JPH08327777A - Critical point prediction device - Google Patents

Critical point prediction device

Info

Publication number
JPH08327777A
JPH08327777A JP7135271A JP13527195A JPH08327777A JP H08327777 A JPH08327777 A JP H08327777A JP 7135271 A JP7135271 A JP 7135271A JP 13527195 A JP13527195 A JP 13527195A JP H08327777 A JPH08327777 A JP H08327777A
Authority
JP
Japan
Prior art keywords
multiplication factor
critical point
critical
reverse
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7135271A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsumura
和彦 松村
Koji Kariyama
幸司 狩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP7135271A priority Critical patent/JPH08327777A/en
Publication of JPH08327777A publication Critical patent/JPH08327777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To provide a critical point prediction device for fully automatically and accurately predicting a critical point and aiding an operator by automatically taking in the detector count for using in critical point prediction, and monitoring reverse multiplication factor against the effective multiplication factor using a table of a core state given in advance and the effective multiplication factor. CONSTITUTION: A critical point prediction device 5 comprises a detector count memory part 6 for taking in the count output by an power detector for monitoring the reactor power and storing it and a reverse multiplication factor operation part 7 for calculating the reverse multiplication factor from the initial count and the count at every moment of the power detector. Also it includes a critical point prediction part 8 for predicting the criticality of the reactor by the reverse multiplication method by monitoring reverse multiplication factor calculated in a reverse multiplication factor operation part 7 against the effective multiplication factor in accordance with the core state at every moment prepared in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉の臨界操作に際
して臨界到達を予測監視する臨界点予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a critical point prediction device for predicting and monitoring the arrival of criticality during critical operation of a nuclear reactor.

【0002】[0002]

【従来の技術】従来は原子炉を臨界にする場合に、その
臨界点の予測を逆増倍法を用いて算出している。この逆
増倍法については、強度Sの中性子源から発生した中性
子が、実効増倍率kの炉心を通って中性子検出器に到達
する場合に、到達した中性子の強度S0 は次の式(1) で
表される。
2. Description of the Related Art Conventionally, when a nuclear reactor is made critical, the prediction of its critical point is calculated using the inverse multiplication method. In this inverse multiplication method, when neutrons generated from a neutron source having an intensity S reach the neutron detector through the core having an effective multiplication factor k, the intensity S 0 of the neutrons that have arrived is expressed by the following equation (1 ).

【0003】 S0 =S+kS+k2 S+k3 S+…… =S/(1−k) …(1)S 0 = S + kS + k 2 S + k 3 S + ... = S / (1-k) (1)

【0004】この式(1) において、原子炉が臨界点に到
達することは実効増倍率kが1に到達することに対応す
るから、臨界になると中性子検出器に到達する中性子の
強度、すなわち検出器計数S0 は無限大となる。これは
物理的には原子炉が臨界となって、出力が増大していく
ことに対応する。実際には中性子検出器における検出効
率を考慮すると、中性子検出器に到達する中性子の強度
は検出器計数とは等しくならないが、ここでは、便宜的
に等しいとする。
In this equation (1), the fact that the reactor reaches the critical point corresponds to the fact that the effective multiplication factor k reaches 1. Therefore, when the reactor becomes critical, the intensity of neutrons that reach the neutron detector, that is, the detection The instrument count S 0 is infinite. This corresponds to the fact that the reactor physically becomes critical and the output increases. In fact, considering the detection efficiency of the neutron detector, the intensity of neutrons reaching the neutron detector is not equal to the detector count, but here it is assumed to be equal for convenience.

【0005】ここで逆増倍率Rを中性子検出器による初
期検出器計数S0 0(=S/(1−k0)、k0:初期
実効増倍率)と検出器計数S0 との比として定義すれ
ば、次の式(2) のようになる。なお「初期」とは、臨界
操作を開始する直前の状態を指す。
Here, the inverse multiplication factor R is defined as the ratio of the initial detector count S 0 0 (= S / (1-k0), k0: initial effective multiplication factor) by the neutron detector and the detector count S 0. Then, it becomes like the following formula (2). The "initial" refers to the state immediately before the start of critical operation.

【0006】 R=S0 0/S0 =S(1−k)/S(1−k0) =(1−k)/(1−k0) …(2)R = S 0 0 / S 0 = S (1-k) / S (1-k0) = (1-k) / (1-k0) (2)

【0007】原子炉が臨界点、すなわち実効増倍率kが
1に近づくにつれ、逆増倍率Rは上記式(2) に示される
通り、実効増倍率kに対して線形にて0に近づいてい
き、臨界になった時点で逆増倍率Rが0になる。この時
の逆増倍率Rの推移の一例を図4の特性曲線図に示す。
As the reactor reaches the critical point, that is, the effective multiplication factor k approaches 1, the reverse multiplication factor R linearly approaches 0 with respect to the effective multiplication factor k as shown in the above equation (2). The reverse multiplication factor R becomes 0 at the critical point. An example of the transition of the reverse multiplication factor R at this time is shown in the characteristic curve diagram of FIG.

【0008】逆増倍法では、この逆増倍率Rが0に線形
性で近づいていくことを利用して、原子炉を臨界にさせ
る過程で逆増倍率Rを常にプロットして行き、外挿する
ことによって臨界点の予測を行っている。この逆増倍法
による臨界点予測では、原子炉における中性子の出力検
出器からの計数を運転員が計数表示計器から直接読み取
り、これを用いて予め記録しておいた初期検出器計数を
除することにより逆増倍率を求める。
In the inverse multiplication method, the fact that the inverse multiplication factor R approaches 0 in a linear manner is utilized to constantly plot the inverse multiplication factor R in the process of making the reactor critical and extrapolate it. By doing so, the critical point is predicted. In the critical point prediction by this inverse multiplication method, the operator directly reads the neutron count from the output detector of the neutrons from the count display instrument and uses this to divide the initial detector count recorded in advance. Then, the reverse multiplication factor is obtained.

【0009】次に、これを引き抜き制御棒本数などの、
実効増倍率を代表するものに対して運転員がグラフを描
くことにより臨界点を予測していた。なお、実効増倍率
そのものに対してプロットしないのは、実効増倍率は別
途の解析を行って求める必要があるからである。
Next, this is pulled out, such as the number of control rods,
The operator predicted the critical point by drawing a graph for what is representative of the effective multiplication factor. The reason why the effective multiplication factor itself is not plotted is that the effective multiplication factor must be obtained by performing a separate analysis.

【0010】[0010]

【発明が解決しようとする課題】従来の逆増倍法による
臨界点予測作業は、すべて運転員の手によってなされて
おり、この作業は極めて煩雑な上に実効増倍率に対し
て、直接プロットすることができないために予測精度が
劣っていた。これは、図4に示すように逆増倍率は実効
増倍率に対して線形性を示すものの、臨界操作を行うた
めの引き抜き制御棒本数などについては、それぞれ反応
度価値が異なり、引き抜き制御棒本数に対する変化につ
いては、線形性が悪いために外挿しても精度の高い臨界
点の予測はできなかった。
The critical point prediction work by the conventional inverse multiplication method is all done by the operator, and this work is extremely complicated and directly plotted against the effective multiplication factor. The prediction accuracy was poor because it was not possible. As shown in FIG. 4, the reverse multiplication factor shows linearity with respect to the effective multiplication factor, but regarding the number of pull-out control rods for performing critical operation, the reactivity value is different, and the number of pull-out control rods is different. With respect to the change with respect to, due to poor linearity, a highly accurate critical point could not be predicted even by extrapolation.

【0011】図5の特性曲線図に、沸騰水型原子炉にお
いて制御棒引き抜き順序に従って制御棒を引き抜きを行
う臨界操作の場合で、引き抜き制御棒本数に対する逆増
倍率の関係をプロットしたグラフの一例を示す。また従
来の臨界点予測では、臨界までの余裕が定量的に把握で
きないため、運転員は臨界操作の過程において、次の操
作によりどの程度臨界点を超過することが分からないと
いう不具合があり、人為的なミスも発生する可能性があ
るなどの支障があった。
An example of a graph in which the relationship between the reverse multiplication factor and the number of pull-out control rods is plotted in the characteristic curve diagram of FIG. 5 in the case of the critical operation of pulling out the control rods in the boiling water reactor in the order of pulling out the control rods Indicates. In addition, since the conventional critical point prediction cannot quantitatively grasp the margin to the critical point, there is a problem that the operator cannot know how much the critical point will be exceeded by the next operation in the process of critical operation. There were obstacles such as possible mistakes.

【0012】本発明の目的とするところは、臨界点予測
に用いる検出器計数を自動的に取り込み、予め与えた炉
心状態と実効増倍率とのテーブルなどにより、炉心の実
効増倍率に対して逆増倍率を監視して、全自動化で高精
度の臨界点予測すると共に、運転員の支援をする臨界点
予測装置を提供することにある。
The object of the present invention is to automatically take in the detector counts used for predicting the critical point and use the table of the core state and the effective multiplication factor given in advance to reverse the effective multiplication factor of the core. It is an object of the present invention to provide a critical point prediction device that monitors a multiplication factor and predicts a critical point with high accuracy by full automation and assists an operator.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の発明に係る臨界点予測装置は、原子炉の
出力を監視する出力検出器が出力する計数を取り込んで
記憶する検出器計数記憶部と、前記出力検出器からの初
期計数とその時々の計数から逆増倍率を計算する逆増倍
率演算部と、この逆増倍率演算部で計算された逆増倍率
を予め備えたその時々の炉心状態に応じた実効増倍率に
対して逆増倍法により原子炉の臨界を予測する臨界点予
測部とからなることを特徴とする。
In order to achieve the above object, a critical point predicting apparatus according to the invention of claim 1 is a detector for capturing and storing a count output by an output detector for monitoring the output of a nuclear reactor. A counter storage unit, a reverse multiplication factor calculation unit that calculates a reverse multiplication factor from the initial count from the output detector and the counts at each time, and a reverse multiplication factor calculated by the reverse multiplication factor calculation unit in advance. It is characterized by comprising a critical point prediction unit that predicts the criticality of the reactor by the inverse multiplication method with respect to the effective multiplication factor depending on the core state at any time.

【0014】請求項2記載の発明に係る臨界点予測装置
は、原子炉の出力を監視する出力検出器が出力する計数
を取り込んで記憶する検出器計数記憶部と、前記出力検
出器からの初期計数とその時々の計数から逆増倍率を計
算する逆増倍率演算部と、炉心状態に応じた実効増倍率
を解析する炉心性能計算部と、前記逆増倍率演算部で計
算された逆増倍率を前記炉心性能計算部で解析したその
時々の炉心状態に応じた実効増倍率で逆増倍法により原
子炉の臨界を予測する臨界点予測部とからなることを特
徴とする。
A critical point predicting apparatus according to a second aspect of the present invention is a detector count storage unit for capturing and storing a count output from an output detector for monitoring the output of a nuclear reactor, and an initial stage from the output detector. A counter multiplication factor calculation unit that calculates a reverse multiplication factor from the count and the count at each time, a core performance calculation unit that analyzes the effective multiplication factor according to the core state, and a reverse multiplication factor calculated by the reverse multiplication factor calculation unit. Is analyzed by the core performance calculation unit, and a critical point prediction unit that predicts the criticality of the reactor by an inverse multiplication method with an effective multiplication factor according to the core state at that time is characterized.

【0015】請求項3記載の発明に係る臨界点予測装置
は、臨界点予測部において原子炉の臨界操作中に臨界ま
での余裕が設定値より少なくなると警報を発すると共
に、次の臨界操作により所定値以上のペリオドが発生す
ると予測された場合に臨界操作を阻止することを特徴と
する。
In the critical point predicting apparatus according to the third aspect of the present invention, the critical point predicting unit issues an alarm when the margin to the critical limit becomes less than the set value during the critical operation of the reactor, and a predetermined critical operation is performed by the next critical operation. It is characterized by preventing critical operation when it is predicted that a period equal to or more than a value will occur.

【0016】[0016]

【作用】請求項1記載の発明は、検出器計数記憶部は出
力検出器から出力された初期計数とその時々の計数を自
動的に取り込んで記憶する。この検出器計数は逆増倍率
演算部に入力され、初期検出器計数をその時の検出器計
数で除して逆増倍率が計算される。このその時々の逆増
倍率は臨界点予測部に送られ、臨界点予測部において別
途入力された炉心状態に対する実効増倍率テーブルから
臨界予測がされる。
According to the first aspect of the invention, the detector count storage section automatically captures and stores the initial count output from the output detector and the count at each time. This detector count is input to the reverse multiplication factor calculation section, and the reverse multiplication factor is calculated by dividing the initial detector count by the detector count at that time. The inverse multiplication factor at each time is sent to the critical point prediction unit, and the critical point prediction is performed from the effective multiplication factor table for the core state separately input in the critical point prediction unit.

【0017】請求項2記載の発明は、検出器計数記憶部
は出力検出器から出力された初期計数とその時々の計数
を自動的に取り込んで記憶する。この検出器計数は逆増
倍率演算部に入力され、初期検出器計数をその時の検出
器計数で除して逆増倍率が計算される。このその時々の
逆増倍率は臨界点予測部に送られると共に、炉心性能計
算部において別途入力する制御棒操作順序から、その時
々の炉心状態に応じた実効増倍率を計算して臨界点予測
部に送り、臨界点予測部にて臨界の予測をする。
According to the second aspect of the present invention, the detector count storage section automatically captures and stores the initial count output from the output detector and the count at each time. This detector count is input to the reverse multiplication factor calculation section, and the reverse multiplication factor is calculated by dividing the initial detector count by the detector count at that time. The inverse multiplication factor at each time is sent to the critical point prediction unit, and the effective multiplication factor according to the core state at that time is calculated from the control rod operation sequence separately input in the core performance calculation unit to calculate the critical point prediction unit. Then, the critical point prediction unit predicts the criticality.

【0018】請求項3記載の発明は、臨界点予測部にお
いて予測した結果、臨界までの余裕が設定値よりも小さ
い場合は警報を発して運転員に報知し、次の臨界操作に
より所定値以上のペリオドが発生すると判断された場合
は臨界操作を阻止して、運転員の確認による操作ができ
る。
According to the third aspect of the present invention, as a result of the prediction by the critical point predicting unit, if the margin to the critical value is smaller than the set value, an alarm is issued to notify the operator, and the critical value is exceeded by the next critical operation. When it is determined that the period of 1 occurs, the critical operation is blocked and the operation can be performed by the confirmation of the operator.

【0019】[0019]

【実施例】本発明の一実施例について図面を参照して説
明する。第1実施例は図1のブロック構成図に示すよう
に、原子炉である原子炉圧力容器1には炉心2が格納さ
れているが、この炉心2には制御棒3が全挿入されて未
臨界状態となっており、この制御棒3は制御棒駆動装置
4により、引き抜きと挿入の制御がされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In the first embodiment, as shown in the block diagram of FIG. 1, a reactor pressure vessel 1 which is a nuclear reactor contains a reactor core 2. However, the control rod 3 is not fully inserted into the reactor core 2. The control rod 3 is in a critical state, and the control rod driving device 4 controls pulling and inserting.

【0020】未臨界状態の原子炉に対する臨界操作と
は、前記制御棒駆動装置4により制御棒3を炉心2から
引き抜いていくことである。この炉心2から制御棒3を
徐々に引き抜くことにより、原子炉に反応度が投入され
て臨界に近づいていく。なお、この時の炉心における出
力を監視する出力検出器としては、例えば中性子源領域
中性子モニタや起動領域中性子モニタがあり、この炉心
2の出力を監視する図示しない出力検出器からは、その
検出した計数が出力される。
The critical operation for a subcritical nuclear reactor is to pull out the control rod 3 from the core 2 by the control rod driving device 4. By gradually pulling out the control rod 3 from the core 2, the reactivity is injected into the reactor and approaches the critical level. Note that, as an output detector for monitoring the output in the core at this time, there are, for example, a neutron source region neutron monitor and a startup region neutron monitor, and the output detector (not shown) for monitoring the output of the core 2 detects the output. The count is output.

【0021】臨界点予測装置5は、前記出力検出器から
の計数出力を自動的に取り込んで記憶する検出器計数記
憶部6と、この検出器計数記憶部6から入力した初期検
出器計数と、その時々の検出器計数から逆増倍率を計算
する逆増倍率演算部7を備える。
The critical point predicting device 5 includes a detector count storage unit 6 for automatically capturing and storing the count output from the output detector, and an initial detector count input from the detector count storage unit 6. A reverse multiplication factor calculation unit 7 for calculating a reverse multiplication factor from the detector count at each time is provided.

【0022】さらに、逆増倍率演算部で計算された逆増
倍率を予め備えたその時々の炉心状態に応じた実効増倍
率に応じて原子炉の臨界点を予測する臨界点予測部8と
で構成されている。また、この臨界点予測部8には制御
棒パターン対実効増倍率テーブル9が入力されている。
Further, the critical point predicting unit 8 for predicting the critical point of the nuclear reactor according to the effective multiplication factor corresponding to the core state at that time, which is provided with the reverse multiplication factor calculated by the reverse multiplication factor calculation unit, is provided. It is configured. A control rod pattern-to-effective multiplication factor table 9 is input to the critical point predicting unit 8.

【0023】次に上記構成による作用について説明す
る。一般に原子力発電プラントにおいては、原子炉運転
に係る図示しないプロセス計算機が設けられてあり、各
部からのプロセス信号の監視を行っている。したがっ
て、臨界点予測装置5における検出器計数記憶部6は、
原子炉に備えられた出力検出器から検出器計数を直接的
に取り込むだけでなく、プロセス計算機を介することに
より、自動的に前記出力検出器からの原子炉における出
力の検出器計数を、リアルタイムで精度良く容易に取り
込むことができる。
Next, the operation of the above configuration will be described. In general, a nuclear power plant is provided with a process computer (not shown) relating to the operation of a nuclear reactor, and monitors process signals from various parts. Therefore, the detector count storage unit 6 in the critical point prediction device 5 is
In addition to directly taking in the detector count from the output detector provided in the reactor, it also automatically detects the detector count of the output in the reactor from the output detector in real time through a process computer. It can be imported accurately and easily.

【0024】先ず検出器計数記憶部6では、臨界操作前
の検出器計数、すなわち制御棒3の引き抜き操作を開始
する前の状態における検出器計数を、初期検出器計数と
して取り込んでおく。次いで、臨界操作が開始されて制
御棒3が所定のパターンに従って徐々に引き抜かれる
と、これにつれて原子炉には反応度が投入されて、出力
検出器からの計数は増大して行くが、その検出器計数を
周期的に自動的に取り込み、最初に記憶した初期検出器
計数と共に逆増倍率演算部7に送る。
First, in the detector count storage unit 6, the detector count before the critical operation, that is, the detector count in the state before the pulling-out operation of the control rod 3 is started is fetched as the initial detector count. Next, when the critical operation is started and the control rod 3 is gradually pulled out according to a predetermined pattern, the reactivity is injected into the reactor and the count from the output detector increases, but the detection is detected. The counter is automatically fetched periodically and sent to the inverse multiplication calculator 7 together with the initially stored initial detector count.

【0025】逆増倍率演算部7では、次ぎの式(3) によ
り逆増倍率を算出して、これを臨界点予測部8に順次送
る。 逆増倍率=初期検出器計数/その時の検出器計数 …(3)
The inverse multiplication factor calculation unit 7 calculates the inverse multiplication factor according to the following equation (3) and sequentially sends it to the critical point prediction unit 8. Reverse multiplication factor = initial detector count / detector count at that time (3)

【0026】臨界点予測部8には、予め作成した制御棒
パターン対実効増倍率テーブル9が入力されており、そ
の時々の制御棒パターンに応じた実効増倍率を読み出す
ことにより、逆増倍率対実効増倍率のグラフを作成す
る。このグラフは臨界点予測部8と接続した図示しない
CRTなどの表示装置で表示して運転員に提供する。
The control point pattern vs. effective multiplication factor table 9 created in advance is inputted to the critical point predicting section 8. By reading out the effective multiplication factor corresponding to the control rod pattern at that time, the inverse multiplication factor pair is read. Create a graph of effective multiplication factor. This graph is displayed on a display device such as a CRT (not shown) connected to the critical point prediction unit 8 and provided to the operator.

【0027】なお、制御棒パターン対実効増倍率テーブ
ル9における制御棒パターンについては、臨界操作時に
おいて刻々と変わるものでが、これは前記出力検出器の
計数と同様に、前記プロセス計算機が常時監視している
もので、例えばロッドワースミニマイザの入力としてプ
ロセス計算機に記憶されており、これを取り込むことは
容易である。
Incidentally, the control rod pattern in the control rod pattern vs. effective multiplication factor table 9 changes every moment during the critical operation, but this is always monitored by the process computer like the count of the output detector. It is stored in the process computer as an input of, for example, the Rodworth Minimizer, and it is easy to import this.

【0028】しかし、従来はその時々の制御棒パターン
に対応する炉心の実効増倍率(予測解析値)が分からな
かったために、制御棒本数などの数値により実効増倍率
を代表させて推定していた。
However, in the past, since the effective multiplication factor (predicted analysis value) of the core corresponding to the control rod pattern at that time was not known, the effective multiplication factor was estimated on the basis of the number of control rods and the like. .

【0029】本実施例では、予め実効増倍率と制御棒パ
ターンを解析により求め、これを制御棒パターン対実効
増倍率テーブル9として、例えばプロセス計算機に入力
しておくことで、その時々の制御棒パターンに対応した
実効増倍率が得られる。前記したように逆増倍率が0と
なる点が臨界点なので、そのグラフを外挿し、逆増倍率
が0となる実効増倍率を算定して求める。
In the present embodiment, the effective multiplication factor and the control rod pattern are obtained in advance by analysis, and this is input as a control rod pattern vs. effective multiplication factor table 9 to, for example, a process computer, so that the control rod at that time is controlled. An effective multiplication factor corresponding to the pattern can be obtained. As described above, the point at which the reverse multiplication factor becomes 0 is the critical point, so the graph is extrapolated and the effective multiplication factor at which the reverse multiplication factor becomes 0 is calculated and obtained.

【0030】なお、予め入力しておいた前記制御棒パタ
ーン対実効増倍率テーブル9が正しければ、実効増倍率
が1のときに臨界となるが、通常は炉心2における反応
部位と出力検出器の位置関係や、その時の制御棒パター
ンとの関連など、解析上の種々の誤差を含むために、テ
ーブル上での実効増倍率が1の点が必ずしも臨界点とは
ならない。
If the control rod pattern vs. effective multiplication factor table 9 input in advance is correct, it becomes critical when the effective multiplication factor is 1, but normally the reaction site in the core 2 and the output detector are The point where the effective multiplication factor is 1 on the table is not necessarily the critical point because it includes various analytical errors such as the positional relationship and the relationship with the control rod pattern at that time.

【0031】実際の逆増倍率は例えば図3の特性曲線図
に示すように、前記出力検出器と炉心の位置関係などに
より、実効増倍率が1の臨界点に到達するまでに様々な
経路を通るが、臨界付近では前記出力検出器と炉心の位
置関係などに係わらず一様な挙動をすることが知られて
いる。
As shown in the characteristic curve diagram of FIG. 3, for example, the actual reverse multiplication factor varies depending on the positional relationship between the output detector and the core, and various routes until the effective multiplication factor reaches the critical point of 1. Although it passes, it is known that near the critical point, it behaves uniformly regardless of the positional relationship between the power detector and the core.

【0032】また、臨界点予測装置5で得られた臨界点
予測制御棒パターンに対応する実効増倍率(臨界予測
値)と、予め解析で得られた実効増倍率(予測解析値)
を比較することにより、前記解析による誤差も推測でき
るので、この誤差値を臨界点予測の算定に際して補正す
ることにより、さらに精度を高くすることができる。
Further, the effective multiplication factor (critical prediction value) corresponding to the critical point prediction control rod pattern obtained by the critical point prediction device 5 and the effective multiplication factor (prediction analysis value) previously obtained by analysis.
Since the error due to the above-mentioned analysis can be estimated by comparing with, the accuracy can be further improved by correcting this error value when calculating the critical point prediction.

【0033】臨界点予測部8においては、逆増倍率が0
となると予測された実効増倍率に対応する制御棒パター
ンが、臨界予測制御棒パターンそのものなので、最初の
制御棒パターン対実効増倍率テーブル9から制御棒パタ
ーンを求め、これを臨界予測制御棒パターンとして図示
しない表示装置に表示する。
In the critical point predictor 8, the reverse multiplication factor is 0.
Since the control rod pattern corresponding to the effective multiplication factor predicted to become the critical prediction control rod pattern itself, the control rod pattern is obtained from the first control rod pattern vs. effective multiplication factor table 9, and this is used as the critical prediction control rod pattern. It is displayed on a display device (not shown).

【0034】なお図3に示すように、臨界点付近では各
種解析上の誤差などに係わらず、たとえ途中は様々な経
路をたどっても、最終的には実効増倍率1に集約される
ので、前記臨界予測制御棒パターンの表示は、逆増倍率
が小さくなった時点で行うことが精度が高く、臨界点の
予測に適切である。
As shown in FIG. 3, regardless of various analytical errors in the vicinity of the critical point, even if various routes are traced along the way, they are finally aggregated into the effective multiplication factor of 1. It is highly accurate to display the criticality prediction control rod pattern when the reverse multiplication factor becomes small, and it is suitable for predicting the critical point.

【0035】ここで例えば、図3において逆増倍率が下
弛みの曲線をたどった場合に、点Aにおいては線形の点
線で示す延長上の点Bは臨界予測点で、前記制御棒パタ
ーン対実効増倍率テーブル9をこれまでと逆に読み取る
ことにより、点Bの臨界予測点に対応する制御棒パター
ンを知ることができ、これが臨界予測制御棒パターンで
ある。
Here, for example, when the reverse multiplication factor follows the curve of the downward slack in FIG. 3, the point B on the extension indicated by the linear dotted line at the point A is the critical prediction point, and the control rod pattern is effective. By reading the multiplication factor table 9 in the opposite manner, it is possible to know the control rod pattern corresponding to the critical prediction point at point B, and this is the critical prediction control rod pattern.

【0036】また、この時の実効増倍率の点Bと点C間
の差Dが臨界までの余裕であり、この差Dにより臨界ま
での余裕を定量的に知ることができる。すなわち、この
臨界予測制御棒パターンの表示により、運転員はあとど
の程度の制御棒引き抜きによる臨界操作を行えば臨界に
到達するかを、視覚的および感覚的に把握することがで
きる。
Further, the difference D between the points B and C of the effective multiplication factor at this time is the margin to the critical level, and the margin to the critical level can be quantitatively known from this difference D. That is, by displaying this criticality prediction control rod pattern, the operator can visually and sensuously grasp how much more the critical operation is performed by pulling out the control rod to reach the criticality.

【0037】このように臨界点予測装置5によれば、臨
界予測の制御棒パターンを運転員の手を介在させること
なく表示することができるが、これと共に臨界予測制御
棒パターンに対応する実効増倍率と、その時の制御棒パ
ターンに対応する実効増倍率の差が臨界までの余裕であ
る。
As described above, according to the critical point prediction device 5, the control rod pattern for the criticality prediction can be displayed without the operator's hand intervening, but at the same time, the effective increase corresponding to the criticality prediction control rod pattern can be displayed. The difference between the magnification and the effective multiplication factor corresponding to the control rod pattern at that time is the margin to the critical level.

【0038】従って、この値を臨界点予測部8において
制御棒パターン対実効増倍率テーブル9を用いて計算
し、その値も同時に表示することにより運転員は臨界ま
での余裕を定量的に把握できることから、臨界運転に際
しての有効な支援をすることができる。
Therefore, this value is calculated in the critical point predicting section 8 by using the control rod pattern vs. effective multiplication factor table 9, and the value is also displayed at the same time, so that the operator can quantitatively grasp the margin to the critical point. Therefore, it is possible to effectively support the critical operation.

【0039】第2実施例は図2のブロック構成図に示す
ように、臨界点予測装置10は、上記第1実施例と同様の
検出器計数記憶部6と、逆増倍率演算部7および臨界点
予測部8と、さらに、その時々の制御棒パターンに応じ
た実効増倍率を計算する炉心性能計算部11を設けた構成
としている。また、この炉心性能計算部11には制御棒操
作順序12が入力されている。
In the second embodiment, as shown in the block diagram of FIG. 2, the critical point prediction device 10 includes a detector count storage unit 6, a reverse multiplication factor calculation unit 7 and a critical value calculation unit similar to those of the first embodiment. The point prediction unit 8 and a core performance calculation unit 11 that calculates an effective multiplication factor according to the control rod pattern at each time are provided. In addition, a control rod operation sequence 12 is input to the core performance calculation unit 11.

【0040】次に上記構成による作用について説明す
る。上記した第1実施例においては、臨界操作の前に多
数の条件に対応した制御棒パターン対実効増倍率テーブ
ル9を作成しておく作業が必要であった。また、現実的
にこの制御棒パターン対実効増倍率テーブル9は、全て
の条件を網羅した制御棒パターンを想定することは不可
能であり、適宜離散的なものとせざるを得なかった。し
たがって、この制御棒パターン対実効増倍率テーブル9
の作成時に、考慮していない制御棒操作については対応
できなかった。
Next, the operation of the above configuration will be described. In the above-mentioned first embodiment, it was necessary to prepare the control rod pattern vs. effective multiplication factor table 9 corresponding to many conditions before the critical operation. Further, in reality, the control rod pattern vs. effective multiplication factor table 9 cannot be assumed to be a control rod pattern that covers all the conditions, and it has been unavoidable to make it discrete. Therefore, this control rod pattern vs. effective multiplication factor table 9
It was not possible to deal with control rod operations that were not taken into consideration when creating.

【0041】しかしながら、本第2実施例では、例えば
炉心性能計算部11として前記プロセス計算機に設けられ
ている炉心性能計算部を組み合わせるか、あるいは同様
の機能を備えることによりで、原子力発電プラントにお
いて通常プロセス計算機が監視している制御棒パターン
と、その時々の実効増倍率をリアルタイムで求めること
ができ、さらに予定外の制御棒操作にも、容易に対応す
ることができる。
However, in the second embodiment, for example, by combining the core performance calculation unit provided in the process computer as the core performance calculation unit 11 or by providing the same function, it is possible to normally use the nuclear power plant. The control rod pattern monitored by the process computer and the effective multiplication factor at each time can be obtained in real time, and it is possible to easily deal with an unexpected control rod operation.

【0042】従って、炉心性能計算部11においては、臨
界操作のその時々における制御棒パターンに応じた実効
増倍率が、その都度自動的に計算されることから、臨界
操作に際して運転員の作業は、制御棒3の引き抜き順序
を入力するだけとなる。これにより臨界点予測装置10に
おいては、前記運転員により入力された制御棒3の引き
抜き順序に従って、炉心性能計算部11において実効増倍
率を自動的に計算し、必要なデータを作成していく。
Therefore, the core performance calculation unit 11 automatically calculates the effective multiplication factor according to the control rod pattern at each time of the critical operation, so that the operator's work during the critical operation is as follows. It is only necessary to input the withdrawal order of the control rod 3. As a result, in the critical point predicting apparatus 10, the core performance calculation unit 11 automatically calculates the effective multiplication factor in accordance with the pull-out order of the control rods 3 input by the operator, and creates necessary data.

【0043】本第2実施例では、炉心性能計算部11によ
る解析と予測機能を追加したことにより、何等かの理由
で当初予定していた制御棒引き抜き順序を変更する場合
や、運転員が所望の制御棒パターンにおける実効増倍率
を求めたいときなどに、容易に逆増倍曲線を描くなど臨
機応変に対応できることになり、よりきめ細かい臨界点
予測が可能となる。
In the second embodiment, the analysis and prediction function by the core performance calculation unit 11 is added to change the initially planned control rod withdrawal order for some reason, or the operator desires it. When it is desired to obtain the effective multiplication factor of the control rod pattern, it is possible to flexibly respond by flexibly drawing an inverse multiplication curve, and it becomes possible to make a more precise prediction of the critical point.

【0044】また、事前に繁雑な制御棒パターン対実効
増倍率テーブル9を作成する作業がなくなり、人的負担
の軽減とミスによる不具合が解消するので、臨界操作に
おける信頼性も向上する。
Further, since the work of preparing the complicated control rod pattern vs. effective multiplication factor table 9 in advance is eliminated, the human burden is reduced and the trouble caused by mistake is eliminated, so that the reliability in the critical operation is also improved.

【0045】第3実施例は、上記第1実施例および第2
実施例における臨界点予測部8において、臨界操作によ
る実効増倍率の臨界までの余裕が、予め入力しておいた
設定値よりも小さくなった場合に警報信号を発する機能
を備える。また、次の臨界操作を行うことにより臨界に
到達するか、さらに、ある一定値以上のペリオドを発す
ると予測される場合は、臨界操作を阻止する機能を付加
した構成とする。
The third embodiment is the same as the first embodiment and the second embodiment.
The critical point predicting unit 8 in the embodiment has a function of issuing an alarm signal when the margin of the effective multiplication factor due to the critical operation to the critical value becomes smaller than the preset value input in advance. Further, when it is predicted that the criticality will be reached by performing the next critical operation or that a period of a certain value or more will be emitted, a function for preventing the critical operation is added.

【0046】この構成による作用は、臨界点予測部8に
おいて臨界が近くなったことを警報により運転員に報知
すると共に、次の臨界操作に対する注意喚起と、運転員
が確認した上による臨界操作を行うことから、例えば誤
操作による反応度の投入で臨界とすることが防止される
ので、原子炉の臨界運転における安全性がさらに向上す
る。
The function of this structure is to notify the operator by the alarm that the critical point is nearing the critical point in the critical point predicting section 8, and to alert the operator about the next critical operation and to confirm the critical operation by the operator. By performing this, for example, it is possible to prevent the criticality due to the reactivity input due to an erroneous operation, so that the safety in the critical operation of the nuclear reactor is further improved.

【0047】[0047]

【発明の効果】以上本発明によれば、原子炉の臨界運転
に際して容易に臨界点予測が行えて、運転員の負担が大
幅に軽減されると共に、運転操作精度の向上が計れる。
また、臨界までの余裕が定量的に把握できるので、臨界
と予測される炉心状態を表示することにより、運転員は
視覚的および感覚的に運転を行うことができる。また、
臨界操作の変更に臨機応変に対応できることから、柔軟
できめ細かい臨界点予測と、次の臨界操作により不用意
な反応度の投入を未然に防ぐので原子炉運転の信頼性と
安全性が向上する効果がある。
As described above, according to the present invention, the critical point can be easily predicted during the critical operation of the nuclear reactor, the burden on the operator can be significantly reduced, and the operation accuracy can be improved.
Further, since the margin to the criticality can be grasped quantitatively, the operator can visually and sensibly operate by displaying the core state predicted to be critical. Also,
Since it is possible to flexibly respond to changes in critical operation, it is possible to flexibly and finely predict the critical point and prevent inadvertent injection of reactivity by the next critical operation, thus improving the reliability and safety of reactor operation. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例の臨界点予測装置のブ
ロック構成図。
FIG. 1 is a block configuration diagram of a critical point prediction device according to a first embodiment of the present invention.

【図2】本発明に係る第2実施例の臨界点予測装置のブ
ロック構成図。
FIG. 2 is a block diagram of a critical point prediction device according to a second embodiment of the present invention.

【図3】臨界到達と臨界までの余裕を示す逆増倍率の特
性曲線図。
FIG. 3 is a characteristic curve diagram of an inverse multiplication factor showing a criticality reaching and a margin to the criticality.

【図4】臨界到達までの逆増倍率の特性曲線図。FIG. 4 is a characteristic curve diagram of reverse multiplication factor until reaching criticality.

【図5】引き抜き制御棒本数に対する逆増倍率の特性曲
線図。
FIG. 5 is a characteristic curve diagram of the reverse multiplication factor with respect to the number of pull-out control rods.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、3…制御棒、4…制御
棒駆動装置、5,10…臨界点予測装置、6…検出器計数
記憶部、7…逆増倍率演算部、8…臨界点予測部、9…
制御棒パターン対実効増倍率テーブル、11…炉心性能計
算部、12…制御棒操作順序、A…逆増倍率の点、B…点
Aにおける臨界予測点、C…点Aにおける実効増倍率の
点、D…実効増倍率の差(臨界までの余裕)。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Control rod, 4 ... Control rod drive device, 5, 10 ... Critical point prediction device, 6 ... Detector count storage unit, 7 ... Inverse multiplication factor calculation unit, 8 ... Critical point prediction unit, 9 ...
Control rod pattern vs. effective multiplication factor table, 11 ... Core performance calculation section, 12 ... Control rod operation sequence, A ... Point of reverse multiplication factor, B ... Critical prediction point at point A, C ... Point of effective multiplication factor at point A , D ... Difference in effective multiplication factor (margin until criticality).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の出力を監視する出力検出器が出
力する計数を取り込んで記憶する検出器計数記憶部と、
前記出力検出器からの初期計数とその時々の計数から逆
増倍率を計算する逆増倍率演算部と、この逆増倍率演算
部で計算された逆増倍率を予め備えたその時々の炉心状
態に応じた実効増倍率に対して逆増倍法により原子炉の
臨界を予測する臨界点予測部とからなることを特徴とす
る臨界点予測装置。
1. A detector count storage unit that captures and stores counts output by an output detector that monitors the output of a nuclear reactor,
A reverse multiplication factor calculation unit for calculating a reverse multiplication factor from the initial count from the output detector and the count at each time, and a core state at each time provided with the reverse multiplication factor calculated by the reverse multiplication factor calculation unit in advance. A critical point prediction apparatus comprising: a critical point prediction unit that predicts the criticality of a reactor by an inverse multiplication method with respect to the effective multiplication factor.
【請求項2】 原子炉の出力を監視する出力検出器が出
力する計数を取り込んで記憶する検出器計数記憶部と、
前記出力検出器からの初期計数とその時々の計数から逆
増倍率を計算する逆増倍率演算部と、炉心状態に応じた
実効増倍率を解析する炉心性能計算部と、前記逆増倍率
演算部で計算された逆増倍率を前記炉心性能計算部で解
析したその時々の炉心状態に応じた実効増倍率で逆増倍
法により原子炉の臨界を予測する臨界点予測部とからな
ることを特徴とする臨界点予測装置。
2. A detector count storage unit that captures and stores the counts output by an output detector that monitors the output of the nuclear reactor,
A reverse multiplication factor calculation unit that calculates a reverse multiplication factor from the initial count from the output detector and the counts at each time, a core performance calculation unit that analyzes an effective multiplication factor according to a core state, and the reverse multiplication factor calculation unit It is characterized by comprising a critical point prediction unit that predicts the criticality of the reactor by the reverse multiplication method with the effective multiplication factor according to the core state at that time analyzed by the core performance calculation unit Critical point prediction device.
【請求項3】 前記臨界点予測装置において、原子炉の
臨界操作中に臨界までの余裕が設定値より少なくなると
警報を発すると共に、次の臨界操作により所定値以上の
ペリオドが発生すると予測された場合に臨界操作を阻止
することを特徴とする請求項1または請求項2記載の臨
界点予測装置。
3. The critical point prediction device issues an alarm when the margin to criticality becomes less than a set value during critical operation of a nuclear reactor, and it is predicted that a period of a predetermined value or more will be generated by the next critical operation. The critical point predicting device according to claim 1 or 2, wherein the critical operation is prevented in such a case.
JP7135271A 1995-06-01 1995-06-01 Critical point prediction device Pending JPH08327777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7135271A JPH08327777A (en) 1995-06-01 1995-06-01 Critical point prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7135271A JPH08327777A (en) 1995-06-01 1995-06-01 Critical point prediction device

Publications (1)

Publication Number Publication Date
JPH08327777A true JPH08327777A (en) 1996-12-13

Family

ID=15147807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7135271A Pending JPH08327777A (en) 1995-06-01 1995-06-01 Critical point prediction device

Country Status (1)

Country Link
JP (1) JPH08327777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098329A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Criticality managing device in fuel loading, and fuel loading system
JP2008157669A (en) * 2006-12-21 2008-07-10 Mitsubishi Heavy Ind Ltd Method, program and instrument for measuring degree of subcriticality
JP2009150838A (en) * 2007-12-21 2009-07-09 Global Nuclear Fuel-Japan Co Ltd Reactor core monitor
JP2011247854A (en) * 2010-05-31 2011-12-08 Central Res Inst Of Electric Power Ind Method for measuring subcritical multiplication factor of irradiated fuel assembly, measurement device and program for measurement, and method for confirming prediction accuracy of nuclide composition of irradiated fuel assembly
JP2012511726A (en) * 2008-12-11 2012-05-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Subcritical reactivity measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098329A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Criticality managing device in fuel loading, and fuel loading system
JP4658554B2 (en) * 2004-09-30 2011-03-23 三菱重工業株式会社 Fuel loading criticality control device and fuel loading system
JP2008157669A (en) * 2006-12-21 2008-07-10 Mitsubishi Heavy Ind Ltd Method, program and instrument for measuring degree of subcriticality
JP2009150838A (en) * 2007-12-21 2009-07-09 Global Nuclear Fuel-Japan Co Ltd Reactor core monitor
JP2012511726A (en) * 2008-12-11 2012-05-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Subcritical reactivity measurement method
JP2011247854A (en) * 2010-05-31 2011-12-08 Central Res Inst Of Electric Power Ind Method for measuring subcritical multiplication factor of irradiated fuel assembly, measurement device and program for measurement, and method for confirming prediction accuracy of nuclide composition of irradiated fuel assembly

Similar Documents

Publication Publication Date Title
EP0393837A2 (en) On-line plant operating procedure guidance system
EP3154062B1 (en) Plant operation assistance device and plant operation assistance method of a nuclear power plant
JP2978184B2 (en) Control rule creation device
US7386419B2 (en) Method, apparatus, system and computer program product for selection of a static evaluation method for an empirical examination of measurement series
JPH08327777A (en) Critical point prediction device
JP4918345B2 (en) Subcriticality measuring method, subcriticality measuring program, and subcriticality measuring apparatus
CN115081578B (en) Fuel ball counter signal processing system, method and device and electronic equipment
JP7385548B2 (en) Reactor control device and reactor control method
JP3240501B2 (en) Plant operating state display method and apparatus
JP2555018B2 (en) Method and apparatus for controlling plant
JP2023135895A (en) Critical approach monitor device, method for monitoring critical approach, and program
JP2566024B2 (en) Equipment information management device
JP2646115B2 (en) Test monitoring control apparatus and method
JP4115772B2 (en) Mobile in-core instrumentation system
JPH07134196A (en) Reactor monitoring device
JPS6124677B2 (en)
JPH0458913B2 (en)
JPH06276700A (en) Method and apparatus for using error data
JPS6191597A (en) Driving controller for moving type incore calibrator
JPS61110087A (en) Drawing operating device for control rod
JPH06167595A (en) Reactor period measuring device
JPH05323087A (en) Control rod driving time measuring device
CN117723210A (en) Test system for detecting hydrogen leakage condition of steam turbine generator of nuclear power plant
JPS6136786A (en) Simulator for training operator
JPS58113794A (en) Movable incore probe monitor system of reactor