JPH01250097A - Surveillance equipment for reactor core at fuel exchange time - Google Patents

Surveillance equipment for reactor core at fuel exchange time

Info

Publication number
JPH01250097A
JPH01250097A JP63077230A JP7723088A JPH01250097A JP H01250097 A JPH01250097 A JP H01250097A JP 63077230 A JP63077230 A JP 63077230A JP 7723088 A JP7723088 A JP 7723088A JP H01250097 A JPH01250097 A JP H01250097A
Authority
JP
Japan
Prior art keywords
neutron
fuel
reactor
measuring instrument
refueling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63077230A
Other languages
Japanese (ja)
Inventor
Hitoshi Sato
仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63077230A priority Critical patent/JPH01250097A/en
Publication of JPH01250097A publication Critical patent/JPH01250097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To display predicted read values of an in-reactor neutron measuring instrument before and after a operation procedure by inputting the operation contents of fuel replacement and calculating a neutron flux distribution by a two-dimensional output distribution calculation model. CONSTITUTION:When operation in one optional step of the fuel replacement procedure is indicated to a input indicating mechanism 1, the input indicating mechanism 1 uses information in a fuel exchanging operation data base 2 to send fuel arrangements 101 and 102 before and after the indicated operation to a two-dimensional neutron flux distribution calculating mechanism 4. The calculating mechanism 4 performs calculation by referring to a fuel core constant data base 3 and sends the neutron level 103 of neutron measuring instrument positions before and after the operation to a neutron measuring instrument read converting mechanism 5. The converting mechanism 5 multiplies the neutron level 103 by a set neutron measuring instrument read conversion coefficient 104 to calculate a neutron read predicted value 105, which is sent to and displayed on an output display mechanism 106. The behavior of the in-reactor neutron measuring instrument can be grasped previously, so the reactor surveillance of high quality is performed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子炉定期検査時の燃料交換過程の炉心監視
において、燃料交換作業に伴う炉内中性子計測器の読み
の変化を予測し、提示する燃料交換時炉心監視装置に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is aimed at monitoring the reactor core during the fuel exchange process during periodic reactor inspections, by monitoring the readings of the in-core neutron measuring instrument during the fuel exchange operation. This invention relates to a reactor core monitoring device during fuel exchange that predicts and presents changes.

(従来の技術) 一般に、原子炉定期検査時の燃料交換作tにおいては、
原子炉が臨界超過となって出力急増する反応度事故を避
ける目的で、燃料装荷・取出し時あるいは制御棒引抜き
時には、炉内中性子計測器の読みの変化を監視し、原子
炉の未臨界を常に確認する必要がある。
(Prior art) In general, during fuel exchange operations during periodic nuclear reactor inspections,
In order to avoid a reactivity accident in which the reactor becomes supercritical and the output suddenly increases, changes in the readings of the in-reactor neutron measuring instrument are monitored when loading and unloading fuel or when withdrawing control rods to ensure that the reactor is not subcritical at all times. It is necessary to confirm.

中性子計測器の読みは、未臨界時には未臨界1ツ(臨界
に至るまでの反応度余裕)に応じた一定レベルになるが
、燃料交換作業での燃料や制御棒の出入れによって未臨
界度が変化するため、過渡的に読みが変化し、異なるレ
ベルに落若く。燃料が装荷されたり、制御棒が引抜かれ
たりした場合には、正の反応度が加わり、第4図のグラ
フに曲線a、b、cで示すように、中性子計測器の読ろ
は過渡的に上昇して、より高いレベルに落着く。未臨界
度が小さく臨界に近い場合には、上昇期間か長くなり、
一定となるレベルも高くなっていく。
When the neutron measuring device is subcritical, the reading will be at a certain level depending on the subcriticality level (reactivity margin before reaching criticality), but the subcriticality may change due to the removal and removal of fuel and control rods during refueling work. Because of the change, the reading changes transiently and falls to a different level. When fuel is loaded or a control rod is withdrawn, positive reactivity is added, and the readings of the neutron measuring instrument are transient, as shown by curves a, b, and c in the graph of Figure 4. rise to and settle down at a higher level. If the degree of subcriticality is small and close to criticality, the rising period will be longer;
The level at which it becomes constant also becomes higher.

臨界超過時においては、一定となることはなく、指数関
数的に中性子レベルは上昇していく。
At supercriticality, the neutron level does not remain constant and increases exponentially.

一方、燃料が取出されたり、制御棒が挿入されたりした
場合には、負の反応度が加わり、第5図のグラフに曲線
d、e、fで示すように、中性子計fllll器の読み
は過渡的に下降して、より低いレベルに落若く。
On the other hand, when fuel is removed or control rods are inserted, negative reactivity is added, and the readings of the neutron meter are A transitional decline, falling to a lower level.

燃料交換時に炉心監視を行う者は、燃料交換手順が正し
く履行されていることを監視するとともに、この中性子
レベルの挙動をよく理解して、原子炉が未臨界であるこ
との確認を常に行う必要がある。
Those who monitor the reactor core during refueling must monitor that the refueling procedure is being carried out correctly, understand the behavior of this neutron level well, and constantly confirm that the reactor is subcritical. There is.

(発明が解決しようとする課8) 燃料交換時には、炉心で燃料の装荷されている部分には
制御棒が全挿入され、また、点検や交換作業のため制御
棒を取出す必要のある部分は、制御棒周りの燃料をすべ
て取出しており、保安規定に基づき、間違って1本の制
御棒が引抜かれても原子炉が未臨界であるような炉停止
余裕を維持している。したがって、正しく計画された燃
料交換手順であれば炉内中性子計測器の読みは数分以内
に一定レベルに落若くが、手順履行の誤り等で、制御棒
の無い炉心部分に燃料が装荷されたり、燃料のある炉心
部分から制御棒が引抜かれたりした場合には、炉停止余
裕が小さくなり、中性子レベルが急増する可能性もある
。手順履行の誤りは、燃料交換作業の自動化により発生
確率を充分低下することができるが、燃料交換手順のデ
ータそのものに不適切なものがあった場合には、炉停止
余裕が小さくなる事態も起こり得る。
(Question 8 to be solved by the invention) During fuel exchange, control rods are fully inserted into the parts of the reactor core where fuel is loaded, and the parts where control rods need to be taken out for inspection or replacement work are All the fuel around the control rods has been removed, and based on safety regulations, there is enough margin to shut down the reactor so that even if one control rod is accidentally pulled out, the reactor remains subcritical. Therefore, if the refueling procedure is planned correctly, the reading of the in-reactor neutron measuring instrument will drop to a certain level within a few minutes, but if there is a mistake in the procedure, fuel may be loaded into a part of the reactor core that does not have control rods. If control rods are pulled out of the core where fuel is located, the margin for reactor shutdown will be reduced and neutron levels may increase rapidly. The probability of errors in procedure execution can be sufficiently reduced by automating the fuel exchange work, but if there is inappropriate data in the fuel exchange procedure itself, the margin for reactor shutdown may be reduced. obtain.

中性子レベルが高くなる場合の安全上の観点からの監視
の必要性とは別に、中性子束レベルが低くなって、中性
子計測器の読みが小さくなる場合には、次のような作業
行程上の問題が生じる。
Apart from the need for monitoring from a safety perspective when neutron levels become high, when neutron flux levels become low and neutron meter readings become low, there are operational issues such as: occurs.

中性子源領域中性子計測器(S RM : Sourc
eRange Mon1tor)の読みが設定下限値(
3cps)を下回る場合は、インターロックにより制御
棒の引抜きが不可能となる。制御棒自体の交換はもちろ
ん、炉内検出器の取替え、あるいは制御棒駆動機構の点
検には、周囲の燃料を取出した後、制御棒を引抜く作業
が必要である。燃料交換作業が進んで炉心から取出され
る燃料が増加していくと、−般に未臨界度が増加して、
中性子レベルが低下し、特にSRM周りの燃料取出しを
行った場合には、SRMの読みは急減する。また、SR
M周りの燃$4が取出されると、炉心平均よりも局所的
に未臨界度が大きくなることで、読みから判断したより
も実際の炉停止余裕が小さく、不用意な操作で思わぬ出
力上界を生じる可能性がある。
Neutron source region neutron measuring instrument (SRM: Source
The reading of eRange Monitor) is the setting lower limit value (
3 cps), an interlock prevents the control rod from being withdrawn. In order to replace the control rod itself, replace the in-core detector, or inspect the control rod drive mechanism, it is necessary to remove the surrounding fuel and then pull out the control rod. As refueling progresses and the amount of fuel removed from the core increases, the degree of subcriticality generally increases.
As neutron levels drop, the SRM readings will drop sharply, especially if defueling is performed around the SRM. Also, S.R.
When $4 of fuel around M is extracted, the degree of subcriticality locally becomes larger than the core average, and the actual reactor shutdown margin is smaller than judged from the readings, resulting in unexpected output due to careless operation. There is a possibility that an upper bound will occur.

以上の理由から、燃料交換作業中の炉心監視では、作業
毎に中性子計測器の読みの変化に注意し、炉停止余裕の
確保と中性子計測値が下限に達しないことを確認しなけ
ればならない。中性子計′A−1器の読みの変化につい
て、燃料交換作業の前に予め知ることができれば、炉心
監視は、より確実なものとなるが、このような予測機能
は、従来のプロセス計算機等では実現されていなかった
For the above reasons, when monitoring the reactor core during refueling work, it is necessary to pay attention to changes in the readings of neutron measuring instruments after each work, and to ensure that there is sufficient margin for reactor shutdown and that neutron measurement values do not reach the lower limit. If changes in the readings of the neutron meter A-1 could be known in advance before refueling operations, core monitoring would be more reliable, but such a prediction function is not possible with conventional process computers. It had not been realized.

このため、従来は、燃料交換作業手順を計画する段階で
の中性子レベルが高すぎたり低すぎたりする事態を回避
するための手順調整等は、作業手順計画担当者の経験と
勘によって行われている。
For this reason, conventionally, procedures such as adjusting procedures to avoid situations where the neutron level is too high or too low at the stage of planning fuel exchange work procedures have been done based on the experience and intuition of the work procedure planners. There is.

また、燃料交換作業の炉心監視業務を訓練するシミュレ
ータ等もないので、炉心監視業務に携わる担当者は実際
の交換業務で経験を積むより他はなかった。
Furthermore, since there are no simulators or the like to train core monitoring operations during fuel exchange operations, the personnel involved in core monitoring operations had no choice but to gain experience through actual refueling operations.

そこで、本発明の目的は、燃料交換の作業内容を入力と
して、燃料交換作業前後の炉内中性子計測器の読みの予
測値を、利用者に提示する燃料交換時炉心監視装置を提
供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reactor core monitoring device during refueling that uses the details of the refueling work as input and presents to the user predicted values of the readings of the in-core neutron measuring instrument before and after the refueling work. be.

[発明の構成] (課題を解決するための手段) すなわち、燃料交換作業内容を人力する人力指示手段と
、この入力指示手段によって指示された燃料交換作業デ
ータと炉内燃料配置に対応した燃料核定数データとから
固定中性子源を考慮した2次元出力分布計算モデルを用
いて燃料交換作業前後の中性子束分布を計算し炉内中性
子計測器位置の中性子レベルを算出する中性子束分布計
算手段と、この中性子束分布計算手段によって得られた
前記中性子レベルを中性子計測器読みに換算する中性子
計測器読み換算手段と、この中性子計測器読み換算手段
で得られた前記中性子計測器読みを出力する出力表示手
段とを備えたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problem) That is, a manual instruction means for manually inputting the content of fuel exchange work, and a fuel nuclear determination corresponding to fuel exchange work data and in-reactor fuel arrangement instructed by the input instruction means. a neutron flux distribution calculation means that calculates the neutron flux distribution before and after refueling work using a two-dimensional power distribution calculation model that takes into account a fixed neutron source from numerical data, and calculates the neutron level at the in-reactor neutron measuring instrument position; neutron meter reading conversion means for converting the neutron level obtained by the neutron flux distribution calculation means into a neutron meter reading; and output display means for outputting the neutron meter reading obtained by the neutron meter reading conversion means. It is characterized by having the following.

(作 用) 上記構成の本発明の燃料交換時炉心監視装置では、燃料
交換中の炉心挙動を予測するために、2次元拡散計算に
よる中性子束分布計算を行い、中性子束分布を中性子計
測器の読みに換算する。
(Function) In the reactor core monitoring device during refueling of the present invention having the above configuration, in order to predict the core behavior during refueling, neutron flux distribution is calculated by two-dimensional diffusion calculation, and the neutron flux distribution is calculated using a neutron measuring instrument. Convert to reading.

炉心中性子束分布計算には、安全評価用に未臨界度評価
を目的として、固有値計算が採用される場合が多いが、
燃料交換過程における炉心状態では、燃料が取出されて
炉心内に水領域を多数含むケースがあり、計算の収束安
定性と時間コストの面で問題がある。そこで、反復解法
の必要が無い固定中性子源に基づく中性子束分布計算を
採用する。
In core neutron flux distribution calculations, eigenvalue calculations are often adopted for the purpose of subcriticality evaluation for safety evaluation.
In the core state during the refueling process, there are cases where fuel is removed and the core contains many water regions, which poses problems in terms of calculation convergence stability and time cost. Therefore, we adopt a neutron flux distribution calculation based on a fixed neutron source, which does not require an iterative solution method.

そして、人力指示手段により人力した燃料交換手順に基
づく燃料交換作業データと、燃料核定数データから、2
次元中性子束分布計算手段で、燃料交換手順実行前と実
行後の2ケースの炉内中性子束分布を計算し、この中性
子束分布で、中性子計測器位置の中性子レベルを求める
。この後、この中性子レベルを中性子計測器読み換算手
段により、中性子計測器読みに変換し、燃料交換手順実
行前後の中性子計測器読みを出力表示手段に表示する。
Then, from the fuel exchange work data based on the fuel exchange procedure manually performed by the manual instruction means and the fuel nuclear constant data, 2
The neutron flux distribution calculation means calculates the neutron flux distribution in the reactor in two cases, before and after the refueling procedure is executed, and from this neutron flux distribution, the neutron level at the neutron measuring instrument position is determined. Thereafter, this neutron level is converted into a neutron meter reading by the neutron meter reading conversion means, and the neutron meter readings before and after execution of the fuel exchange procedure are displayed on the output display means.

これにより、実際の燃料交換作業を行わなくても、中性
子計測器の読みの変化を予測することができる。
This makes it possible to predict changes in neutron meter readings without actually performing refueling operations.

また、現状の中性子針4Pj器出力信号を分布偏差評価
手段に取込み、現状の炉心状態について予測されている
中性子計測器読み予測値との比較により、偏差の大きさ
と計測器位置による分布を固定中性子源評価手段へ送り
、この偏差の情報に基づき、偏差を小さくする固定中性
子源を再計算し、2次元中性子束分布計算手段に送るよ
うに構成すれば、燃料交換手順実行前の中性子計測器読
み予測値と、実際の中性子計測器出力信号とが整合する
ように調整されるので、燃料交換手順実行後の中性子計
測器読み予測値の精度が向上する。
In addition, the current neutron needle 4Pj device output signal is taken into the distribution deviation evaluation means, and by comparing it with the predicted value of the neutron measuring device reading predicted for the current core state, the size of the deviation and the distribution depending on the measuring device position are fixed. If the configuration is such that the fixed neutron source is sent to the source evaluation means, and the fixed neutron source is recalculated to reduce the deviation based on this deviation information, and then sent to the two-dimensional neutron flux distribution calculation means, the neutron measurement instrument reading before the refueling procedure is Since the predicted value and the actual neutron meter output signal are adjusted to match, the accuracy of the predicted neutron meter reading after the refueling procedure is performed is improved.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例の燃料交換時炉心監視装置
を示すもので、この実施例の燃料交換時炉心監視装置は
、入力指示機構1と、燃料交換作業データベース2と、
燃料核定数データベース3と、2次元中性子束分布計算
機構4と、中゛性子計測器読み換算機構5と、出力表示
機構6とから構成されている。
FIG. 1 shows a reactor core monitoring device during refueling according to an embodiment of the present invention. The reactor core monitoring device during refueling according to this embodiment includes an input instruction mechanism 1, a refueling work database 2,
It is composed of a fuel nuclear constant database 3, a two-dimensional neutron flux distribution calculation mechanism 4, a neutron meter reading conversion mechanism 5, and an output display mechanism 6.

なお、燃料核定数データベース3には、燃料交換作業に
関わっている全ての燃料の核定数が格納されており、ど
のような燃料配置に対しても、中性子束分布の計算が可
能となっている。また、燃料交換作業データベース2に
は、対象とする炉心の燃料配置、燃料交換手順および炉
内中性子検出器の位置が格納されている。
Furthermore, the fuel nuclear constant database 3 stores the nuclear constants of all fuels involved in refueling operations, making it possible to calculate the neutron flux distribution for any fuel arrangement. . Further, the fuel exchange work database 2 stores the fuel arrangement of the target reactor core, the fuel exchange procedure, and the position of the in-core neutron detector.

次に上記構成の燃料交換時炉心監視装置の動作について
説明する。
Next, the operation of the reactor core monitoring device during refueling having the above configuration will be explained.

入力指示機構1に対して、予め設定した燃料交換手順の
中の1ステツプに相当する燃料交換作業、あるいは、指
定した燃料配置に対する任意の 1ステツプの燃料交換
作業の入力指示を行うと、入力指示機構1は、燃料交換
作業前の燃料配置101と燃料交換作業後の燃料配置1
02を2次元中性子束分布計算機構4に送る。
When an input instruction is given to the input instruction mechanism 1 for a fuel exchange operation corresponding to one step in a preset fuel exchange procedure, or an arbitrary one-step fuel exchange operation for a specified fuel arrangement, the input instruction is Mechanism 1 includes fuel arrangement 101 before fuel exchange work and fuel arrangement 1 after fuel exchange work.
02 to the two-dimensional neutron flux distribution calculation mechanism 4.

人力指示機構1は、第2図に示すように構成されており
、燃料配置表示機構10には、燃料交換作業データベー
ス2の情報を用いて、対象とする燃料交換手順データか
ら求められた、指定時点の燃料交換作業前の燃料配置1
01が表示されている。また、燃料プールにおける燃料
配置106も表示されており、マウス11を用いて、燃
料配置表示機構10上のマウスカーソル107を移動さ
せ、マウス11の操作で燃料交換対象となる燃料を特定
することができる。燃料を特定した後燃料の無い場所で
マウス11を操作すると、燃料の移動を指定したことに
なる。たとえば、炉心の燃料を指定した後、燃料プール
の空き位置を指定すると燃料取出しとなり、燃料プール
の燃料を指定した後、炉心の空き位置を指定すると燃料
装荷となり、炉心の燃料を指定した後、炉心の空き位置
を指定すると燃料シャフリングとなる。このようにして
、燃料交換作業の1ステツプを指定できる。
The human power instruction mechanism 1 is configured as shown in FIG. Fuel arrangement 1 before fuel exchange work
01 is displayed. Further, the fuel arrangement 106 in the fuel pool is also displayed, and by using the mouse 11 to move the mouse cursor 107 on the fuel arrangement display mechanism 10, it is possible to specify the fuel to be replaced by operating the mouse 11. can. When the mouse 11 is operated in a place where there is no fuel after specifying the fuel, the movement of the fuel is specified. For example, after specifying fuel in the reactor core, specifying an empty position in the fuel pool will result in fuel removal, specifying fuel in the fuel pool and then specifying an empty position in the core will result in fuel loading, and after specifying fuel in the reactor core, Specifying an empty position in the core will result in fuel shuffling. In this way, one step in the refueling operation can be designated.

2次元中性子束分布計算機構4は、燃料交換作業前後の
燃料配置101.102に基づき、燃料核定数データベ
ース3を参照し、計算に必要な核定数データを取込み、
2次元中性子束分布計算を行う。固定中性子源も核定数
データとして燃料核定数データベース3に設定しておき
、中性子束分布計算に用いる。なお、燃料交換手順にし
たがって順次作業ステップ毎の予測を行う場合には、■
ステップでの中性子束分布を次のステップにおける燃料
交換作業前の中性子束分布として採用できるので、次の
ステップでは燃料交換作業後の中性子束分布のみを計算
する。そして、燃料交換作業データベース2から炉内中
性子検出器の位置についてのデータを取込み、この位置
の中性子レベルを中性子束分布から計算し、燃料交換作
業前後の中性子計測器位置の中性子レベル103を中性
子計1fFJ器読み換算機構5に送る。
The two-dimensional neutron flux distribution calculation mechanism 4 refers to the fuel nuclear constant database 3 based on the fuel arrangement 101 and 102 before and after the fuel exchange operation, and imports the nuclear constant data necessary for calculation.
Perform two-dimensional neutron flux distribution calculations. A fixed neutron source is also set as nuclear constant data in the fuel nuclear constant database 3, and used for neutron flux distribution calculation. In addition, when predicting each work step sequentially according to the fuel exchange procedure,
Since the neutron flux distribution in the step can be adopted as the neutron flux distribution before the refueling operation in the next step, only the neutron flux distribution after the refueling operation is calculated in the next step. Then, data on the position of the in-reactor neutron detector is imported from the refueling work database 2, the neutron level at this position is calculated from the neutron flux distribution, and the neutron level 103 at the neutron measuring instrument position before and after the refueling work is calculated from the neutron meter. It is sent to the 1fFJ device reading conversion mechanism 5.

中性子計4p1器読みと中性子レベルは比例関係にある
ので、中性子計測器読み換算機構5では、中性子レベル
103に設定した中性子計測器読み換算係数104を掛
合わせ、中性子計測器読み予測値105を算出し、出力
表示機構6に送り表示する。
Since the neutron meter reading 4p1 and the neutron level are in a proportional relationship, the neutron meter reading conversion mechanism 5 multiplies the neutron meter reading conversion coefficient 104 set to the neutron level 103 to calculate the predicted neutron meter reading value 105. Then, it is sent to the output display mechanism 6 for display.

なお固定中性子源に基づく2次元中性子束分布計算は、
反復解法を必要とせず、プロセス計算機等で1秒以内に
計算を完了するため、燃料交換作業の指示に対して実時
間で中性子計測器読みの変化を予Δ−1できる。固定中
性子源と中性子計測器読み換算係数104に関しては、
代表的な炉心実態で実際の読みと合うように調整を行っ
ておけば、適切な予測値を得ることができる。
The two-dimensional neutron flux distribution calculation based on a fixed neutron source is
Since the calculation is completed within one second using a process computer or the like without requiring an iterative solution method, changes in neutron meter readings can be predicted by Δ-1 in real time in response to instructions for refueling work. Regarding the fixed neutron source and neutron measuring instrument reading conversion coefficient 104,
Appropriate predicted values can be obtained by making adjustments to match actual readings under representative core conditions.

上記構成のこの実施例の燃料交換時炉心監視装置によれ
ば、燃料交換時の炉心監視担当者は、予定された燃料交
換計画について、予め炉内中性子計測器の挙動を把握す
ることができ、中性子レベルが高過ぎたり、低過ぎたり
して問題になりそうな部分を燃料交換手順の中で特定で
きるので、質の高い炉心監視が可能となる。また、燃料
交換計画作成段階で利用した場合には、中性子レベルが
問題となりそうな手順を改良することが可能となるので
、燃料交換計画作成の面でも有効である。
According to the reactor core monitoring device at the time of refueling of this embodiment having the above configuration, the person in charge of core monitoring at the time of refueling can grasp the behavior of the in-core neutron measuring instrument in advance regarding the scheduled refueling plan, High-quality core monitoring is possible by identifying potentially problematic areas during the refueling procedure where neutron levels are too high or too low. Furthermore, when used at the stage of creating a fuel exchange plan, it is possible to improve procedures where neutron levels are likely to be a problem, so it is also effective in creating a fuel exchange plan.

また、実際の燃料交換作業を行わなくても、炉心監視に
重要な炉内中性子計測器の監視を体験できるので、訓練
用シミュレータとしても有効である。
It is also effective as a training simulator, as it allows you to experience monitoring the in-core neutron measuring instruments, which are important for core monitoring, without actually performing refueling work.

この場合、制御棒落下事故等の反応度事故の模擬体験も
できるので、炉心監視業務の訓練として重要な意味を持
つ。
In this case, you can experience a simulated reactivity accident such as a control rod fall accident, which is important for training in core monitoring work.

なお、上記実施例では、1ケースの燃料交換作業ステッ
プについて中性子計測器読みの予測を行ったが、作業実
施候補の複数ケースについて同時に予測を行い、燃料交
換作業選択の目安とすることもできる。この場合、入力
指示機構1で個別に燃料交換作業を入力する代わりに、
燃料交換作業実施候補を自動的に判定して予測するよう
にしても良い。
In the above embodiment, the neutron measuring instrument reading was predicted for the refueling work step for one case, but it is also possible to simultaneously make predictions for multiple cases of work implementation candidates and use it as a guide for selecting the refueling work. In this case, instead of inputting the fuel exchange work individually using the input instruction mechanism 1,
Candidates for refueling work may be automatically determined and predicted.

次に第3図を参照して本発明の他の実施例について説明
する。
Next, another embodiment of the present invention will be described with reference to FIG.

この実施例の燃料交換時炉心監視装置では、前述の実施
例の燃料交換時炉心監視装置構成に加えて、固定中性子
源評価機構7と、分布偏差評価機構8とを備えている。
The core monitoring device during refueling of this embodiment includes a fixed neutron source evaluation mechanism 7 and a distribution deviation evaluation mechanism 8 in addition to the configuration of the core monitoring device during refueling of the previous embodiment.

なお、入力指示機構1、燃料交換作業データベース2、
燃料核定数データベース3.2次元中性子束分布計算機
構4および中性子計測器読み換算機構らの動作に関して
は、前述の実施例と共通なので重複した説明は省略する
In addition, an input instruction mechanism 1, a fuel exchange work database 2,
The operations of the fuel nuclear constant database 3, the two-dimensional neutron flux distribution calculation mechanism 4, the neutron measuring instrument reading conversion mechanism, etc. are the same as those in the previous embodiments, so a redundant explanation will be omitted.

この実施例では、分布偏差評価機構8において、炉内中
性子計測器20の出力信号108を参照信号として、燃
料交換作業前の中性子計測器読み予測値105と比較す
る。炉内中性子計測器20は、通常複数設置されており
(例:SRM−4チヤンネル)、単一の中性子計測器読
み換算係数104では、計装器読み偏差に分布があって
補正しきれない。各チャンネルの炉内中性子計測器20
毎に中性子針n1器読み換算係数104を設定すること
も考えられるが、中性子レベルが中性子計測器読みに比
例しているという、本来の物理現象を正しく反映しない
ことになる。そこで、偏差の分布109を、分布偏差評
価機構8から固定中性子源評価機構7に送り、これに基
づいて、偏差の分布109を一様かつ極小にするように
、2次元中性子束分布計算に用いる固定中性子源分布1
10を補正する。補正された固定中性子源分布110に
基づいて、燃料交換作業前後の中性子束分布を再計算し
、燃料交換作業前の中性子計測器読み予測値105と出
力信号108との偏差を充分小さくした上で、燃料交換
作業前後の中性子計測器読み榮測値105を出力表示機
構6に送り表示する。
In this embodiment, the distribution deviation evaluation mechanism 8 uses the output signal 108 of the in-core neutron measuring instrument 20 as a reference signal and compares it with the predicted value 105 read by the neutron measuring instrument before the fuel exchange operation. Usually, a plurality of in-core neutron measuring instruments 20 are installed (for example, SRM-4 channel), and a single neutron measuring instrument reading conversion coefficient 104 cannot correct the instrument reading deviation because it has a distribution. In-core neutron measuring device 20 for each channel
Although it is conceivable to set the neutron needle n1 instrument reading conversion coefficient 104 for each time, it would not correctly reflect the original physical phenomenon that the neutron level is proportional to the neutron measuring instrument reading. Therefore, the deviation distribution 109 is sent from the distribution deviation evaluation mechanism 8 to the fixed neutron source evaluation mechanism 7, and based on this, it is used for two-dimensional neutron flux distribution calculation so that the deviation distribution 109 is uniform and minimized. Fixed neutron source distribution 1
Correct 10. Based on the corrected fixed neutron source distribution 110, the neutron flux distribution before and after the refueling operation is recalculated, and the deviation between the predicted value 105 read by the neutron measuring instrument before the refueling operation and the output signal 108 is made sufficiently small. The neutron meter readings 105 before and after the fuel exchange work are sent to the output display mechanism 6 and displayed.

この実施例の燃料交換時炉心監視装置によれば、実際の
中性子計測器出力に基づいて、中性子束分布計算の精度
を向上させるので、中性子針11器の挙動をさらに精度
良く予測できる。
According to the reactor core monitoring device during refueling of this embodiment, the accuracy of neutron flux distribution calculation is improved based on the actual neutron measuring device output, so the behavior of the neutron needles 11 can be predicted with even higher accuracy.

なお、この実施例では、予測結果を出力表示機構6のみ
に表示したが、中性子計測器読み予測値を、設定した読
み上下限値と比較することで、燃料交換自動化システム
や燃料交換作業監視システムへのW W信号あるいはイ
ンターロック用信号とすることもできる。この場合、炉
内中性子計測器に関して、読み予測値が上下限値から逸
脱しそうなチャンネルを特定して警報信号等を出すよう
にしても良い。
In this example, the predicted result is displayed only on the output display mechanism 6, but by comparing the predicted value read by the neutron measuring instrument with the set reading upper and lower limits, the fuel exchange automation system and fuel exchange work monitoring system can be used. It can also be used as a WW signal or an interlock signal. In this case, regarding the in-core neutron measuring instrument, a channel whose predicted reading value is likely to deviate from the upper and lower limits may be identified and an alarm signal or the like may be issued.

また、これらの実施例の説明では、制御棒操作に対する
予測の説明を行わなかったが、燃料移動と同様に予測す
ることは当然可能である。
Further, in the description of these embodiments, prediction for control rod operation was not explained, but it is naturally possible to predict it in the same way as fuel movement.

[発明の効果] 以上説明したように、本発明によれば、燃料交換時の中
性子計測器読みの挙動を予測することができ、炉心監視
業務のワークロードの軽減と炉心監視の質の向上を図る
ことができる。また、燃料交換計画作成の参考とするこ
とで、中性子レベルを適切なレベルとする燃料交換手順
が作成できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to predict the behavior of neutron measuring instrument readings during fuel exchange, reducing the workload of core monitoring work and improving the quality of core monitoring. can be achieved. In addition, by using this as a reference when creating a fuel exchange plan, it is possible to create a fuel exchange procedure that will bring the neutron level to an appropriate level.

また、本発明は、プロセス計算機の機能として実現でき
る。したがって、従来の燃料交換時の炉心監視業務に、
本発明を適用するのは容易である。
Further, the present invention can be implemented as a function of a process computer. Therefore, for conventional core monitoring operations during fuel exchange,
Applying the invention is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の燃料交換時炉心監視装置の
構成を示す図、第2図は第1図の人力指示機構の構成を
示す図、第3図は本発明の他の実施例の燃料交換時炉心
監視装置の構成を示す図、第4図および第5図は未臨界
度の変化に伴う中性子レベルの変化を示すグラフである
。 1・・・・・・・・・人力指示機構 2・・・・・・・・・燃料交換作業データベース3・・
・・・・・・・燃料核定数データベース4・・・・・・
・・・2次元中性子束分布計算機構5・・・・・・・・
・中性子計測器読み換算機構6・・・・・・・・・出力
表示機構 出願人      日本原子力事業株式会社出願人  
    株式会社 東芝 代理人 弁理士  須 山 佐 − 第3図
FIG. 1 is a diagram showing the configuration of a reactor core monitoring device during refueling according to an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of the manual instruction mechanism shown in FIG. 1, and FIG. 3 is a diagram showing another embodiment of the present invention. FIGS. 4 and 5, which show the configuration of the example core monitoring device during refueling, are graphs showing changes in the neutron level as the degree of subcriticality changes. 1......Human power instruction mechanism 2......Fuel exchange work database 3...
・・・・・・Fuel nuclear constant database 4・・・・・・
...Two-dimensional neutron flux distribution calculation mechanism 5...
・Neutron meter reading conversion mechanism 6・・・・・・・・・Output display mechanism Applicant Japan Atomic Energy Corporation Applicant
Toshiba Corporation Representative Patent Attorney Sasa Suyama - Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)燃料交換作業内容を入力する入力指示手段と、こ
の入力指示手段によって指示された燃料交換作業データ
と炉内燃料配置に対応した燃料核定数データとから固定
中性子源を考慮した2次元出力分布計算モデルを用いて
燃料交換作業前後の中性子束分布を計算し炉内中性子計
測器位置の中性子レベルを算出する中性子束分布計算手
段と、この中性子束分布計算手段によって得られた前記
中性子レベルを中性子計測器読みに換算する中性子計測
器読み換算手段と、この中性子計測器読み換算手段で得
られた前記中性子計測器読みを出力する出力表示手段と
を備えたことを特徴とする燃料交換時炉心監視装置。
(1) An input instruction means for inputting the details of the fuel exchange work, and a two-dimensional output considering a fixed neutron source from the fuel exchange work data instructed by this input instruction means and fuel nuclear constant data corresponding to the fuel arrangement in the reactor. A neutron flux distribution calculation means that calculates the neutron flux distribution before and after the fuel exchange operation using a distribution calculation model and calculates the neutron level at the position of the in-reactor neutron measuring device; A reactor core at the time of refueling, characterized by comprising a neutron meter reading conversion means for converting into a neutron meter reading, and an output display means for outputting the neutron meter reading obtained by the neutron meter reading conversion means. monitoring equipment.
JP63077230A 1988-03-30 1988-03-30 Surveillance equipment for reactor core at fuel exchange time Pending JPH01250097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077230A JPH01250097A (en) 1988-03-30 1988-03-30 Surveillance equipment for reactor core at fuel exchange time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077230A JPH01250097A (en) 1988-03-30 1988-03-30 Surveillance equipment for reactor core at fuel exchange time

Publications (1)

Publication Number Publication Date
JPH01250097A true JPH01250097A (en) 1989-10-05

Family

ID=13628058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077230A Pending JPH01250097A (en) 1988-03-30 1988-03-30 Surveillance equipment for reactor core at fuel exchange time

Country Status (1)

Country Link
JP (1) JPH01250097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150838A (en) * 2007-12-21 2009-07-09 Global Nuclear Fuel-Japan Co Ltd Reactor core monitor
WO2022118401A1 (en) * 2020-12-02 2022-06-09 日立Geニュークリア・エナジー株式会社 Nuclear reactor core design assistance system and nuclear reactor core design assistance method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150838A (en) * 2007-12-21 2009-07-09 Global Nuclear Fuel-Japan Co Ltd Reactor core monitor
WO2022118401A1 (en) * 2020-12-02 2022-06-09 日立Geニュークリア・エナジー株式会社 Nuclear reactor core design assistance system and nuclear reactor core design assistance method

Similar Documents

Publication Publication Date Title
JP2008157937A (en) Computer-implemented method and system for designing nuclear reactor core satisfying licensing criteria
EP1615232A2 (en) Method, arrangement and computer program for generating database of fuel bundle designs for nuclear reactors
JP2013525796A (en) Calibration method for reactor out-of-core detector
US9047995B2 (en) Method and system for designing a nuclear reactor core for uprated power operations
TWI457945B (en) System and method for evaluating nuclear reactor fueling plan
Martin et al. Progress in international best estimate plus uncertainty analysis methodologies
Wen et al. Development and validation of the depletion capability of the high-fidelity neutronics code NECP-X
JP2006317450A (en) Method for forming fuel assembly in nuclear reactor
CN110070269B (en) Management optimization method for equipment in post-processing facility based on risk guidance
JPH01250097A (en) Surveillance equipment for reactor core at fuel exchange time
Muhlheim et al. Status Report on Regulatory Criteria Applicable to the Use of Digital Twins
Mesquita et al. Modernisation of the CDTN IPR-R1 TRIGA reactor instrumentation and control
Tucker et al. The impact of fueling operations on full core uncertainty analysis in CANDU reactors
JP2005121476A (en) Fuel transfer procedure data generation device
Smith et al. Software Quality Assurance for EBR-II Fuels Irradiation and Physics Database (FIPD)
CN112885413B (en) Method for simulating nuclear reactor critical experiments
JP2555018B2 (en) Method and apparatus for controlling plant
Akkurt i-LAMP: Global, Industrywide Learning Aging Management Program for Neutron-Absorber Materials in Spent Fuel Pools
Downar et al. MPACT Verification and Validation Manual (V. 4.3)
Graham et al. MPACT Verification and Validation Manual Version 4.4
Alshogeathri Application of the reactivity method on KSU TRIGA fuel
JPS6132639B2 (en)
JPH04265899A (en) Nuclear furnace simulator
RffORT HALDEN
JPH01270697A (en) Support system for refuelling planning