JPH01247881A - Automatic valve for refrigerant - Google Patents

Automatic valve for refrigerant

Info

Publication number
JPH01247881A
JPH01247881A JP7184288A JP7184288A JPH01247881A JP H01247881 A JPH01247881 A JP H01247881A JP 7184288 A JP7184288 A JP 7184288A JP 7184288 A JP7184288 A JP 7184288A JP H01247881 A JPH01247881 A JP H01247881A
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
opening
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7184288A
Other languages
Japanese (ja)
Other versions
JP2728673B2 (en
Inventor
Shigeo Nakayama
茂雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63071842A priority Critical patent/JP2728673B2/en
Publication of JPH01247881A publication Critical patent/JPH01247881A/en
Application granted granted Critical
Publication of JP2728673B2 publication Critical patent/JP2728673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)

Abstract

PURPOSE:To design automation of a refrigerant charging work by constituting the subject automatic valve so that vertical or horizontal movement of a valve body associated with the opening and closing of the valve is absorbed by an extending and contracting bellows. CONSTITUTION:An output gear 20 attached to a valve body nut 11 is connected to a motor pinion gear 19. When opening the valve, the rotation of a motor 18 is transmitted to the output gear 20 by the rotation of the pinion gear 19. Simultaneously with the rotation of the output gear 20, the valve body nut 19 also rotates in the direction to open. The valve body 14, while depressing a bellows 21 by means of a coil spring 12, comes down to open the valve. Refrigerant flows out of a hole 22 to the side of a cryostat. When closing the valve, the motor 18 is rotated in the opposite direction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空断熱構造を有する冷媒移送管(トランス
ファチューブ)に設けて冷媒の流通口を自動的に開閉す
る冷媒用自動弁に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to a refrigerant transfer tube that is provided in a refrigerant transfer tube (transfer tube) having a vacuum insulation structure to automatically open and close a refrigerant flow port. Regarding automatic valves.

(従来の技術) 従来、冷媒用の弁は超電導装置に用いられ。(Conventional technology) Conventionally, refrigerant valves have been used in superconducting devices.

例えば、第2図に示すように、液体ヘリウムデーワー2
をヘリウムガスで加圧し、冷媒移送管4の弁(パルプ)
5を開けることKよシ、液体ヘリウム3はクライオスタ
ット7に注入される。第3図は真空断熱構造を有する冷
媒移送管の従来の弁構造を示す。弁座は固定されている
が、弁体はコイルバネ12と弁体ナラ) 11と液が流
出する穴22から構成されている。弁体は弁体シールナ
ツト13で締められ0リング17でシール(密閉)され
弁と大気は密閉されている。この弁を開けるときは、弁
体シールナラ) 13を反時計方向(C方向)へ回し弁
体のOリングのシールをゆるめ、弁体が上下動。
For example, as shown in Figure 2, liquid helium dewar 2
is pressurized with helium gas, and the valve of refrigerant transfer pipe 4 (pulp)
After opening 5, liquid helium 3 is injected into the cryostat 7. FIG. 3 shows a conventional valve structure for a refrigerant transfer pipe having a vacuum insulation structure. Although the valve seat is fixed, the valve body is composed of a coil spring 12, a valve body nut 11, and a hole 22 through which liquid flows out. The valve body is tightened with a valve body seal nut 13 and sealed (sealed) with an O-ring 17, so that the valve and the atmosphere are sealed. To open this valve, turn the valve body seal nut (13) counterclockwise (direction C) to loosen the O-ring seal on the valve body, and the valve body will move up and down.

または左右動しやすくなっている。次に、弁体ナラ) 
11を時計方向(B方向)へ回して行くとコイルバネ1
2は伸び弁体14も押されるので弁体14は弁座15か
ら離れるので、弁が開くことIc、l、液体ヘリウムは
クライオスタット側へ流れる。弁が開いたならゆるめて
いた弁体シールナツト13を締め密閉、してヘリウムの
漏れを防ぐ。弁を閉めるときは弁体シールナツト13を
ゆるめ弁体ナツト11を締めることによシ、弁体は弁座
に接触していくので液体ヘリウムの流れは止めることが
できる。液体ヘリウムが超電導マグネット8を浸漬し、
適当な位置Aiでたまると、パルプ(弁)5を閉め液体
ヘリウムの注入を停止する。
Or it becomes easier to move from side to side. Next, the valve body nara)
When turning 11 clockwise (direction B), coil spring 1
2 expands and the valve body 14 is also pushed, so the valve body 14 separates from the valve seat 15, so that the valve opens and liquid helium flows to the cryostat side. Once the valve is open, tighten the loosened valve body seal nut 13 to seal it and prevent helium from leaking. When closing the valve, by loosening the valve element seal nut 13 and tightening the valve element nut 11, the valve element comes into contact with the valve seat, so that the flow of liquid helium can be stopped. Liquid helium immerses the superconducting magnet 8,
When the liquid helium is collected at a suitable position Ai, the pulp (valve) 5 is closed to stop the injection of liquid helium.

必要に応じて加圧用パルプ(弁)9の開閉、冷媒移送管
のパルプ5の開閉を行ない、超電導マグネットへ液体ヘ
リウムを注入する。ここで、加圧用パルプ9の開閉は電
磁弁、電動弁等で自動コントロールできるが、パルプ5
が自動化されていないためパルプ5の開閉は作業者が常
に行なわなければならず、注入作業に拘束されやすい。
Liquid helium is injected into the superconducting magnet by opening and closing the pressurizing pulp (valve) 9 and the pulp 5 of the refrigerant transfer pipe as necessary. Here, the opening and closing of the pressurizing pulp 9 can be automatically controlled using a solenoid valve, an electric valve, etc., but the pulp 5
Since this is not automated, the operator must always open and close the pulp 5, and is likely to be tied up in the pouring work.

(発明が解決しようとする課題) 本発明は、弁を開けるときや閉めるときに。(Problem to be solved by the invention) The present invention is useful when opening or closing a valve.

弁体シールナツトをゆるめ九り締めたりすることを自動
的に行なえれば、自動コントロール弁が可能となり、注
入作業の自動化が計れるので、上述し九従来の欠点を改
良することを目的とする。
If the valve body seal nut can be automatically loosened and tightened, an automatic control valve will be possible and injection work can be automated, so the present invention aims to improve the above-mentioned nine conventional drawbacks.

〔発明の構成〕 (If!1題を解決するための手段) 従来、冷媒移送管に設けた弁は弁体を弁座から離したシ
(弁開)、接触したシ(弁閉)する必要から弁体をシー
ルし、ガスもれをなくす役目をしている弁体シール1ツ
トをゆるめた夛締めたシしてからパルプの開閉を行なう
。マニュアル操作で行なっていたパルプの開閉を伝達ギ
アを使った電動モータや圧縮空気等の駆動源で行なうと
しても弁の開閉に伴う弁体シールナツトのマニアル操作
を自動的に行なうようにしなければ自動コントロール弁
とはならない。そこで、弁体シールナツトのかわシにベ
ローズの伸縮を利用すれば、弁体のシール性や弁開閉に
伴う弁体の移動を自動的に行なえる。
[Structure of the Invention] (Means for Solving If!1 Problem) Conventionally, a valve installed in a refrigerant transfer pipe needs to be moved when the valve body is separated from the valve seat (valve open) and when it comes in contact with the valve seat (valve closed). After loosening and tightening one valve body seal, which serves to prevent gas leaks, the pulp is opened and closed. Even if the opening and closing of the pulp, which was previously done manually, is performed by an electric motor using a transmission gear or a drive source such as compressed air, automatic control is required unless the manual operation of the valve seal nut that accompanies the opening and closing of the valve is performed automatically. It is not a valve. Therefore, if the expansion and contraction of the bellows is used to secure the valve body seal nut, the sealing performance of the valve body and the movement of the valve body as the valve opens and closes can be automatically achieved.

(作用) 伸縮するベローズの採用によシ弁を開閉するたびにマニ
ュアル操作で弁体シールナツトをゆるめたり締めたりす
る必要がなくなった。これで弁開閉の駆動源としてモー
ターや高圧空気等を用い九自動コントロール弁の機能が
発揮される。
(Function) By adopting an expandable bellows, there is no need to manually loosen or tighten the valve body seal nut each time the valve is opened or closed. This allows the nine automatic control valves to function using motors, high-pressure air, etc. as the driving source for opening and closing the valves.

(実施例) 以下1本発明の実施例について詳細に説明する。(Example) Hereinafter, one embodiment of the present invention will be described in detail.

第1図は真空断熱構造を有する冷媒用電動パルプ(弁)
を示す。第1図(a)は弁が閉じた状態を示し、第1図
(b)は弁が開いた状態を示す。
Figure 1 shows a refrigerant electric pulp (valve) with a vacuum insulation structure.
shows. FIG. 1(a) shows the valve in a closed state, and FIG. 1(b) shows the valve in an open state.

コ17)パルプは、弁体ナラ)IIK出力ギヤ−20を
取付けたものであふ。出力ギア−20はモーターピニオ
ンギア19と連接されている。パルプを開けるトキハ、
パルプコントロールモータ18が回転することにより、
モーターピニオンギア19も回転し出力ギア20に伝達
される。出力ギア加の回転と同時に弁体ナツト11も開
く方向(弁体と弁座が離れる方向)に回転する。弁体は
コイルバネ12によってベローズ21を押し下げながら
(縮みながら)D下へ下がり、弁は開く。冷媒(たとえ
ば液体ヘリウム)は穴22を通りクライオスタット側へ
流れ出る。
17) The pulp is overflowing with the valve body Nara) IIK output gear 20 installed. The output gear 20 is connected to the motor pinion gear 19. Tokiha opens the pulp,
By rotating the pulp control motor 18,
Motor pinion gear 19 also rotates and is transmitted to output gear 20. Simultaneously with the rotation of the output gear, the valve element nut 11 also rotates in the opening direction (the direction in which the valve element and the valve seat are separated). The valve body moves down to D while pushing down the bellows 21 (shrinking) by the coil spring 12, and the valve opens. The coolant (for example, liquid helium) flows out through the holes 22 to the cryostat side.

弁を閉じるときは、開けるときと逆の回転をモータ18
に指令すれば、出力ギアの回転によシ弁体ナツトの上昇
で弁体を押し下げていたスプリングコイルは縮んでいく
ので弁体は弁座と接触し弁は閉じることになり液体ヘリ
ウム(冷媒)の流れは閉まる。
When closing the valve, rotate the motor 18 in the opposite direction to when opening the valve.
When the output gear rotates, the valve element nut rises, and the spring coil that was pushing down the valve element contracts, causing the valve element to come into contact with the valve seat, closing the valve, and liquid helium (refrigerant) is released. The flow is closed.

〔発明の効果〕〔Effect of the invention〕

以上のように1本発明によれば、弁の開閉に伴う弁体の
上下の移動または左右の移動を伸縮ベローズで吸収する
ことによシ真空断熱構造をもった冷媒用自動コントロー
ル弁を構成する。これにより、冷媒の(液体ヘリウム)
注入作業の自動化が可能となり、拘束されやすい注入作
業から開放された。
As described above, according to the present invention, an automatic control valve for refrigerant having a vacuum insulation structure is constructed by absorbing the vertical movement or horizontal movement of the valve body due to opening and closing of the valve with the telescopic bellows. . This allows the refrigerant (liquid helium) to
It has become possible to automate the injection work, freeing people from injection work that can easily be tied up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は超電導
マグネットへ冷媒(液体ヘリウム)を注入する方法を説
明するためのシステム構成図、第3図は従来の真空断熱
構造をもつ冷媒用パルプを示す断面図である。 1・・・ヘリウムガスボンベ 2・・・冷媒用デユワ−(液体ヘリウムデユワ−)3・
・・液体ヘリウム(冷媒) 4・・・ト2ンス7アチュープ(液体ヘリウム移送管)
5・・・冷媒用パルプ(弁) 6・・・ヘリウムガス回収口 7・・・クライオスタット(低温容器)8・・・超電導
マグネット 9・・・ヘリウムガス加圧用パルプ(弁)10・・・真
空断熱槽 11・・・弁体ナツト 12・・・コイルバネ 13・・・弁体シールナツト 14・・・弁 体 15・・・弁 座 16・・・液体ヘリウムの流れ方向 17・・・シール用0リング 1B・・・パルプコントロールモータ 19・・・モータピニオンギア 20・・・出°カギア 21・・・ベローズ A・・・液体ヘリウム液面(超電導マグネットを浸漬し
た状態) B・・・弁体ナツト回転方向(弁を開ける方向)C・・
・弁体シールをゆるめるための弁体シールナツト回転方
向 D・・・弁が開いてベローズが縮む方向代理人 弁理士
  則 近 惠 佑 同   松山光速 8′ 第 22 ta す 第3
Figure 1 is a cross-sectional view showing an embodiment of the present invention, Figure 2 is a system configuration diagram for explaining the method of injecting coolant (liquid helium) into a superconducting magnet, and Figure 3 is a conventional vacuum insulation structure. It is a sectional view showing pulp for refrigerant. 1... Helium gas cylinder 2... Refrigerant dewar (liquid helium dewar) 3.
・・Liquid helium (refrigerant) 4・2 ounces 7 atupe (liquid helium transfer pipe)
5... Pulp for refrigerant (valve) 6... Helium gas recovery port 7... Cryostat (low temperature container) 8... Superconducting magnet 9... Pulp for pressurizing helium gas (valve) 10... Vacuum Insulation tank 11...Valve nut 12...Coil spring 13...Valve seal nut 14...Valve body 15...Valve seat 16...Liquid helium flow direction 17...O-ring for sealing 1B...Pulp control motor 19...Motor pinion gear 20...Output gear 21...Bellows A...Liquid helium level (with superconducting magnet immersed) B...Valve nut rotation Direction (direction to open the valve) C...
・Rotation direction D of the valve body seal nut to loosen the valve body seal...direction in which the valve opens and the bellows contracts Agent Patent attorney Yudo Chika Kei Matsuyama Kosoku 8' 22nd ta Su No. 3

Claims (1)

【特許請求の範囲】[Claims] 冷媒が流通する管体の伸縮によって冷媒流通口を開閉し
て冷媒の流出入を制御する弁体と、この弁体の開閉動作
をおこなう開閉駆動機構と、前記弁体の冷媒の流出口側
に設け前記管体の伸縮動作に伴って伸縮する伸縮ベロー
ズとを具備してなることを特徴とする冷媒用自動弁。
A valve body that controls the inflow and outflow of the refrigerant by opening and closing the refrigerant flow port by expanding and contracting the pipe body through which the refrigerant flows; an opening/closing drive mechanism that performs the opening and closing operation of the valve body; An automatic refrigerant valve characterized in that it is provided with an extensible bellows that expands and contracts as the pipe body expands and contracts.
JP63071842A 1988-03-28 1988-03-28 Refrigerant valve device Expired - Lifetime JP2728673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071842A JP2728673B2 (en) 1988-03-28 1988-03-28 Refrigerant valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071842A JP2728673B2 (en) 1988-03-28 1988-03-28 Refrigerant valve device

Publications (2)

Publication Number Publication Date
JPH01247881A true JPH01247881A (en) 1989-10-03
JP2728673B2 JP2728673B2 (en) 1998-03-18

Family

ID=13472196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071842A Expired - Lifetime JP2728673B2 (en) 1988-03-28 1988-03-28 Refrigerant valve device

Country Status (1)

Country Link
JP (1) JP2728673B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101278U (en) * 1980-02-29 1981-08-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101278U (en) * 1980-02-29 1981-08-08

Also Published As

Publication number Publication date
JP2728673B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US3496963A (en) Pressurized repair clamp for pipeline
US3884259A (en) Three-way valve for controlling the flow of fluids at cryogenic temperature and at widely different pressures
US4852612A (en) Fluid flow control device
JPH01247881A (en) Automatic valve for refrigerant
US5484133A (en) Manual override system for linear magnetically operated valve
JPH0132386B2 (en)
US3702744A (en) Oil transportation system
JPH11108285A (en) Method and device for flange surface sealing in flange joint part of pipe
JPH10252943A (en) Vacuum valve
US3208469A (en) Marine tanker fluid cargo control
JP3099909B2 (en) Valve device
US2959024A (en) Remotely operable fluid nozzle
JP3565598B2 (en) Automatic water supply
JPS61266892A (en) Thermosensing type automatic shut-off valve
US2922615A (en) Valve locking means
Weilert et al. Progress on a small multi-cycling cryogenic fluid flow valve
JPS6126425Y2 (en)
JPH0646880Y2 (en) Emergency release device for fluid handling equipment
JPH07167341A (en) Anti-icing device for valve
JPH03105190A (en) Leak device in vacuum drying device
SU1550489A1 (en) Regulator of liquefied gas level
JP3565599B2 (en) Automatic water supply
SU1666787A1 (en) Internal combustion engine protection device
JPS5984481A (en) Device for preventing reverse pressure of low temperature container
JPH1073104A (en) Cylinder controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11