aerosols
JPH0455740A (en) Corpuscle detecting apparatus
JPS61234339A (en) Fine particle detector for liquid
JPH04369463A (en) Light scattering type particle detector