JP2009150838A - Reactor core monitor - Google Patents

Reactor core monitor Download PDF

Info

Publication number
JP2009150838A
JP2009150838A JP2007330679A JP2007330679A JP2009150838A JP 2009150838 A JP2009150838 A JP 2009150838A JP 2007330679 A JP2007330679 A JP 2007330679A JP 2007330679 A JP2007330679 A JP 2007330679A JP 2009150838 A JP2009150838 A JP 2009150838A
Authority
JP
Japan
Prior art keywords
core
fuel
information
reactor
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007330679A
Other languages
Japanese (ja)
Other versions
JP5025451B2 (en
Inventor
Masashi Tojo
匡志 東條
Junichi Koyama
淳一 小山
Takafumi Naka
隆文 中
Tatsuya Iwamoto
達也 岩本
Hisashi Shiragami
久之 白神
Yasuki Sato
泰樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Nuclear Fuel Japan Co Ltd filed Critical Global Nuclear Fuel Japan Co Ltd
Priority to JP2007330679A priority Critical patent/JP5025451B2/en
Publication of JP2009150838A publication Critical patent/JP2009150838A/en
Application granted granted Critical
Publication of JP5025451B2 publication Critical patent/JP5025451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor core monitor which enables the safe management of a nuclear power plant by monitoring and recording subcriticality in wide-range reactor shutdown states, such as, fueling, refueling and various kinds of inspections in a nuclear reactor. <P>SOLUTION: A cold and hot reactor core monitoring component 3 monitors and records the degrees of subcriticality periodically, or at the demand of an operator, by using a core simulator component 9 to calculate neutron effective multiplicative factors of a core state, in question sequentially by neutron diffusion calculations, transport calculations, or the like, from fuel assembly layout data and performed burnup state data which are updated on the basis of coolant temperature data, control rod position data and fuel movement data through a nuclear core data input component 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子炉における燃料装荷中、燃料交換中、各種検査中など原子炉停止中の臨界監視を行う炉心監視装置に関する。   The present invention relates to a core monitoring apparatus that performs criticality monitoring while a reactor is stopped, such as during fuel loading, fuel replacement, and various inspections in a nuclear reactor.

原子炉の炉心状態を監視する装置として、特許文献1には運転時の熱的特性を計算する監視装置が記載されている。   As a device for monitoring the core state of a nuclear reactor, Patent Document 1 describes a monitoring device that calculates thermal characteristics during operation.

また、特許文献2には、燃料装荷時の異常を監視する装置が記載されている。   Patent Document 2 describes a device for monitoring an abnormality during fuel loading.

特開2003−172792号公報JP 2003-172792 A 特開2006−98329号公報JP 2006-98329 A

特許文献1に記載の炉心性能監視装置は、既に実際の原子炉にて実用化されている炉心監視装置の典型的な例であり、これらに類する装置はすべて高温状態での稼動を想定し、運転状態の原子炉の熱的状態値を監視することを目的としている。したがって、原子炉停止時における、原子炉の臨界管理、燃料交換誤操作防止、異常な引抜に対する臨界警報と炉心状態の記録については考慮されていない。   The core performance monitoring device described in Patent Document 1 is a typical example of a core monitoring device that has already been put into practical use in an actual nuclear reactor, and all of these similar devices are assumed to operate in a high temperature state. The purpose is to monitor the thermal state value of the reactor in operation. Therefore, no consideration is given to criticality management of the reactor, prevention of erroneous fuel replacement, criticality warning for abnormal withdrawal, and recording of the core state when the reactor is shut down.

特許文献2に記載の未臨界監視システムは、原子炉停止時の特に燃料装荷中における異常を監視するものである。このシステムでは、核計装からの信号のみを取り込み、事前に準備した燃料交換手順に基づく拡散計算等によってのみ、臨界を監視するものである。このシステムは、炉心状態が作業計画通りであることを想定したものであり、燃料交換機からの実際の燃料位置情報や、実際の炉水温度と合わせた実炉心状態を把握するものではない。このため、手順から逸脱する異常な燃料装荷時や、予期せぬ制御棒引き抜きがあった場合、正確な炉心状態に基づく評価とはならない。また、燃料交換中の臨界監視のみを対象としており、その他の定期検査中は、監視の対象とはならない。   The subcritical monitoring system described in Patent Document 2 monitors abnormalities when the reactor is stopped, particularly during fuel loading. In this system, only the signal from the nuclear instrumentation is taken in and the criticality is monitored only by diffusion calculation based on the fuel exchange procedure prepared in advance. This system assumes that the core state is in accordance with the work plan, and does not grasp the actual fuel position information from the fuel changer or the actual core state combined with the actual reactor water temperature. For this reason, when abnormal fuel loading deviates from the procedure, or when unexpected control rod withdrawal occurs, the evaluation is not based on an accurate core state. In addition, it is intended only for criticality monitoring during refueling, and is not subject to monitoring during other periodic inspections.

本発明の目的は、上記の先行技術の問題点に対処するため、原子炉における燃料装荷中、燃料交換中、各種検査中など、広範囲の原子炉停止状態における未臨界状態を監視し、原子力プラントの安全運用を可能にする炉心監視装置を提供することである。   An object of the present invention is to monitor a subcritical state in a wide range of reactor shutdown states, such as during fuel loading in a nuclear reactor, during fuel replacement, during various inspections, etc. It is to provide a core monitoring device that enables safe operation of the reactor.

上記本発明の目的は、原子炉停止時の原子炉炉心内における制御棒位置情報と冷却材温度情報と燃料集合体配置情報を、定期的および操作員の要求時に取得し、炉心内の各燃料集合体の実績燃焼状態に基づき、中性子拡散計算あるいは輸送計算等により当該炉心状態の中性子実効増倍率を逐次計算し、未臨界度を評価する冷温時炉心監視手段を設け、その評価結果を記録し保存することによって達成される。   The object of the present invention is to obtain control rod position information, coolant temperature information, and fuel assembly arrangement information in the reactor core at the time of reactor shutdown periodically and when requested by an operator, Based on the actual combustion state of the assembly, the neutron effective multiplication factor of the core state is sequentially calculated by neutron diffusion calculation or transport calculation, etc., and a cold core monitoring means for evaluating subcriticality is provided, and the evaluation result is recorded. Achieved by saving.

特に原子炉停止時の燃料集合体配置の把握については、炉心監視装置内に原子炉炉心内の燃料集合体配置情報を保存し、燃料交換装置から燃料移動情報を取得する毎に、燃料集合体配置情報を更新するものとし、定期的あるいは燃料移動情報取得と同時に取得した制御棒位置情報と冷却材温度情報を用いて、炉心内の各燃料集合体の実績燃焼状態に基づき、中性子拡散計算あるいは輸送計算等により当該炉心状態の中性子実効増倍率を逐次計算し、燃料移動後の未臨界度を未臨界度を評価する冷温時炉心監視手段を設け、その評価結果を記録し保存する。   In particular, for grasping the fuel assembly arrangement when the reactor is shut down, the fuel assembly arrangement information in the reactor core is stored in the core monitoring device, and the fuel assembly information is acquired every time the fuel transfer information is acquired from the fuel exchange device. Based on the actual combustion state of each fuel assembly in the core, using the control rod position information and coolant temperature information acquired periodically or simultaneously with fuel movement information acquisition, the arrangement information shall be updated. A cold-temperature core monitoring means for sequentially calculating the neutron effective multiplication factor of the core state by transport calculation etc. and evaluating the subcriticality after the fuel transfer is provided, and the evaluation result is recorded and stored.

また、実測された中性子検出器信号を利用して、炉心監視装置内に原子炉炉心内の燃料集合体配置情報を保存し、燃料交換装置から燃料移動情報を取得する毎に、燃料集合体配置情報を更新するとともに、定期的あるいは燃料移動情報取得と同時に取得した制御棒位置情報と冷却材温度情報を用いて、炉心内の各燃料集合体の実績燃焼状態に基づき、中性子拡散計算あるいは輸送計算等により中性子検出器の計数率を計算し、対応する中性子検出器からの実測計数率と比較することにより燃料移動作業中の異常を監視する冷温時炉心監視手段を設け、その異常の監視結果を記録し保存する。   In addition, by using the measured neutron detector signal, the fuel assembly arrangement information in the reactor core is stored in the reactor monitoring device, and the fuel assembly arrangement is obtained every time the fuel transfer information is acquired from the fuel exchange device. Neutron diffusion calculation or transport calculation based on the actual combustion state of each fuel assembly in the core using the control rod position information and coolant temperature information acquired periodically or simultaneously with fuel movement information acquisition A cold temperature core monitoring means for monitoring abnormalities during fuel transfer work is provided by calculating the count rate of the neutron detector by means of, etc., and comparing with the actual count rate from the corresponding neutron detector, and the monitoring results of the abnormalities are displayed. Record and save.

さらに、炉心状態変動判定手段を設け、そのイベントトリガ機能(炉心異常時自動起動機能)により冷温時炉心監視手段を作動させ、実際に原子炉において制御棒後引抜などの異常事象が発生した場合においても、自動的に高精度の臨界評価の実施と記録の保存を行うものとする。   In addition, when there is a core state change judging means, the event trigger function (automatic start function at the time of core abnormality) activates the cold temperature core monitoring means, and when an abnormal event such as pulling out the control rod in the reactor actually occurs In addition, high-accuracy criticality assessment and record storage shall be performed automatically.

冷温時炉心監視手段は、上記の原子炉炉心内の各燃料集合体の実績燃焼状態として、原子炉運転時の炉心状態を監視する運転時炉心監視手段によって算出、管理されている情報を用い、これにより炉心の臨界状態を精度良く評価することができる。   The cold-temperature core monitoring means uses the information calculated and managed by the operating core monitoring means that monitors the core state during the operation of the reactor as the actual combustion state of each fuel assembly in the reactor core, This makes it possible to accurately evaluate the critical state of the core.

本発明によれば、冷温時炉心監視手段によって、原子炉停止中の各種作業の間、定期的および操作員の要求時に、作業計画に基づく炉心状態ではなく、実際の制御棒の挿入状態や温度状態、燃料集合体の配置の情報を逐次取得して解析するので、原子炉における燃料装荷中、燃料交換中、各種検査中など、広範囲の原子炉停止状態における未臨界状態を監視し、原子力プラントの安全運用が可能となる。また、炉心計算においては、運転時炉心監視手段による原子炉運転時の炉心特性監視機能で作成された各燃料の実績燃焼状態データを用いるので、評価時点の燃料特性を考慮した、正確な未臨界度評価が可能となる。したがって、安全性を的確に確認できる。   According to the present invention, the cold core monitoring means allows the actual control rod insertion state and temperature instead of the core state based on the work plan during various operations while the reactor is shut down, periodically and at the request of the operator. Because the state and fuel assembly layout information is sequentially acquired and analyzed, sub-critical conditions in a wide range of reactor shutdowns, such as during fuel loading, refueling, and various inspections, are monitored. Can be operated safely. In the core calculation, the actual combustion state data of each fuel created by the core characteristic monitoring function during reactor operation by the operating core monitoring means is used, so accurate subcriticality considering the fuel characteristics at the time of evaluation is used. Degree evaluation is possible. Therefore, safety can be confirmed accurately.

燃料交換中に本装置による監視を実施する場合、実際に燃料を移動させる毎に燃料移動情報を取得して、燃料集合体配置情報を更新し、燃料移動情報を取得する毎に当該炉心状態の中性子実効増倍率を逐次計算し、燃料移動後の未臨界度を評価することにより、燃料移動直後の炉心状態についての未臨界度を監視できるとともに、次の燃料移動後の炉心状態についても未臨界度を事前評価することが可能になる。これにより万一、予想される未臨界度が設定された管理値よりも小さくなる場合には警告を発し、その後の燃料移動作業を中断するなどの処置をとることができ、冷温時の作業の安全性向上に寄与する。   When monitoring by this device during fuel replacement, the fuel movement information is acquired every time the fuel is actually moved, the fuel assembly arrangement information is updated, and the core state is updated every time the fuel movement information is acquired. By sequentially calculating the effective neutron multiplication factor and evaluating the subcriticality after the fuel transfer, the subcriticality of the core state immediately after the fuel transfer can be monitored, and the core state after the next fuel transfer is also subcritical. It becomes possible to evaluate the degree in advance. As a result, in the unlikely event that the expected subcriticality is smaller than the set control value, a warning can be issued and the subsequent fuel transfer operation can be interrupted. Contributes to improved safety.

また、中性子検出器計数率データの実測値と計算値を比較する監視を併用することにより、燃料交換中の異常の兆候を発見できる。実測値と計算値が大きく異なる原因としては、炉心状態が作業計画で予定されているものと異なっている、燃料交換前の燃料配置と燃料交換装置に設定された燃料移動データが整合していない、一部の中性子検出器が正常に機能していない、などの可能性がある。これらの可能性を発見し警告することにより、冷温時の作業の安全性向上に寄与する。   Moreover, the sign of abnormality during the fuel change can be found by using the monitoring for comparing the measured value and the calculated value of the neutron detector count rate data together. The reason for the large difference between the measured value and the calculated value is that the core condition is different from what is planned in the work plan. The fuel arrangement before fuel change and the fuel movement data set in the fuel changer are not consistent. Some neutron detectors are not functioning properly. By discovering and warning these possibilities, it contributes to improving the safety of work at cold temperatures.

これらの定期的および操作員の要求時、あるいは燃料移動情報の取得毎(作業ステップ毎)の監視結果の自動記録により、原子炉停止期間中の炉心状態、および、作業中の炉心状態について、安全性に関する的確な記録を残すことが可能である。   Safety of the core state during the reactor shutdown period and the core state during the operation by automatic recording of monitoring results at these periodic and operator requests or every time fuel transfer information is acquired (each work step) It is possible to keep an accurate record of sex.

加えて、イベントトリガ機能(炉心異常時自動起動機能)により、仮に実際に制御棒の誤引き抜きなどの事態が発生し、その際、自動起動する時間待ち状態でかつ操作員の起動要求がない場合であっても、自動的に冷温時炉心監視手段による未臨界度の評価機能を起動し、精度の高い炉心の臨界評価情報を保存することができる。これにより、異常事象の静定後に実施される、より詳細な炉心特性解明のための解析作業時などにも有効な情報を提供し、これによって原子力プラントの安全向上活動に貢献することが可能である。   In addition, if an event trigger function (automatic start function when the reactor core is abnormal) causes an accidental pull-out of the control rod, the system will wait for automatic start and there is no operator start request. Even so, it is possible to automatically activate the subcriticality evaluation function by the cold-temperature core monitoring means and store the criticality evaluation information of the core with high accuracy. As a result, it is possible to provide useful information even during analysis work to clarify the core characteristics in more detail after the stabilization of abnormal events, thereby contributing to safety improvement activities of nuclear power plants. is there.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1の実施の形態>
図1は、本発明の第1の実施の形態に係わる炉心監視装置を示す図であり、図2は、その炉心監視装置を含む全体システムを示す図である。
<First Embodiment>
FIG. 1 is a diagram showing a core monitoring apparatus according to the first embodiment of the present invention, and FIG. 2 is a diagram showing an entire system including the core monitoring apparatus.

本実施の形態の炉心監視装置は制御装置100を有し、制御装置100は、全体の動作を制御する制御部1、炉心データ入力部2、冷温時炉心特性監視部3(冷温時炉心監視手段)、燃料状態データベース部4(燃料状態保存手段)、燃料配置データベース部5、運転時炉心特性評価部6、記録保存データベース部7、計算結果出力部8(評価結果保存手段)、炉心シミュレータ部9(冷温時炉心監視手段)から構成される。   The core monitoring apparatus according to the present embodiment includes a control device 100. The control device 100 controls the entire operation, a core data input unit 2, a cold temperature core characteristic monitoring unit 3 (cool temperature core monitoring means). ), Fuel state database unit 4 (fuel state storage unit), fuel arrangement database unit 5, operating core characteristic evaluation unit 6, record storage database unit 7, calculation result output unit 8 (evaluation result storage unit), core simulator unit 9 (Cold temperature core monitoring means).

炉心シミュレータ部9は、三次元の中性子拡散計算により、炉心体系の中性子実効増倍率や中性子束分布、熱出力分布を評価するものである。   The core simulator unit 9 evaluates the neutron effective multiplication factor, neutron flux distribution, and heat output distribution of the core system by three-dimensional neutron diffusion calculation.

運転時炉心特性監視部6は、原子炉の出力運転中に炉心データ入力部2を介して冷却材温度データ、制御棒位置データ等の炉心状態データを取得し、炉心シミュレータ部9により、定期的に炉心内の出力分布を計算して、最大線出力密度や最小限界出力比などの熱的特性を評価監視する。また、運転中の燃料集合体の燃焼に伴って反応特性が変化するので、燃料状態データベース部4に格納された、燃焼度に代表される燃焼状態データが逐次更新される。   The operating core characteristic monitoring unit 6 acquires core state data such as coolant temperature data and control rod position data via the core data input unit 2 during the power operation of the reactor, and the core simulator unit 9 periodically The power distribution in the core is calculated and the thermal characteristics such as maximum line power density and minimum limit power ratio are evaluated and monitored. Further, since the reaction characteristics change with combustion of the fuel assembly during operation, the combustion state data represented by the burnup stored in the fuel state database unit 4 is sequentially updated.

冷温時炉心特性監視部3は、定期的(例えば1時間毎)および操作員の要求時に、原子炉の停止中に炉心データ入力部2を介して炉心状態データとして、冷却材温度データ(冷却材温度情報)を取得するとともに、燃料配置データベース部5から最新の燃料移動データにより更新された燃料集合体配置データ(燃料集合体配置情報)を取得し、炉心シミュレータ部9により、それらの冷却材温度データ、制御棒位置データ、燃料集合体配置データと、上記燃料状態データベース部4に保存された炉心内の各燃料集合体の実績燃焼状態データ(実績燃焼状態情報)とに基づき、中性子拡散計算あるいは輸送計算等により冷温状態の炉心の実効増倍率を計算し、その結果を基に定期的に冷温停止状態の原子炉の中性子実効増倍率が想定外に臨界状態となっていないかどうかを判断し、臨界超過に近い場合は警告情報を計算結果出力部7から表示装置およびプリンターに出力することで、臨界状態の評価監視をする(以下、この機能を臨界評価監視機能という)。これらの結果は記録保存データベース部8に電子的に逐次、記録され保存される。   The cold-temperature core characteristic monitoring unit 3 performs coolant temperature data (coolant coolant) as core state data via the core data input unit 2 during shutdown of the reactor periodically (for example, every hour) and at the request of an operator. Temperature information), fuel assembly arrangement data (fuel assembly arrangement information) updated from the fuel arrangement database unit 5 with the latest fuel movement data is acquired, and the coolant temperature is obtained by the core simulator unit 9. Based on the data, control rod position data, fuel assembly arrangement data, and actual combustion state data (actual combustion state information) of each fuel assembly in the core stored in the fuel state database unit 4 The effective multiplication factor of the cold core is calculated by transport calculation, etc., and the neutron effective multiplication factor of the nuclear reactor in the cold shutdown state is unexpectedly critical based on the result. If it is close to the criticality, warning information is output from the calculation result output unit 7 to the display device and the printer, and the critical state is evaluated and monitored (hereinafter, this function is critical evaluation). Called monitoring function). These results are sequentially recorded and stored electronically in the record storage database unit 8.

ここで、冷温時炉心特性監視部3は、上記のように実績燃焼状態データ(各燃料集合体の燃焼度などの状態を示すデータ)については、運転時炉心特性監視部6で更新された燃料状態データベース4を用いる。また、燃料集合体配置データについては、炉心データ入力部2を介して燃料交換機から燃料移動情報を取得すると、その都度、燃料配置データベース部5に保存されているデータを逐次更新することにより把握する。燃料移動情報は炉心内の移動元座標と移動先座標の組合せの形で提供され、これにしたがって燃料配置データベース内5の燃料集合体配置データを変更する。冷却材温度データ及び制御棒位置データについては、それぞれ、炉心に装備された冷却材温度計及び位置検出器によって検出された炉心の冷却材温度データ及び制御棒位置データを、炉心データ入力部2を介して定期的(例えば1秒毎)に取得しており、冷温時炉心特性監視部3は、その最新のデータを用いて冷温状態の炉心の実効増倍率を計算する。   Here, the cold temperature core characteristic monitoring unit 3 uses the fuel updated by the operating core characteristic monitoring unit 6 for the actual combustion state data (data indicating the state of burnup of each fuel assembly) as described above. A state database 4 is used. Further, the fuel assembly arrangement data is grasped by sequentially updating the data stored in the fuel arrangement database unit 5 each time the fuel movement information is acquired from the fuel exchanger via the core data input unit 2. . The fuel movement information is provided in the form of a combination of the movement source coordinates and the movement destination coordinates in the core, and the fuel assembly arrangement data in the fuel arrangement database 5 is changed accordingly. As for the coolant temperature data and the control rod position data, the core coolant temperature data and the control rod position data detected by the coolant thermometer and the position detector installed in the core are respectively input to the core data input unit 2. The cold core characteristic monitoring unit 3 calculates the effective multiplication factor of the cold core using the latest data.

また、冷温時炉心特性監視部3は、上記のように定期的および操作員の要求時に冷温状態の炉心の実効増倍率を計算する臨界評価監視機能を実行するとともに、燃料移動情報取得と同時にも、冷却材温度データ、制御棒位置データ、燃料集合体配置データ、実績燃焼状態データを用いて中性子拡散計算あるいは輸送計算等により冷温状態の炉心の実効増倍率を計算する臨界評価監視機能を実行する。   Further, the cold temperature core characteristic monitoring unit 3 executes the criticality evaluation monitoring function for calculating the effective multiplication factor of the cold core at regular and operator requests as described above, and at the same time as acquiring the fuel movement information. Execute criticality evaluation monitoring function to calculate the effective multiplication factor of the core in the cold state by neutron diffusion calculation or transport calculation using coolant temperature data, control rod position data, fuel assembly arrangement data, actual combustion state data .

以上のように構成した本実施の形態により、燃料交換中を含め、広範囲の原子炉停止状態における未臨界度を精度良く監視することができる。   According to the present embodiment configured as described above, it is possible to accurately monitor the subcriticality in a wide range of reactor shutdown states, including during fuel replacement.

すなわち、冷温時炉心特性監視部3は、原子炉停止中の各種作業の間、定期的および操作員の要求時に、作業計画に基づく炉心状態ではなく、実際の制御棒の挿入状態や温度状態、燃料集合体の配置の情報を逐次取得して解析するので、原子炉における燃料装荷中、燃料交換中、各種検査中など、広範囲の原子炉停止状態における未臨界状態を監視、記録し、原子力プラントの安全運用が可能となる。また、炉心計算においては、原子炉運転時の運転時炉心特性監視部6で作成された各燃料の実績燃焼状態データを用いるので、評価時点の燃料特性を考慮した、正確な未臨界度評価が可能となる。したがって、安全性を的確に確認することができる。   That is, the cold-temperature core characteristic monitoring unit 3 is not in the core state based on the work plan during the various operations while the reactor is shut down, or at the request of the operator, but the actual control rod insertion state and temperature state, Since the fuel assembly layout information is acquired and analyzed sequentially, the subcritical conditions in a wide range of reactor shutdowns, such as during fuel loading, refueling, and various inspections, are monitored and recorded. Can be operated safely. In the core calculation, the actual combustion state data of each fuel created by the operating core characteristic monitoring unit 6 during the operation of the reactor is used, so that accurate subcriticality evaluation considering the fuel characteristics at the time of evaluation can be performed. It becomes possible. Therefore, safety can be confirmed accurately.

また、燃料交換中に本装置による監視を実施する場合、実際に燃料を移動させる毎に燃料移動情報を取得して、燃料配置データベース5に保存された燃料集合体配置情報を更新し、燃料移動情報を取得する毎に臨界評価監視機能を起動し、当該炉心状態の中性子実効増倍率を逐次計算し燃料移動後の未臨界度を評価するので、燃料移動直後の炉心状態についての未臨界度を監視できるとともに、次の燃料移動後の炉心状態についても未臨界度を事前評価することが可能になる。これにより万一、予想される未臨界度が設定された管理値よりも小さくなる場合には警告を発し、その後の燃料移動作業を中断するなどの処置をとることができ、冷温時の作業の安全性向上に寄与する。   In addition, when monitoring by this apparatus is performed during the fuel exchange, the fuel movement information is acquired every time the fuel is actually moved, the fuel assembly arrangement information stored in the fuel arrangement database 5 is updated, and the fuel movement is performed. Each time the information is acquired, the criticality evaluation monitoring function is activated, and the neutron effective multiplication factor of the core state is sequentially calculated to evaluate the subcriticality after fuel transfer. In addition to monitoring, it is possible to pre-evaluate the subcriticality of the core state after the next fuel transfer. As a result, in the unlikely event that the expected subcriticality is smaller than the set control value, a warning can be issued and the subsequent fuel transfer operation can be interrupted. Contributes to improved safety.

また、これらの定期的及び操作員の要求時、あるいは燃料移動情報の取得毎(作業ステップ毎)の監視結果の自動記録により、原子炉停止期間中の炉心状態、および、作業中の炉心状態について、安全性に関する的確な記録を残すことが可能となる。   In addition, about the core state during the reactor shutdown period and the core state during the operation by the automatic recording of the monitoring results at these periodic and operator requests or every time fuel movement information is acquired (each work step) It is possible to keep an accurate record regarding safety.

<第2の実施の形態>
本発明の第2の実施の形態を図2を用いて説明する。本実施の形態は図1の第1の実施の形態に対して、冷温時炉心監視手段の一部として係数率データ処理部10と比較部11を追加したものである。係数率データ処理部10は、炉心データ入力部2を介して中性子検出器であるSRNMの計数率データを取得し、係数率実測値を計算する。一方、冷温時炉心特性監視部3では炉心シミュレータ部9を用いて当該中性子検出器の計数率を計算し、両者を比較部11で比較する。ここで、冷温時炉心特性監視部3は、第1の実施の形態で説明した実効増倍率を計算する場合と同様、定期的および操作員の要求時、あるいは燃料移動情報の取得毎(作業ステップ毎)に、逐次取得された制御棒位置データ、冷却材温度データ、燃料集合体配置データを用い、燃料状態データベース部4で管理されている燃料状態(実績燃焼状態)に基づき、中性子拡散計算あるいは輸送計算等を行うことにより中性子検出器の計数率を計算する。比較部11は、中性子検出器の計数率の実測値と計算値が大幅に食い違う場合に、計算結果出力部を介して警告を出力する。
<Second Embodiment>
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, a coefficient rate data processing unit 10 and a comparison unit 11 are added to the first embodiment of FIG. The coefficient rate data processing unit 10 acquires the count rate data of SRNM, which is a neutron detector, via the core data input unit 2, and calculates the actual coefficient rate value. On the other hand, the cold-temperature core characteristic monitoring unit 3 calculates the count rate of the neutron detector using the core simulator unit 9 and compares them with the comparison unit 11. Here, as in the case of calculating the effective multiplication factor described in the first embodiment, the cold-temperature core characteristic monitoring unit 3 periodically and at the request of an operator or whenever fuel movement information is acquired (work step) Each), using the control rod position data, coolant temperature data, and fuel assembly arrangement data obtained sequentially, based on the fuel state (actual combustion state) managed by the fuel state database unit 4 or The counting rate of the neutron detector is calculated by carrying out transport calculations. The comparison unit 11 outputs a warning via the calculation result output unit when the measured value and the calculated value of the count rate of the neutron detector are significantly different.

以上のように構成した本実施の形態においては、中性子検出器計数率データの実測値と計算値を比較する監視を併用することにより、燃料交換中の異常の兆候を発見できる。実測値と計算値が大きく異なる原因としては、炉心状態が作業計画で予定されているものと異なっている、燃料交換前の燃料配置と燃料交換装置に設定された燃料移動データが整合していない、一部の中性子検出器が正常に機能していない、などの可能性がある。これらの可能性を発見し警告することにより、冷温時の作業の安全性向上に寄与する。   In the present embodiment configured as described above, signs of abnormality during the fuel change can be found by using the monitoring for comparing the measured value and the calculated value of the neutron detector count rate data together. The reason for the large difference between the measured value and the calculated value is that the core condition is different from what is planned in the work plan. The fuel arrangement before fuel change and the fuel movement data set in the fuel changer are not consistent. Some neutron detectors are not functioning properly. By discovering and warning these possibilities, it contributes to improving the safety of work at cold temperatures.

また、これらの定期的あるいは作業ステップ毎の監視結果の自動記録により、原子炉停止期間中の炉心状態、および、作業中の炉心状態について、安全性に関する的確な記録を残すことが可能である。   In addition, by automatically recording the monitoring results periodically or for each work step, it is possible to leave an accurate record regarding safety of the core state during the reactor shutdown period and the core state during the work.

<第3の実施の形態>
本発明の第3の実施の形態を図3を用いて説明する。本実施の形態は図1の第1の実施の形態に対し、炉心状態変動判定部12(炉心状態変動判定手段)を追加したものである。炉心状態変動判定部12には、制御棒操作手順や燃料移動手順情報などが事前に登録されており、炉心状態変動判定部12は、その事前に登録されている制御棒操作手順や燃料移動手順情報と、炉心データ入力部2を介して入力された実際の制御棒位置データと燃料移動データを比較することで、炉心に想定外事象が発生していないことを監視する。また、制御部1は、イベントトリガ機能(炉心異常時自動起動機能)により、定期的な炉心状態評価の周期起動の待ち状態や操作員からの起動要求が無くとも、炉心状態変動判定部12において炉心に異常事象が発生したと推定される場合には、自動的に冷温時炉心特性監視部3の臨界評価監視機能を起動し、冷温時炉心特性監視部3はその評価監視結果を計算結果出力部7から表示装置およびプリンターに出力する。また、これらの結果、記録保存データベース部8に記録され保存される。
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, a core state variation determination unit 12 (core state variation determination means) is added to the first embodiment of FIG. In the core state variation determination unit 12, control rod operation procedures, fuel movement procedure information, and the like are registered in advance, and the core state variation determination unit 12 performs control rod operation procedures and fuel movement procedures registered in advance. By comparing the information with the actual control rod position data input via the core data input unit 2 and the fuel movement data, it is monitored that no unexpected event has occurred in the core. Further, the control unit 1 uses the event trigger function (automatic startup function at the time of core abnormality) in the core state variation determination unit 12 even if there is no waiting state for periodic startup of periodic core state evaluation or a startup request from an operator. When it is estimated that an abnormal event has occurred in the core, the criticality monitoring function of the cold-temperature core characteristic monitoring unit 3 is automatically activated, and the cold-temperature core characteristic monitoring unit 3 outputs the evaluation monitoring result as a calculation result. The data is output from the unit 7 to the display device and the printer. Further, as a result of these, they are recorded and stored in the record storage database unit 8.

本実施の形態においては、イベントトリガ機能(炉心異常時自動起動機能)により、仮に実際に制御棒の誤引き抜きなどの事態が発生し、その際、自動起動する時間待ち状態でかつ操作員の起動要求がない場合であっても、自動的に未臨界度の評価機能を起動し、高精度の臨界評価と記録保存を実施することが可能である。また、異常事象の静定後に実施される、より詳細な炉心特性解明のための解析作業時などにも有効な情報を提供し、これによって原子力プラントの安全向上活動に貢献することが可能である。   In the present embodiment, the event trigger function (automatic activation function when the reactor core is abnormal) causes a situation such as an accidental pulling out of the control rod. Even when there is no request, it is possible to automatically activate the subcriticality evaluation function and perform high-precision criticality evaluation and record storage. In addition, it is possible to contribute to safety improvement activities of nuclear power plants by providing useful information during analysis work for more detailed core characteristics elucidation performed after the stabilization of abnormal events. .

本発明の第1の実施の形態に係わる炉心監視装置の構成を示す図である。It is a figure which shows the structure of the core monitoring apparatus concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる炉心監視装置の構成を示す図である。It is a figure which shows the structure of the core monitoring apparatus concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる炉心監視装置の構成を示す図である。It is a figure which shows the structure of the core monitoring apparatus concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 制御部
2 炉心データ入力部
3 冷温時炉心特性監視部(冷温時炉心監視手段)
4 燃料状態データベース部(燃料状態保存手段)
5 燃料配置データベース部
6 運転時炉心特性監視部
7 記録保存データベース部(評価結果保存手段)
8 計算結果出力部
9 炉心シミュレータ部(冷温時炉心監視手段)
10 係数率データ処理部(冷温時炉心監視手段)
11 比較部(冷温時炉心監視手段)
12 炉心状態変動判定部 (炉心状態変動判定手段)
1 Control Unit 2 Core Data Input Unit 3 Cold Temperature Core Characteristic Monitoring Unit (Cool Temperature Core Monitoring Means)
4 Fuel status database section (Fuel status storage means)
5 Fuel Arrangement Database Unit 6 Operating Core Characteristics Monitoring Unit 7 Record Storage Database Unit (Evaluation Result Storage Unit)
8 Calculation result output section 9 Core simulator section (cold temperature core monitoring means)
10 Coefficient rate data processing unit (cold temperature core monitoring means)
11 Comparison section (cold temperature core monitoring means)
12 Core state fluctuation judgment unit (Core state fluctuation judgment means)

Claims (5)

原子炉運転時に取得した原子炉炉心内の各燃料集合体の実績燃焼状態情報を保存する燃料状態保存手段と、
定期的および操作員の要求時に、原子炉停止時に原子炉炉心内における制御棒位置情報と冷却材温度情報と燃料集合体配置情報とを取得し、それらの制御棒位置情報および冷却材温度情報、燃料集合体配置情報と、前記燃料状態保存手段に保存した炉心内の各燃料集合体の実績燃焼状態情報とに基づき、中性子拡散計算あるいは輸送計算等により当該炉心状態の中性子実効増倍率を逐次計算し、未臨界度を評価する冷温時炉心監視手段と、
前記冷温時炉心監視手段による未臨界度の評価結果を記録し保存する評価結果保存手段とを備えることを特徴とする炉心監視装置。
Fuel state storage means for storing the actual combustion state information of each fuel assembly in the reactor core obtained during the operation of the reactor;
Obtain control rod position information, coolant temperature information and fuel assembly arrangement information in the reactor core when the reactor is shut down at regular and operator requests, and control rod position information and coolant temperature information. Based on the fuel assembly arrangement information and the actual combustion state information of each fuel assembly stored in the fuel state storage means, the neutron effective multiplication factor of the core state is sequentially calculated by neutron diffusion calculation or transport calculation, etc. Cold core monitoring means for evaluating subcriticality,
A core monitoring apparatus comprising: an evaluation result storing means for recording and storing the evaluation result of the subcriticality by the cold temperature core monitoring means.
原子炉運転時に取得した原子炉炉心内の各燃料集合体の実績燃焼状態情報を保存する燃料状態保存手段と、
燃料交換装置から燃料移動情報を取得する毎に予め保存してある燃料集合体配置情報を更新するとともに、定期的あるいは燃料移動情報取得と同時に制御棒位置情報と冷却材温度情報を取得し、それらの制御棒位置情報および冷却材温度情報、燃料集合体配置情報と、前記燃料状態保存手段に保存した炉心内の各燃料集合体の実績燃焼状態情報とに基づき、中性子拡散計算あるいは輸送計算等により当該炉心状態の中性子実効増倍率を逐次計算し、燃料移動後の未臨界度を評価する冷温時炉心監視手段と、
前記冷温時炉心監視手段による未臨界度の評価結果を記録し保存する評価結果保存手段とを備えることを特徴とする炉心監視装置。
Fuel state storage means for storing the actual combustion state information of each fuel assembly in the reactor core obtained during the operation of the reactor;
Each time fuel movement information is acquired from the fuel changer, the fuel assembly arrangement information stored in advance is updated, and control rod position information and coolant temperature information are acquired periodically or simultaneously with fuel movement information acquisition. Control rod position information, coolant temperature information, fuel assembly arrangement information, and actual combustion state information of each fuel assembly in the core stored in the fuel state storage means, by neutron diffusion calculation or transport calculation, etc. A cold core monitoring means for sequentially calculating the effective neutron multiplication factor of the core state and evaluating the subcriticality after fuel transfer;
A core monitoring apparatus comprising: an evaluation result storing means for recording and storing the evaluation result of the subcriticality by the cold temperature core monitoring means.
原子炉運転時に取得した原子炉炉心内の各燃料集合体の実績燃焼状態情報を保存する燃料状態保存手段と、
燃料交換装置から燃料移動情報を取得する毎に予め保存してある燃料集合体配置情報を更新するとともに、定期的あるいは燃料移動情報取得と同時に制御棒位置情報と冷却材温度情報を取得し、かつ中性子検出器からの計数率データを取得し、それらの制御棒位置情報および冷却材温度情報、燃料集合体配置情報と、前記燃料状態保存手段に保存した炉心内の各燃料集合体の実績燃焼状態情報とに基づき、中性子拡散計算あるいは輸送計算等により中性子検出器の計数率を計算し、これを前記中性子検出器の係数率データから計算した実測係数率と比較することにより燃料移動作業中の異常を監視する冷温時炉心監視手段と、
前記冷温時炉心監視手段による異常の監視結果を記録し保存する評価結果保存手段とを備えることを特徴とする炉心監視装置。
Fuel state storage means for storing the actual combustion state information of each fuel assembly in the reactor core obtained during the operation of the reactor;
Each time fuel movement information is acquired from the fuel changer, the fuel assembly arrangement information stored in advance is updated, and control rod position information and coolant temperature information are acquired periodically or simultaneously with fuel movement information acquisition, and Obtain count rate data from the neutron detector, control rod position information and coolant temperature information, fuel assembly arrangement information, and the actual combustion state of each fuel assembly in the core stored in the fuel state storage means Based on the information, calculate the count rate of the neutron detector by neutron diffusion calculation or transport calculation, etc., and compare this with the measured coefficient rate calculated from the coefficient rate data of the neutron detector, and abnormal A cold-temperature core monitoring means for monitoring
A core monitoring apparatus comprising: an evaluation result storing means for recording and storing an abnormality monitoring result by the cold temperature core monitoring means.
前記取得した制御棒位置情報および燃料集合体配置情報を含む炉心状態情報を、事前に登録した制御棒操作情報および燃料移動手順情報を含む操作情報と比較し、両者の状態が整合しているかどうかを判定する炉心状態変動判定手段を更に有し、
前記冷温時炉心監視手段は、前記炉心状態変動判定手段により炉心状態情報と操作情報とが整合しない場合に自動的に未臨界度の評価機能を起動し、その評価結果を前記評価結果保存手段に記録し保存することを特徴とする請求項1〜3のいずれか1項記載の炉心監視装置。
The core state information including the obtained control rod position information and fuel assembly arrangement information is compared with the operation information including control rod operation information and fuel transfer procedure information registered in advance, and whether the states of both are consistent. Further has a core state variation determination means for determining
The cold-temperature core monitoring means automatically activates the subcriticality evaluation function when the core state information and the operation information do not match by the core state variation determination means, and the evaluation result is stored in the evaluation result storage means. The core monitoring apparatus according to any one of claims 1 to 3, wherein the core monitoring apparatus is recorded and stored.
原子炉運転時に原子炉炉心内における制御棒位置情報と冷却材温度情報を取得し、原子炉炉心内の各燃料集合体の実績燃焼状態を算出し、前記燃料状態保存手段に記録し保存する運転時炉心監視手段を更に備えることを特徴とする請求項1〜4のいずれか1項記載の炉心監視装置。   Operation to acquire control rod position information and coolant temperature information in the reactor core during reactor operation, calculate the actual combustion state of each fuel assembly in the reactor core, and record and store it in the fuel state storage means The core monitoring apparatus according to claim 1, further comprising a time core monitoring means.
JP2007330679A 2007-12-21 2007-12-21 Core monitoring device Active JP5025451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330679A JP5025451B2 (en) 2007-12-21 2007-12-21 Core monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007330679A JP5025451B2 (en) 2007-12-21 2007-12-21 Core monitoring device

Publications (2)

Publication Number Publication Date
JP2009150838A true JP2009150838A (en) 2009-07-09
JP5025451B2 JP5025451B2 (en) 2012-09-12

Family

ID=40920106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330679A Active JP5025451B2 (en) 2007-12-21 2007-12-21 Core monitoring device

Country Status (1)

Country Link
JP (1) JP5025451B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025800A (en) * 2012-07-26 2014-02-06 Toshiba Corp Test device and test method for control rod operation monitoring system
WO2015060928A1 (en) * 2013-10-21 2015-04-30 Westinghouse Electric Company Llc A method for monitoring boron dilution during a reactor outage
EP2780841A4 (en) * 2011-11-18 2015-12-02 Terrapower Llc Enhanced neutronics system
JP2016057202A (en) * 2014-09-10 2016-04-21 島津エミット株式会社 Helium leak detector
JP2021507215A (en) * 2017-12-12 2021-02-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー How to predict subcritical core reactivity bias
CN115831412A (en) * 2022-11-30 2023-03-21 中国原子能科学研究院 Method and system for charging reactor
WO2024192839A1 (en) * 2023-03-23 2024-09-26 西安热工研究院有限公司 Protection setting method and system for first loading of pressurized water reactor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113994A (en) * 1979-02-27 1980-09-02 Tokyo Shibaura Electric Co Reactor core monitoring device
JPS63132198A (en) * 1986-11-21 1988-06-04 三菱原子力工業株式会社 Critical control method at time of exchange of fuel of nuclear reactor
JPS6488295A (en) * 1987-09-30 1989-04-03 Nippon Atomic Ind Group Co Reactor core performance monitor of reactor
JPH01169398A (en) * 1987-12-25 1989-07-04 Nippon Atom Ind Group Co Ltd Effective multiplication ratio measurement in irradiation fuel loaded uncritical system
JPH01250097A (en) * 1988-03-30 1989-10-05 Nippon Atom Ind Group Co Ltd Surveillance equipment for reactor core at fuel exchange time
JPH07134196A (en) * 1993-11-09 1995-05-23 Toshiba Corp Reactor monitoring device
JPH08327777A (en) * 1995-06-01 1996-12-13 Toshiba Corp Critical point prediction device
JPH09304576A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Fuel assembly loading confirmation device
JP2002014191A (en) * 2000-06-30 2002-01-18 Toshiba Corp Reactor core work monitoring device and monitoring method at periodic inspection
JP2003172792A (en) * 2001-09-27 2003-06-20 Toshiba Corp Core monitoring method and its system
JP2005003454A (en) * 2003-06-10 2005-01-06 Tokyo Electric Power Co Inc:The Monitor
JP2005121476A (en) * 2003-10-16 2005-05-12 Hitachi Ltd Fuel transfer procedure data generation device
JP2006090944A (en) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd Evaluation device of degree of non-criticality, evaluation method of degree of non-criticality, and evaluation program of degree of non-criticality
JP2006098329A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Criticality managing device in fuel loading, and fuel loading system
JP2008039509A (en) * 2006-08-03 2008-02-21 Toshiba Corp Method for loading irradiated fuel into subcritical neutron multiplication system and method for calculating effective multiplication factor of irradiated fuel

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113994A (en) * 1979-02-27 1980-09-02 Tokyo Shibaura Electric Co Reactor core monitoring device
JPS63132198A (en) * 1986-11-21 1988-06-04 三菱原子力工業株式会社 Critical control method at time of exchange of fuel of nuclear reactor
JPS6488295A (en) * 1987-09-30 1989-04-03 Nippon Atomic Ind Group Co Reactor core performance monitor of reactor
JPH01169398A (en) * 1987-12-25 1989-07-04 Nippon Atom Ind Group Co Ltd Effective multiplication ratio measurement in irradiation fuel loaded uncritical system
JPH01250097A (en) * 1988-03-30 1989-10-05 Nippon Atom Ind Group Co Ltd Surveillance equipment for reactor core at fuel exchange time
JPH07134196A (en) * 1993-11-09 1995-05-23 Toshiba Corp Reactor monitoring device
JPH08327777A (en) * 1995-06-01 1996-12-13 Toshiba Corp Critical point prediction device
JPH09304576A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Fuel assembly loading confirmation device
JP2002014191A (en) * 2000-06-30 2002-01-18 Toshiba Corp Reactor core work monitoring device and monitoring method at periodic inspection
JP2003172792A (en) * 2001-09-27 2003-06-20 Toshiba Corp Core monitoring method and its system
JP2005003454A (en) * 2003-06-10 2005-01-06 Tokyo Electric Power Co Inc:The Monitor
JP2005121476A (en) * 2003-10-16 2005-05-12 Hitachi Ltd Fuel transfer procedure data generation device
JP2006090944A (en) * 2004-09-27 2006-04-06 Mitsubishi Heavy Ind Ltd Evaluation device of degree of non-criticality, evaluation method of degree of non-criticality, and evaluation program of degree of non-criticality
JP2006098329A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Criticality managing device in fuel loading, and fuel loading system
JP2008039509A (en) * 2006-08-03 2008-02-21 Toshiba Corp Method for loading irradiated fuel into subcritical neutron multiplication system and method for calculating effective multiplication factor of irradiated fuel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2780841A4 (en) * 2011-11-18 2015-12-02 Terrapower Llc Enhanced neutronics system
US9424376B2 (en) 2011-11-18 2016-08-23 Terrapower, Llc Enhanced neutronics systems
US11157665B2 (en) 2011-11-18 2021-10-26 Terrapower, Llc Enhanced neutronics systems
JP2014025800A (en) * 2012-07-26 2014-02-06 Toshiba Corp Test device and test method for control rod operation monitoring system
WO2015060928A1 (en) * 2013-10-21 2015-04-30 Westinghouse Electric Company Llc A method for monitoring boron dilution during a reactor outage
US9761335B2 (en) 2013-10-21 2017-09-12 Westinghouse Electric Company Llc Method for monitoring boron dilution during a reactor outage
RU2650494C2 (en) * 2013-10-21 2018-04-16 Вестингхаус Электрик Компани Ллс Method for controlling dilution of boron during reactor downtime
JP2016057202A (en) * 2014-09-10 2016-04-21 島津エミット株式会社 Helium leak detector
JP2021507215A (en) * 2017-12-12 2021-02-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー How to predict subcritical core reactivity bias
JP7308009B2 (en) 2017-12-12 2023-07-13 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー How to predict subcritical core reactivity bias
CN115831412A (en) * 2022-11-30 2023-03-21 中国原子能科学研究院 Method and system for charging reactor
WO2024192839A1 (en) * 2023-03-23 2024-09-26 西安热工研究院有限公司 Protection setting method and system for first loading of pressurized water reactor

Also Published As

Publication number Publication date
JP5025451B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5025451B2 (en) Core monitoring device
JP2695510B2 (en) How to display procedure-related data
RU2550689C2 (en) Method of facilitating nuclear reactor operation
Pinna et al. Operating experiences from existing fusion facilities in view of ITER safety and reliability
JP5991329B2 (en) Control device, management device, plant control system, and data processing method
JPH02114149A (en) Method and device for evaluating completeness of storage
JP2013057653A (en) Used nuclear fuel tank real time monitoring system and method thereof
JP2005135422A (en) Distributed power generation plant with event assessment and event mitigation plan determination process automated
JP2017015592A (en) Nuclear Power Plant Alarm Monitoring Support System
JP2009075692A (en) Plant alarm apparatus and method
JP2012018623A (en) Abnormality data analysis system
JP2011060012A (en) Plant monitoring apparatus and plant monitoring method
CN114329335A (en) High-temperature gas cooled reactor primary loop humidity early warning method, device, equipment and storage medium
JP2005283269A (en) Transient boiling transition monitoring system for boiling water nuclear reactor and monitoring method
JP6418640B2 (en) Control rod monitoring system and control rod monitoring method
JP2018205992A (en) Apparatus diagnosing system
Murshed et al. Monitoring of solid oxide fuel cell systems
JP4607702B2 (en) Plant operation support apparatus and plant operation support method
EP2444977B1 (en) Device for measuring temperature coefficient of moderator and method for measuring temperature coefficient of moderator
CN114334197A (en) Primary loop water charge monitoring method and system in low operation mode
CN116465447A (en) Meter monitoring method, apparatus, computer device and storage medium
JP2009134535A (en) Device for supporting software development, method of supporting software development, and program for supporting software development
JP2010133873A (en) Nuclear reactor criticality determination data collector
Pham et al. The statistical analysis techniques to support the NGNP fuel performance experiments
JP2007240172A (en) Monitor for core of nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5025451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250