JPH0124862B2 - - Google Patents

Info

Publication number
JPH0124862B2
JPH0124862B2 JP60008210A JP821085A JPH0124862B2 JP H0124862 B2 JPH0124862 B2 JP H0124862B2 JP 60008210 A JP60008210 A JP 60008210A JP 821085 A JP821085 A JP 821085A JP H0124862 B2 JPH0124862 B2 JP H0124862B2
Authority
JP
Japan
Prior art keywords
resist film
sprayed
oil
sliding
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60008210A
Other languages
Japanese (ja)
Other versions
JPS61166962A (en
Inventor
Tsutomu Shimizu
Koji Tarumoto
Satoshi Nanba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP821085A priority Critical patent/JPS61166962A/en
Priority to DE19863601319 priority patent/DE3601319A1/en
Priority to US06/819,681 priority patent/US4678738A/en
Publication of JPS61166962A publication Critical patent/JPS61166962A/en
Publication of JPH0124862B2 publication Critical patent/JPH0124862B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、例えばエンジンのシリンダライナ等
に使用される摺接部材の耐摩耗性の改善および、
この耐摩耗性に優れた摺接部材の効率的な製造方
法に関するものである。 〔従来技術〕 従来、エンジンでは、ピストンがシリンダブロ
ツク内を摺動するようになつているが、このシリ
ンダブロツク内にはピストンとの摺接面を有する
摺接部材としてシリンダライナが固着されてお
り、従つてこのシリンダライナには、高い耐摩耗
性が必要である。この耐摩耗性を向上するには、
摺接面に適量の潤滑油が保持されるようにすれば
よく、この保持された潤滑油により潤滑効果が高
められ、耐摩耗性が向上する。そして上記潤滑油
を摺接面に保持するためには、該摺接面に潤滑油
を保持するためのオイル保持凹部を形成する方法
がある。 ところで上記オイル保持凹部によるオイル保持
機能は、該凹部の面積率、即ち全オイル保持凹部
の総開口面積を摺接面全体の面積で割つた値が大
きいほど大きくなるが、このオイル保持能力を確
保するために上記面積率を大きくすると、上記ピ
ストンと高圧で摺接するプラトー部の面積が小さ
くなり、そのため単位面積当りの面圧が大きくな
り、耐摩耗性向上の観点から好ましくない。一
方、上記面積率をあまり大きくすることなくオイ
ル保持能力を大きくするには、上記オイル保持凹
部の刻設深さを深くすればよいが、硬質メツキ層
に逆電処理を施してオイル保持凹部を形成する従
来の方法においては、上記凹部を深くするために
逆電解量を多くすると、凹部間のプラトー部でも
電解が促進されてその表面粗さが悪化してしまう
問題が生じる。 そこで本願出願人は、上記従来の問題点を解消
できる摺接部材として、フオトエツチング法によ
り深さの深いオイル保持凹部を摺接面に規則的に
形成したものについて出願しており(特願昭58−
111200号)、この従来技術によれば、上記プラト
ー部の表面粗さが悪化することなく深さの深いオ
イル保持凹部を形成でき、面積率をそれほど大き
くすることなくオイル保持能力を向上でき、耐摩
耗性を向上できる。 ところで、上記オイル保持凹部に供給され、保
持されている潤滑油は、この凹部内に単に溜つて
いるだけであるから、ピストンの摺動に伴なつて
これに引きずられて持ち去られる傾向があり、特
にピストンの摺動速度が速くなるほどこの持ち去
られる量が増大し、そのため上記深いオイル保持
凹部を形成したものにおいても、摺動速度によつ
てはオイル保持能力が不十分となる場合が考えら
れる。 〔発明の目的〕 そこで本発明の目的は、摺動速度が速くなつて
も十分な潤滑効果が得られる高いオイル保持能力
を有し、耐摩耗性を大きく向上できる摺接部材を
提供するにあたり、オイル保持能力の高い摺接部
材を、簡単な工程により能率よく得ることのでき
る摺接部材の製造方法を提供する点にある。 〔発明の構成〕 本発明は、摺接面を有する金属部材にフオトエ
ツチング法で多数の凹部を形成した後、フオトエ
ツチング用のレジスト膜を該金属部材上に残存さ
せた状態で溶射材料を溶射し、その後上記レジス
ト膜および該レジスト膜上の溶射層を除去し、上
記凹部内のみに潤滑油保持機能を有する多孔質の
溶射層を形成した摺接部材を得るようにしたもの
である。 摺接面を有する金属部材、例えばクロムメツキ
層に凹部を形成し、この凹部に潤滑油保持機能を
有する多孔質の、例えばモリブデンの溶射層を形
成する方法としては、上述のように、フオトエツ
チング法により凹部を形成する方法が公知であ
り、またMo等の溶射層が耐スカツフイング性に
すぐれていることも知られているから、以下の方
法が考えらる。即ち、上記Crメツキ層にフオト
エツチング法によつて凹部を蝕刻し、このフオト
エツチング用レジスト膜を除去した後、上記メツ
キ層上にMoを例えばプラズマ溶射する方法であ
る。しかしながら上記フオトエツチング法とプラ
ズマ溶射とを単に組み合せた処理方法では以下の
問題点が生じることが考えられる。 Crメツキ層上には強固な酸化膜が存在して
おり、またCrメツキ層は溶射粒子に対するぬ
れ性も悪いので、溶射粒子はこのメツキ層表面
には付着せずに周囲に飛散し、その結果この飛
散した粒子により上記凹部への溶射が阻害さ
れ、該凹部内に溶射層を形成するのは困難とな
る。 また上記凹部への溶射においては、上述のと
おりCrメツキ層上にも溶射粒子が衝突する訳
であるが、この衝突粒子によりCrメツキ層自
体の表面荒れが生じ、結局耐摩耗性はそれほど
向上できない。 そこで本発明は、上述のように上記耐摩耗性に
優れた摺接部材を製造するための方法において、
摺接面を有する上記硬質メツキ層と金属基材など
からなる金属部材にフオトエツチング法によつて
多数の凹部を形成した後、このフオトエツチング
用レジスト膜を上記金属部材上に残したままでは
溶射材料を溶射し、しかる後上記レジスト膜およ
び該レジスト膜上に形成された溶射層を除去する
ようにしたものであり、これにより本発明方法で
は、金属部材上に残つているレジスト膜が軟質で
あることから、溶射粒子はこのレジスト膜に容易
に付着し、従つてこの金属部材の摺接面が溶射粒
子によつて表面荒れを起こすことはないととも
に、金属部材への溶射粒子が飛散することもな
く、従つてこの飛散粒子により凹部内への溶射粒
子の進入が阻害されることもない。また、レジス
ト膜上の不要な溶射層は、レジスト膜の除去によ
り容易に除去できる。 〔実施例〕 以下、本願発明の実施例を図について説明す
る。 第1図は本発明の一実施例による摺接部材、例
えばシリンダライナの内表面部を示し、図におい
て、1は金属、例えば合金鋳鉄製基材であり、こ
の基材1の表面には硬質メツキ層、例えばCrメ
ツキ層2が形成されており、このCrメツキ層2
の外表面は、図示しない摺動部材であるピストン
と摺接する摺接面2aとなつている。そしてこの
Crメツキ層2の摺接面2aには、フオトエツチ
ング法により多数のオイル保持凹部2bが縦横等
ピツチでもつて該摺接面2aの全面にわたつて形
成されており、この各オイル保持凹部2bは平面
円形の開口を有する縦断面略U字状のもので、こ
の摺接面2aのうち上記凹部2bの形成されてい
ない部分がピストンと当接するプラトー部となつ
ている。 そして上記各オイル保持凹部2b内には、例え
ばMoをプラズマ溶射してなる溶射層3が形成さ
れており、その外表面は上記摺接面2aと略同一
平面状になつており、またこの溶射層3は多孔質
のもので潤滑油を確実に保持できる機能を有して
いる。 本実施例の摺接部材では、オイル保持凹部2b
内の溶射層3が多孔質になつているため、摺動部
材、この場合はピストンの摺動速度が速くなつて
も潤滑油はこの溶射層3内に確実に保持され、こ
れにより潤滑効果が長期にわたつて得られ、しか
も上記溶射層3自体の特性も利用できることによ
り耐摩耗性を大きく向上できる。 また、上述のとおり、Crメツキ層2の特に平
坦部に溶射された溶射粒子は周囲に飛散してしま
い、該平坦部には付着しにくいのであるが、本実
施例では平坦部ではなく凹部内に溶射層を形成す
るようにしているから、溶射粒子が飛散すること
はなく、容易確実にオイル保持凹部2b内面に付
着し、またこの溶射層3とCrメツキ層2との密
着性を向上できる。 次に上記実施例の摺動部材の耐摩耗性向上効果
を確認するための試験について説明する。本試験
では、摺接面の損傷度および耐焼付性について試
験し、これにより耐摩耗性を評価する。 第2図は上記実施例の耐摩耗性をピンデイスク
式摩耗試験法により試験するための回転式摩耗試
験機を示す。図において、11はデイスク回転部
であり、これの図示しないモータにはデイスク回
転軸12が接続されており、この回転軸12に試
験片であるデイスク13が取付けられ、これによ
り該デイスク13は所定の回転速度でもつて回転
されるようになつている。また14はデイスク押
圧部であり、支持部材15に揺動自在に取付けら
れた支持アーム15aの先端には上記デイスク1
3の摺接面を摺動するためのピン16が取付けら
れ、後端には吊ロープ17が連結され、この吊ロ
ープ17はガイドプーリ18に巻回され、これの
下端には荷重19が吊設されており、これにより
ピン16は押圧荷重Pでもつてデイスク13の摺
接面に押圧されることとなる。 ここで上記デイスク13は、基材が合金鋳鉄製
で、その表面に硬質Crメツキ層(厚さ50μ、ビツ
カース硬度900〜1000)を形成し、その後#1000
ホーニング仕上げ加工を施したものである。そし
て本実施例試験片は、上記デイスク13にフオト
エツチング法にてオイル保持凹部を形成し、該凹
部内にモリブデン溶射層(厚さ約20μ)を形成し
たものであり、比較例1は上記デイスク13にフ
オトエツチング法によるオイル保持凹部のみを形
成したものであり、比較例2は上記デイスク13
をそのまま用いたものである。また上記ピン16
は第1表に示す化学成分からなる合金鋳鉄をチル
処理してなる平面矩形の板状体であり、これの上
記デイスク13との摺接面には以下の加工が施さ
れている。 イ 研摩仕上げ 砥石:GC#60 アラサ:1.6a ロ シヨツトブラスト仕上げ シヨツト:カーボランダム#20 アサラ:10〜40μ
[Industrial Application Field] The present invention is directed to improving the wear resistance of sliding contact members used, for example, in engine cylinder liners, and
The present invention relates to an efficient method for manufacturing this sliding contact member with excellent wear resistance. [Prior Art] Conventionally, in an engine, a piston slides within a cylinder block, and a cylinder liner is fixed to the cylinder block as a sliding member having a sliding surface that contacts the piston. Therefore, this cylinder liner must have high wear resistance. To improve this wear resistance,
An appropriate amount of lubricating oil may be retained on the sliding surface, and this retained lubricating oil enhances the lubrication effect and improves wear resistance. In order to retain the lubricating oil on the sliding surface, there is a method of forming an oil retaining recess for retaining the lubricating oil on the sliding surface. By the way, the oil retention function of the oil retention recess increases as the area ratio of the recess increases, that is, the value obtained by dividing the total opening area of all oil retention recesses by the area of the entire sliding surface, but this oil retention ability is ensured. If the area ratio is increased in order to achieve this, the area of the plateau portion that makes sliding contact with the piston under high pressure will become smaller, which will increase the surface pressure per unit area, which is not preferable from the viewpoint of improving wear resistance. On the other hand, in order to increase the oil holding capacity without increasing the area ratio too much, the depth of the oil holding recesses can be increased. In the conventional forming method, if the amount of reverse electrolysis is increased in order to deepen the recesses, electrolysis is also promoted in the plateau areas between the recesses, resulting in a problem that the surface roughness thereof deteriorates. Therefore, the applicant of the present application has filed an application for a sliding contact member in which deep oil retaining recesses are regularly formed on the sliding surface using the photo etching method as a sliding contact member that can solve the above-mentioned conventional problems. 58−
111200), according to this prior art, a deep oil holding recess can be formed without deteriorating the surface roughness of the plateau portion, and the oil holding capacity can be improved without increasing the area ratio, and the durability is improved. Abrasion resistance can be improved. By the way, since the lubricating oil that is supplied and held in the oil holding recess is simply collected in this recess, it tends to be dragged away by the piston as it slides. In particular, as the sliding speed of the piston increases, the amount of oil carried away increases. Therefore, even in the case where the deep oil retaining recess is formed, the oil retaining ability may be insufficient depending on the sliding speed. [Object of the Invention] Therefore, the object of the present invention is to provide a sliding contact member that has a high oil retention ability that can provide sufficient lubrication effect even at high sliding speeds, and can greatly improve wear resistance. It is an object of the present invention to provide a method for manufacturing a sliding contact member that can efficiently obtain a sliding contact member having a high oil holding capacity through a simple process. [Structure of the Invention] The present invention involves forming a large number of recesses on a metal member having a sliding surface by a photoetching method, and then thermally spraying a thermal spraying material while leaving a resist film for photoetching on the metal member. Then, the resist film and the sprayed layer on the resist film are removed to obtain a sliding contact member in which a porous sprayed layer having a lubricant retaining function is formed only in the recess. As a method for forming recesses in a metal member having a sliding surface, for example a chrome plating layer, and forming a porous sprayed layer of molybdenum, for example, which has a lubricating oil retaining function in the recesses, as mentioned above, the photo etching method is used. It is known that a method of forming a recessed portion is made using the following method, and it is also known that a thermally sprayed layer of Mo or the like has excellent scuffing resistance. Therefore, the following method can be considered. That is, the method involves etching recesses in the Cr plating layer by photoetching, removing the photoetching resist film, and then plasma spraying Mo on the plating layer, for example. However, a processing method that simply combines the above-mentioned photoetching method and plasma spraying may cause the following problems. There is a strong oxide film on the Cr plating layer, and the Cr plating layer also has poor wettability for sprayed particles, so the sprayed particles do not attach to the surface of this plating layer but scatter around. These scattered particles inhibit thermal spraying into the recesses, making it difficult to form a sprayed layer within the recesses. Furthermore, when thermal spraying is applied to the recesses, as mentioned above, the sprayed particles also collide with the Cr plating layer, but these colliding particles cause surface roughness of the Cr plating layer itself, and as a result, the wear resistance cannot be improved that much. . Therefore, the present invention provides a method for manufacturing a sliding contact member having excellent wear resistance as described above.
After forming a large number of recesses by photoetching on a metal member consisting of the hard plating layer having a sliding surface and a metal base material, thermal spraying will not be possible if this photoetching resist film is left on the metal member. The material is thermally sprayed, and then the resist film and the thermally sprayed layer formed on the resist film are removed.As a result, in the method of the present invention, the resist film remaining on the metal member is soft. Because of this, the sprayed particles easily adhere to this resist film, so the sliding surface of the metal member will not be roughened by the sprayed particles, and the sprayed particles will not scatter onto the metal member. Therefore, the sprayed particles will not be obstructed from entering the recesses by these scattered particles. Furthermore, unnecessary thermal sprayed layers on the resist film can be easily removed by removing the resist film. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows the inner surface of a sliding member, such as a cylinder liner, according to an embodiment of the present invention. A plating layer, for example, a Cr plating layer 2 is formed, and this Cr plating layer 2
The outer surface of the piston serves as a sliding surface 2a that comes into sliding contact with a piston, which is a sliding member (not shown). and this
On the sliding contact surface 2a of the Cr plating layer 2, a large number of oil holding recesses 2b are formed by photoetching over the entire surface of the sliding contact surface 2a at equal pitches vertically and horizontally. It has a substantially U-shaped longitudinal section with a circular opening in plan view, and the portion of the sliding surface 2a where the recess 2b is not formed forms a plateau portion that comes into contact with the piston. A sprayed layer 3 formed by plasma spraying Mo, for example, is formed in each of the oil retaining recesses 2b, and its outer surface is approximately flush with the sliding surface 2a. Layer 3 is porous and has the function of reliably retaining lubricating oil. In the sliding contact member of this embodiment, the oil holding recess 2b
Since the thermal sprayed layer 3 inside is porous, the lubricating oil is reliably retained within this thermal sprayed layer 3 even when the sliding speed of the sliding member, in this case the piston, increases, thereby maintaining the lubrication effect. It can be obtained over a long period of time, and the properties of the thermal sprayed layer 3 itself can be utilized, so that the wear resistance can be greatly improved. In addition, as mentioned above, the spray particles sprayed on the flat part of the Cr plating layer 2 are scattered around and are difficult to adhere to the flat part, but in this example, the sprayed particles were not sprayed on the flat part but inside the recessed part. Since the sprayed layer is formed on the surface, the sprayed particles do not scatter and easily and reliably adhere to the inner surface of the oil holding recess 2b, and the adhesion between the sprayed layer 3 and the Cr plating layer 2 can be improved. . Next, a test for confirming the effect of improving the wear resistance of the sliding member of the above example will be explained. In this test, the degree of damage and seizure resistance of the sliding contact surface is tested, and the wear resistance is evaluated based on this. FIG. 2 shows a rotary abrasion tester for testing the abrasion resistance of the above examples by a pin-disk abrasion test method. In the figure, reference numeral 11 denotes a disk rotating section.A disk rotating shaft 12 is connected to a motor (not shown) of this section, and a disk 13, which is a test piece, is attached to this rotating shaft 12, so that the disk 13 is rotated in a predetermined position. It is designed so that it can be rotated at a rotation speed of . Reference numeral 14 denotes a disk pressing portion, and the tip of the support arm 15a, which is swingably attached to the support member 15, is provided with the disk 1.
A pin 16 for sliding on the sliding surface of 3 is attached, and a hanging rope 17 is connected to the rear end, this hanging rope 17 is wound around a guide pulley 18, and a load 19 is suspended at the lower end of As a result, the pin 16 is pressed against the sliding surface of the disk 13 even with a pressing load P. The base material of the disk 13 is made of alloyed cast iron, and a hard Cr plating layer (thickness 50μ, Vickers hardness 900 to 1000) is formed on the surface, and then #1000
It has been given a honing finish. In the test piece of this example, an oil holding recess was formed in the disk 13 by photoetching, and a molybdenum sprayed layer (approximately 20 μm in thickness) was formed in the recess. In Comparative Example 2, only the oil retaining recesses were formed on disk 13 by the photo-etching method.
is used as is. Also, the above pin 16
1 is a rectangular planar plate made by chilling alloyed cast iron having the chemical components shown in Table 1, and its sliding surface with the disk 13 has been processed as follows. A. Polishing finish Whetstone: GC#60 Sharpness: 1.6a Short blast finish Short: Carborundum #20 Sharpness: 10~40μ

【表】 まず、摺接面の損傷度試験について説明すれ
ば、この試験は潤滑油によるものではなく、オイ
ル保持凹部に形成された溶射層による耐摩耗性の
向上効果について試験するものである。 試験条件 押圧荷重:P=4.5Kg デイスク周速:5m/sec テスト時間:10分 潤滑条件:無潤滑 試験結果
[Table] First, to explain the degree of damage test on the sliding contact surface, this test is not based on lubricating oil, but on the effect of improving wear resistance due to the sprayed layer formed in the oil holding recess. Test conditions Pressure load: P = 4.5Kg Disk peripheral speed: 5m/sec Test time: 10 minutes Lubrication conditions: No lubrication Test results

【表】 この試験結果(上記第2表)から明らかなよう
に、基材上にクロムメツキ層を形成しただけの比
較例2では、デイスク13表面の損傷度が大き
く、ピン16の摩耗量が大きいが、クロムメツキ
層にフオトエツチング法にて凹部を形成した比較
例1ではデイスク13表面の損傷度、ピン16の
摩耗量ともに大幅に低減されており、上記凹部に
さらにモリブデン溶射層を形成した本実施例で
は、デイスク13表面の損傷度はさらに小さくな
つており、またピン16の摩耗量は上記比較例1
の1/2程度に低減されており、このようにモリブ
デン溶射層自体により耐摩耗性が大きく向上して
いることがわかる。 次に耐焼付性試験について説明すれば、この試
験は、オイル保持凹部に形成されたモリブデン溶
射層によるオイル保持機能の向上効果について試
験するものである。 試験条件 押圧荷重:P=4.5Kg デイスク周速:5m/sec 潤滑条件:オイル(10W40)と灯油と1:
9(Vol比)で混合した潤滑油を
1c.c.滴下する。 試験結果
[Table] As is clear from this test result (Table 2 above), in Comparative Example 2, in which only a chrome plating layer was formed on the base material, the degree of damage to the surface of the disk 13 was large, and the amount of wear on the pin 16 was large. However, in Comparative Example 1 in which recesses were formed in the chrome plating layer by photo-etching, both the degree of damage to the surface of the disk 13 and the amount of wear on the pin 16 were significantly reduced. In this example, the degree of damage on the surface of the disk 13 is even smaller, and the amount of wear on the pin 16 is lower than that in Comparative Example 1.
It can be seen that the wear resistance has been greatly improved by the molybdenum sprayed layer itself. Next, the seizure resistance test will be explained. This test tests the effect of improving the oil retention function by the molybdenum sprayed layer formed in the oil retention recess. Test conditions Pressure load: P = 4.5Kg Disk peripheral speed: 5m/sec Lubrication conditions: Oil (10W40) and kerosene
Drop 1 c.c. of lubricating oil mixed at 9 (Vol ratio). Test results

【表】 この試験結果(第3表)から明らかなように、
本実施例の試験片は比較例1よりも焼付までの時
間が長くなつており、このことからモリブデン溶
射層によりオイル保持機能が向上したことがわか
る。 第3図は本発明の一実施例による摺接部材の製
造方法の工程図を示し、本実施例方法は主として
フオトエツチングによるオイル保持凹部の形成
と、プラズマ溶射による溶射層の形成との2段階
からなる。 () まず、合金鋳鉄からなる基材1の表面に硬
質クロムメツキ層2を形成し、該メツキ層2の
表面を研摩加工又はホーニング加工により平滑
にして摺接面2aを形成する。 () 次に上記摺接面2aを脱脂した後、紫外線
感光型のフオトレジストにより上記摺接面2a
を被覆し、このフオトレジスト膜4上に予め作
成したフオトマスク(図示せず)を密着載置す
る。このフオトマスクはオイル保持凹部2bの
拡大原図を作成し、これを写真撮影により縮小
したフイルム状のものであり、上記オイル保持
凹部2bに相当する部分は非透光部となつてい
る。 () 上記フオトマスクを載置した状態で、これ
に高圧水銀炉(図示せず)により紫外線を照射
すると、上記レジスト膜4の紫外線が照射され
た部分は露光硬化し、上記フオトマスクの非透
光部にさえぎられて紫外線が照射されなかつた
部分、即ちオイル保持凹部2bに相当する部分
は硬化せず、この後フオトマスクを取り去つて
レジスト膜4をトリクロルエタンからなる非露
光部溶解液により現像すると、上記未硬化部分
が溶解剥離され、これにより上記レジスト膜4
のオイル保持凹部2bに相当する部分に開口4
aが形成され、クロムメツキ層2のこの開口4
a部分は外方に露出することとなる。 () そして上記レジスト膜4が形成されたクロ
ムメツキ層2をエツチング処理すると、上記露
出した部分が溶解されて、クロムメツキ層2に
多数のオイル保持凹部2bが形成される(第3
図a参照)。 () そして次に上記レジスト膜4を取り去るこ
となく、モリブデン溶射粒子をプラズマ溶射ノ
ズル5から上記レジスト膜4およびオイル保持
凹部2bに向けて投射する。すると、レジスト
膜4への溶射粒子は、このレジスト膜4がクロ
ムメツキ層と比べればはるかるに軟質であるこ
とから、周囲に飛散することなくこのレジスト
膜4に容易に付着し、またオイル保持凹部2b
への溶射粒子は上記のとおり飛散粒子がないこ
とから容易確実に該凹部2b内に積層される
(第3図b,c参照)。 () 最後に上記摺接部材を塩化メチレンからな
るレジスト膜溶解液に浸漬すると、上記レジス
ト膜4が除去され、これに伴つて該レジスト膜
4上の溶射層3aも除去され、これによりオイ
ル保持凹部2b内のみに潤滑油保持機能を有す
る多孔質のモリブデン溶射層3が形成された摺
接部材が得られる(第3図d参照)。 このように本実施例では、フオトエツチング
後、紫外線硬化したレジスト膜4を残した状態で
モリブデン溶射を行なつたので、このレジスト膜
4への溶射粒子は該膜に付着し、周囲に飛散する
ことははく、従つてオイル保持凹部2bへの溶射
が上記飛散粒子に阻害されることはなく、その結
果上記オイル保持凹部2b内に溶射層3を容易確
実に形成できる。 ここで、通常レジスト膜のような有機質の皮膜
に溶射粒子を衝突させると、その熱で皮膜は溶解
してしまうと考えられるが、紫外線により硬化さ
せたレジスト膜は耐熱性が高く、しかも軟質であ
るため、このレジスト膜が溶解してしまうことな
く該膜上に溶射粒子が容易に付着するものと考え
られる。 また、逆に言えば、クロムメツキ層2の表面は
レジスト膜4によつて保護されていることとな
り、そのためこのクロムメツキ層2の表面荒れが
生じることもなく、かつこのレジスト膜4上の溶
射層はレジスト膜4を従来と同じ膜剥離剤に浸漬
するだけで容易に除去することができる。 次に本実施例方法の効果を説明するための比較
試験について説明する。 この比較試験は、レジスト膜4によりオイル保
持凹部2b内への溶射効率が向上することを示す
ためのもので、比較例1はフオトエツチング後レ
ジスト膜4を除去して溶射作業を行なつたもので
あり、比較例2はフオトエツチング後レジスト膜
4を除去し、クロムメツキ層2の表面に溶射粒子
の飛散を防止するためのブラスト処理を施した後
溶射を行なつたものである。 試験条件 (1) フオトエツチング条件 フオトレジスト:フイルムタイプ(レジスト
層厚み15μ、分解能30μ) フオトマスク:網点タイプ(網点径100μ、
面積率10%) 現像液:111トリクロルエタン エツチング液:30℃のCrO3(250g/)と
H2SO4(2.5g/)との溶液 (2) 溶射条件 溶射材料:溶射用Mo(粒度10〜44μ) 溶射型式:プラズマ溶射 出力:35KW 距離:100m/m 溶射数:10パス (3) 溶射後のレジスト膜剥離液:塩化メチレン 試験結果
[Table] As is clear from the test results (Table 3),
The test piece of this example took longer to seize than Comparative Example 1, which indicates that the oil retention function was improved by the molybdenum sprayed layer. FIG. 3 shows a process diagram of a method for manufacturing a sliding contact member according to an embodiment of the present invention, and the method of this embodiment mainly consists of two steps: forming an oil retaining recess by photo etching, and forming a thermal spray layer by plasma spraying. Consisting of () First, a hard chrome plating layer 2 is formed on the surface of a base material 1 made of alloyed cast iron, and the surface of the plating layer 2 is smoothed by polishing or honing to form a sliding surface 2a. () Next, after degreasing the sliding contact surface 2a, a UV-sensitive photoresist is applied to the sliding contact surface 2a.
A previously prepared photomask (not shown) is placed on the photoresist film 4 in close contact with the photoresist film 4. This photomask is a film-like product obtained by creating an enlarged original drawing of the oil holding recess 2b and reducing it by photographing, and the portion corresponding to the oil holding recess 2b is a non-transparent portion. () When the above-mentioned photomask is mounted and irradiated with ultraviolet rays from a high-pressure mercury furnace (not shown), the portions of the above-mentioned resist film 4 that have been irradiated with ultraviolet rays are cured by exposure, and the non-transparent portions of the above-mentioned photomask are cured. The portions that were not irradiated with the ultraviolet rays due to obstruction, that is, the portions corresponding to the oil holding recesses 2b, were not cured, and the photomask was then removed and the resist film 4 was developed with a solution for unexposed areas made of trichloroethane. The uncured portion is dissolved and peeled off, and as a result, the resist film 4
An opening 4 is provided in a portion corresponding to the oil holding recess 2b.
a is formed and this opening 4 in the chrome plating layer 2
Part a will be exposed to the outside. () Then, when the chrome plating layer 2 on which the resist film 4 is formed is etched, the exposed portions are dissolved and a large number of oil holding recesses 2b are formed in the chrome plating layer 2 (the third
(see figure a). () Next, without removing the resist film 4, molybdenum spray particles are projected from the plasma spray nozzle 5 toward the resist film 4 and the oil holding recess 2b. Then, since the resist film 4 is much softer than the chrome plating layer, the sprayed particles on the resist film 4 easily adhere to the resist film 4 without scattering to the surroundings, and the oil retention recesses 2b
Since there are no scattered particles as described above, the sprayed particles are easily and reliably stacked in the recess 2b (see FIGS. 3b and 3c). () Finally, when the sliding contact member is immersed in a resist film solution made of methylene chloride, the resist film 4 is removed, and along with this, the sprayed layer 3a on the resist film 4 is also removed, thereby retaining the oil. A sliding contact member is obtained in which a porous molybdenum sprayed layer 3 having a lubricating oil retaining function is formed only in the recess 2b (see FIG. 3d). In this example, since molybdenum thermal spraying was carried out with the ultraviolet-cured resist film 4 remaining after photo-etching, the spray particles on this resist film 4 adhered to the film and were scattered around. However, the spraying into the oil retaining recess 2b is not hindered by the flying particles, and as a result, the sprayed layer 3 can be easily and reliably formed within the oil retaining recess 2b. Normally, when thermal spray particles collide with an organic film such as a resist film, the film is thought to melt due to the heat, but a resist film cured by ultraviolet rays has high heat resistance and is soft. Therefore, it is thought that the thermal spray particles easily adhere to the resist film without dissolving the resist film. Conversely, the surface of the chrome plating layer 2 is protected by the resist film 4, so the surface of the chrome plating layer 2 does not become rough, and the thermal sprayed layer on the resist film 4 The resist film 4 can be easily removed by simply immersing it in the same film stripping agent as in the past. Next, a comparative test for explaining the effects of the method of this example will be explained. This comparative test was conducted to demonstrate that the resist film 4 improves the efficiency of thermal spraying into the oil retaining recess 2b.In Comparative Example 1, the resist film 4 was removed after photo-etching and the thermal spraying work was carried out. In Comparative Example 2, the resist film 4 was removed after photo-etching, and the surface of the chromium plating layer 2 was subjected to blasting treatment to prevent the spray particles from scattering, and then thermal spraying was performed. Test conditions (1) Photo etching conditions Photoresist: Film type (resist layer thickness 15μ, resolution 30μ) Photomask: Halftone type (dot diameter 100μ,
(area ratio 10%) Developer: 111 trichloroethane Etching solution: CrO 3 (250g/) at 30℃
Solution with H 2 SO 4 (2.5g/) (2) Thermal spraying conditions Thermal spraying material: Mo for thermal spraying (particle size 10-44μ) Thermal spraying type: Plasma spraying Output: 35KW Distance: 100m/m Number of thermal sprays: 10 passes (3) Resist film stripper after thermal spraying: methylene chloride test results

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る摺接部材の製造方法
によれば、摺接面を有する金属部材にフオトエツ
チングにより凹部を形成した後、レジスト膜を残
した状態で溶射材料を溶射するようにしたので、
フオトエツチングに用いたレジスト膜をそのまま
使用するという簡単な構成により、このレジスト
膜が溶射粒子の飛散を防止するとともに、上記摺
接面を溶射粒子の衝突から保護し、そのため上記
凹部内に溶射層を効率よく形成でき、また摺接面
の表面荒れの発生を防止できる効果がある。
As described above, according to the method for manufacturing a sliding contact member according to the present invention, after forming a recessed portion by photoetching on a metal member having a sliding contact surface, a thermal spraying material is sprayed with a resist film remaining. So,
By using a simple structure in which the resist film used for photoetching is used as is, this resist film prevents the sprayed particles from scattering and protects the sliding surface from the collision of the sprayed particles. can be formed efficiently, and also has the effect of preventing the occurrence of surface roughness on the sliding surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による摺接部材を示
す断面図、第2図はその試験装置の概略構成図、
第3図a〜dは本発明の一実施例方法を説明する
ための工程図である。 1……金属基材、2……硬質メツキ層、2a…
…摺接面、2b……オイル保持凹部、3……溶射
層、3a……レジスト膜上の溶射層、4……レジ
スト膜。
FIG. 1 is a cross-sectional view showing a sliding contact member according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a test device thereof,
FIGS. 3a to 3d are process diagrams for explaining a method according to an embodiment of the present invention. 1...Metal base material, 2...Hard plating layer, 2a...
...Sliding surface, 2b...Oil holding recess, 3...Thermal spray layer, 3a...Thermal spray layer on the resist film, 4...Resist film.

Claims (1)

【特許請求の範囲】[Claims] 1 摺接面を有する金属部材にフオトエツチング
法で多数の凹部を形成した後、フオトエツチング
用のレジスト膜を金属部材上に残存させた状態で
溶射材料を溶射し、その後上記レジスト膜および
該レジスト膜上の溶射層を除去し、上記凹部内の
みに潤滑油保持機能を有する多孔質の溶射層を形
成した摺接部材を得ることを特徴とする耐摩耗性
に優れた摺接部材の製造方法。
1. After forming a large number of recesses by photoetching on a metal member having a sliding surface, a thermal spraying material is sprayed with a resist film for photoetching remaining on the metal member, and then the resist film and the resist are thermally sprayed. A method for manufacturing a sliding contact member with excellent wear resistance, characterized by removing the thermal sprayed layer on the film and obtaining a sliding contact member in which a porous sprayed layer having a lubricant retaining function is formed only in the recesses. .
JP821085A 1985-01-18 1985-01-18 Sliding contact member having excellent wear resistance and its production Granted JPS61166962A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP821085A JPS61166962A (en) 1985-01-18 1985-01-18 Sliding contact member having excellent wear resistance and its production
DE19863601319 DE3601319A1 (en) 1985-01-18 1986-01-17 METHOD FOR DESIGNING AN ABRASION-RESISTANT SLIDING SURFACE
US06/819,681 US4678738A (en) 1985-01-18 1986-01-17 Manufacture of a wear-resistant sliding surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP821085A JPS61166962A (en) 1985-01-18 1985-01-18 Sliding contact member having excellent wear resistance and its production

Publications (2)

Publication Number Publication Date
JPS61166962A JPS61166962A (en) 1986-07-28
JPH0124862B2 true JPH0124862B2 (en) 1989-05-15

Family

ID=11686875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP821085A Granted JPS61166962A (en) 1985-01-18 1985-01-18 Sliding contact member having excellent wear resistance and its production

Country Status (1)

Country Link
JP (1) JPS61166962A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726088B2 (en) * 1988-12-23 1995-03-22 三菱電機株式会社 High friction sliding material
JPH03249360A (en) * 1990-02-28 1991-11-07 Aisin Seiki Co Ltd Oil grooving method for piston
JP3547098B2 (en) 1994-06-06 2004-07-28 トヨタ自動車株式会社 Thermal spraying method, method for manufacturing sliding member having sprayed layer as sliding surface, piston, and method for manufacturing piston
GB0507681D0 (en) * 2005-04-15 2005-05-25 Westwind Air Bearings Ltd Gas bearing spindles
JP4754469B2 (en) * 2006-12-15 2011-08-24 東京エレクトロン株式会社 Manufacturing method of substrate mounting table
FR2934608B1 (en) * 2008-08-01 2010-09-17 Commissariat Energie Atomique SUPERFINISHING THIN FILM COATING, PROCESS FOR OBTAINING SAME, AND DEVICE COMPRISING SUCH A COATING.
DE102011106564A1 (en) * 2011-07-05 2013-01-10 Mahle International Gmbh Method for producing a cylinder surface and cylinder liner
JP6249557B2 (en) * 2012-12-19 2017-12-20 株式会社堀場エステック Seal member and method for manufacturing seal member
JP2017057825A (en) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 Surface processing method for cylinder bore surface
JP6614625B2 (en) * 2018-05-22 2019-12-04 帝国イオン株式会社 Abrasion-resistant film, wear-resistant member, method for producing abrasion-resistant film, and sliding mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596279A (en) * 1976-12-06 1981-08-26 Nat Res Dev Bearing materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596279A (en) * 1976-12-06 1981-08-26 Nat Res Dev Bearing materials

Also Published As

Publication number Publication date
JPS61166962A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
JPH0124862B2 (en)
US6059921A (en) Chemical mechanical polishing apparatus and a polishing cloth for a chemical mechanical polishing apparatus
DE4125732A1 (en) METHOD AND DEVICE FOR MECHANICAL PLANNING AND FINAL POINT DETERMINATION OF A SEMICONDUCTOR WAXER
JP2007537891A (en) Abrasive and manufacturing method
WO1995008722A1 (en) Engine bearing surface treatment
JP2010126419A (en) Dlc film, dlc coating member, and method for production thereof
US4678738A (en) Manufacture of a wear-resistant sliding surface
JP4154049B2 (en) Manufacturing method of oiled piston ring
US2647864A (en) Etching process
JP4710263B2 (en) Sliding device
JPH04189465A (en) High silicon aluminium cylinder block and manufacture thereof
JP2001082481A (en) Sliding bearing and its manufacture
US6361703B1 (en) Process for micro-texturing a mold
JP2003013256A (en) Method for improving seizure resistance of sliding surface
JP3830119B2 (en) Cut-wire iron shot for blasting
CA1214091A (en) Chemical deburring system with a soluble mask
JPS61124581A (en) Scuffing-resistant cam/rocker arm pair
JPH0276925A (en) Anti-wear sliding member
JPH05164158A (en) Brake pad for disc brake
JPH1147815A (en) Roll for transporting metallic strip and its surface working method
TW201636178A (en) Mold
JPS62239425A (en) Production of magnetic disk
JPS603463A (en) Cylinder for engine
KR960701726A (en) SLIDE MEMBER AND METHOD FOR FABRICATING THE SAME
JP2991861B2 (en) Cold strip rolling method for steel strip