JPH01247660A - Rebuilding method for steel frame pillar - Google Patents

Rebuilding method for steel frame pillar

Info

Publication number
JPH01247660A
JPH01247660A JP7256788A JP7256788A JPH01247660A JP H01247660 A JPH01247660 A JP H01247660A JP 7256788 A JP7256788 A JP 7256788A JP 7256788 A JP7256788 A JP 7256788A JP H01247660 A JPH01247660 A JP H01247660A
Authority
JP
Japan
Prior art keywords
steel frame
steel
posture
columns
steel column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7256788A
Other languages
Japanese (ja)
Other versions
JP2675570B2 (en
Inventor
Kenichi Kobayashi
謙一 小林
Kenichi Soeno
添野 健一
Shuzo Furuta
古田 周三
Shinichi Asada
伸一 朝田
Satoru Kusaka
哲 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP63072567A priority Critical patent/JP2675570B2/en
Publication of JPH01247660A publication Critical patent/JPH01247660A/en
Application granted granted Critical
Publication of JP2675570B2 publication Critical patent/JP2675570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PURPOSE:To make a correction favorably performable in terms of working property by predicting any change in a building position quantitatively on the basis of experimental data, compensating it in direction and quantity to be changed to a scheduled building position of other steel frame pillars on the basis of the value, and performing each position change. CONSTITUTION:A displacement direction D0 and a displacement value A0 to an upper end position P'0 and a scheduled building position of a central steel frame pillar C0 among nine steel frame pillars C0-C8 being set up in grille form are detected with a three-dimensional surveying system 1. Next, plural pieces of wires 2 is stretched in the circumferential direction and this tensile condition is adjusted into correction to the scheduled building position and temporarily locked. Then, displacement directions D1-D8 and displacement values A1-A8 to each building position of the remaining eight steel frame pillars C1-C8 are detected as well, and these steel frame pillars C1-C8 are corrected to the scheduled building position on the basis of the value and experimental data. Rebuilding takes place at each block B, and the steel frame pillars C and steel frame girders G are connected together in an assembling state, while the steel frame pillars C and the steel frame girders G extending over in an interval between adjacent blocks B and B are also connected together in this assembling state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、梁で相互に連結されて仮組状態に建込まれた
複数の鉄骨柱のそれぞれを予定の建込み姿勢に建直す方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for rebuilding each of a plurality of steel columns, which are interconnected by beams and erected in a temporarily assembled state, into a planned erecting posture. .

〔従来の技術〕[Conventional technology]

鉄骨柱の建直しにあっては、複数の鉄骨柱が梁によって
仮止めといえども連結されている関係上、鉄骨柱の建込
み姿勢を変更すれば、それに梁を介して連結する他の鉄
骨柱の建込み姿勢も追従して変化する。そのため、建直
しの際、例えば、下げ振りや三次元測量システムを用い
て鉄骨柱それぞれの建込み姿勢の予定建込み姿勢に対す
る変位方向および変位量を検出し、その検出変位方向と
は逆方向を修正方向とし、検出変位量を修正量として鉄
骨柱を姿勢変更させる場合には、鉄骨柱を一旦は予定建
込み姿勢にできるものの、他の鉄骨柱の建直しのための
姿勢変更によって予定建直し姿勢とは異なるものになる
When rebuilding a steel column, multiple steel columns are connected by beams, even if temporarily, so if you change the erection posture of the steel column, other steel columns connected to it via the beams will be damaged. The posture of the pillars also changes accordingly. Therefore, when rebuilding, for example, the direction and amount of displacement of each steel column's erection position relative to the planned erection attitude is detected using a plumb bob or three-dimensional surveying system, and the direction opposite to the detected displacement direction is detected. When changing the posture of a steel column using the detected displacement amount as the correction direction, the steel column can be placed in the planned erection posture once, but the planned erection will be changed due to the posture change for rebuilding other steel columns. The posture will be different.

そこで、従来では、前記の検出変位方向や検出変位量、
つまり、建込み状態を作業者が見て、その建込み状態で
はどの鉄骨柱をどう姿勢変更すればどの鉄骨柱がどのよ
うに姿勢変化するといった鉄骨柱相互間での姿勢変更に
伴う姿勢変化の具合を判断し、その判断に基づいて、前
記検出変位方向および検出変位量に基づく修正方向およ
び修正量を補正し、その補正された修正方向および修正
量をもって鉄骨柱を姿勢変更する手段が採用されていた
(文献を挙げることができない)。
Therefore, in the past, the direction of detected displacement, the amount of detected displacement,
In other words, when a worker looks at the construction state, he or she can determine the posture changes associated with the posture changes between the steel columns, such as how to change the posture of which steel columns and how to change the posture of the steel columns. means for determining the condition, correcting the correction direction and correction amount based on the detected displacement direction and detected displacement amount based on the judgment, and changing the posture of the steel column using the corrected correction direction and correction amount. (I can't cite any references).

〔発明が解決しようとする課題] ところが、前記従来手段によるときは、補正した修正方
向および修正■をもって建直すものの、その補正が作業
者の判断に委ねられていたため、どうしてもその補正に
正確性を欠き易くなったり、バラツキが生じ易い。その
ため、−度の姿勢修正だけでは鉄骨柱が予定建込み姿勢
に修正されないことが多々存り、結果として、試行錯誤
しての建直し作業となって作業性が悪かった。
[Problem to be Solved by the Invention] However, when using the above-mentioned conventional means, although the building is rebuilt with the corrected correction direction and correction (2), the correction is left to the operator's judgment, so it is inevitable to ensure accuracy in the correction. It is easy to chip or become uneven. Therefore, it is often the case that the steel column is not corrected to the planned erection posture only by correcting the posture by - degrees, and as a result, the rebuilding work is performed through trial and error, resulting in poor workability.

本発明の目的は、作業性良く鉄骨柱の建直しを実施でき
る方法を提供する点にある。
An object of the present invention is to provide a method that can rebuild steel columns with good workability.

〔課題を解決するための手段] 本発明による鉄骨柱の建直し方法の特徴は、[11複故
の所定鉄骨柱のそれぞれについて、それら建込み姿勢に
対する変位方向および変位量を検出し、 [21実験データに基づいて、その建込み状態における
所定鉄骨柱それぞれの他の所定鉄骨柱の建込み姿勢変更
に佳う建込み姿勢の変化を定量的に予測し、 [3]その予測値に基づいて、前記検出変位方向および
検出変位量から算定される所定鉄骨柱それぞれの予定建
込み姿勢への基本修正方向および恭本修正里を、他の所
定鉄骨柱の建込み姿勢修正に伴う建込み姿勢変化を吸収
して所定鉄骨柱を予定建込み姿勢又はそれに近い姿勢に
変更させる方向および量に補正し、 [4]その補正した修正方向および修正量をもって所定
鉄骨柱のそれぞれを姿勢変更し、その後、所定鉄骨柱と
それら所定鉄骨柱間にわたる梁とを木組状態に連結する
点にある。その作用・効果は次の通りである。
[Means for Solving the Problems] The feature of the steel column reconstruction method according to the present invention is as follows: [11] For each of the predetermined steel columns with multiple failures, the displacement direction and displacement amount with respect to the erection posture are detected, and [21 Based on the experimental data, quantitatively predict the change in the erection posture of each prescribed steel column in its erection state when changing the erection posture of other prescribed steel columns, [3] Based on the predicted values. , the basic correction direction and Kyomoto correction direction to the planned erection posture of each predetermined steel column calculated from the detected displacement direction and detected displacement amount, and the erection posture change due to the correction of the erection posture of other predetermined steel columns. [4] Change the posture of each of the prescribed steel columns using the corrected direction and amount of correction, and then: The purpose is to connect predetermined steel columns and beams spanning between the predetermined steel columns in a wooden frame. Its actions and effects are as follows.

〔作 用〕[For production]

実験データに基づいて、鉄骨柱それぞれの他の鉄骨柱の
姿勢変更に伴う姿勢変化を定量的に予測し、その予測値
に基づいて、修正方向および修正量を補正するため、そ
の補正を一律的に行えるとともに、用意する実験データ
の数を多くすることにより、より一層、修正方向および
修正量の補正の精度を向上できる。そして、その補正さ
れた修正方向および修正量、つまり、鉄骨柱それぞれの
他の鉄骨柱の姿勢変更に伴う姿勢変化を見込んだ修正方
向および修正量をもって鉄骨柱の姿勢を修正するため、
鉄骨柱のそれぞれを予定建込み姿勢またはそれに近い姿
勢に修正する際、鉄骨柱のそれぞれについてその鉄骨柱
を姿勢修正する作業が1回で済む。
Based on experimental data, the posture change of each steel column due to the posture change of other steel columns is quantitatively predicted, and based on the predicted value, the correction direction and amount are corrected, so the correction is made uniformly. By increasing the number of experimental data to be prepared, it is possible to further improve the accuracy of correction of the direction and amount of correction. Then, in order to correct the posture of the steel column with the corrected correction direction and correction amount, that is, the correction direction and correction amount that take into account the change in posture of each steel column due to the change in the posture of other steel columns,
When correcting each of the steel columns to the planned erection posture or a posture close to it, the work of correcting the posture of each steel column only needs to be done once.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、鉄骨柱のそれぞれを予定建込
み姿勢またはそれに近い姿勢に作業性良(修正できるよ
うになった。
Therefore, according to the present invention, each of the steel columns can be corrected to the planned erection posture or a posture close to it with good workability.

〔実施例] 次に本発明の実施例を示す。〔Example] Next, examples of the present invention will be shown.

第4図に示すように、鉄骨梁(G)で隣接するもの同士
が相互に連結されて仮組状態に建込まれた複数の鉄骨柱
(C)のそれぞれを所定建込み姿勢(一般には鉛直姿勢
)に建直す方法であって、第4図に示すように、鉄骨柱
群を、田の字状に配置する9本の鉄骨柱群を1単位とす
る複数のブロック(B)に区分し、各ブロック(B)ご
とにそれぞれ建直して鉄骨柱(C)と鉄骨梁(G)とを
木組状態に連結するとともに、隣接ブロック(B)間に
わたる鉄骨梁(G)と鉄骨柱(C)とを木組状態に連結
する。なお、鉄骨柱(C)と鉄骨梁(G)との連結用の
ボルトは、仮組状態において一定トルクで仮締めされて
おり、木組状態において本締めされるものである。
As shown in Figure 4, a plurality of steel columns (C), which are erected in a temporary manner with adjacent steel beams (G) connected to each other, are each placed in a predetermined erection posture (generally vertical As shown in Figure 4, this is a rebuilding method in which the steel column group is divided into multiple blocks (B) each consisting of nine steel column groups arranged in a square shape. , each block (B) is rebuilt and the steel columns (C) and steel beams (G) are connected in a wooden structure, and the steel beams (G) and steel columns (C) that span between adjacent blocks (B) are rebuilt. ) and connect them in a wooden structure. Note that the bolts for connecting the steel frame column (C) and the steel frame beam (G) are temporarily tightened with a constant torque in the temporarily assembled state, and are fully tightened in the wooden frame state.

ブロック(B)の建直しは、第1図、第2図に示すよう
に、9本の鉄骨柱(C)のうち中央の鉄骨柱(C0)を
予定建込み姿勢に修正して仮固定する第1工程と、周囲
8木の鉄骨柱(C,〜CS)を予定建込み姿勢に修正し
て固定する第2工程とからなる。
To rebuild the block (B), as shown in Figures 1 and 2, the central steel column (C0) of the nine steel columns (C) is corrected to the planned erection position and temporarily fixed. It consists of a first step and a second step in which the surrounding eight steel columns (C, to CS) are corrected to the planned erection posture and fixed.

前記第1工程は、 第2図に示すように、三次元測量システム(1)を用い
て中央鉄骨柱(C0)の上端位置(po’)を測定し、
その測定結果と中央鉄骨柱(CO)が予定建て込み姿勢
にあるときの正規上端位置(po)とに基づいて、中央
鉄骨柱(C0)の建込み姿勢の予定建込み姿勢に対する
変位方向(Do)および変位量(八。)、つまり、上端
位置(Po“)の正規上端位置(po)に対する変位方
向および変位量を検出する検出工程と、 上端近くと固定部との間に周方向複数本のワイヤ(2)
を張るとともに、その張り具合を調節することにより、
中央鉄骨柱(Co)を、検出変位方向(Do)とは反対
の方向に検出変位量(八〇)と等しい量をもって姿勢変
更させて、予定建込み姿勢に修正し、かつ、仮止めする
修正工程と からなる。
As shown in FIG. 2, the first step is to measure the upper end position (po') of the central steel column (C0) using a three-dimensional surveying system (1),
Based on the measurement results and the normal upper end position (po) when the central steel column (CO) is in the planned erection posture, the displacement direction (Do) of the erection posture of the central steel column (C0) with respect to the planned erection posture ) and the amount of displacement (8.), that is, the detection step of detecting the direction and amount of displacement of the upper end position (Po") with respect to the normal upper end position (po), and the detection step of detecting the direction and amount of displacement of the upper end position (Po") with respect to the regular upper end position (po), wire (2)
By tensioning and adjusting the tension,
Correction to change the posture of the central steel column (Co) by an amount equal to the detected displacement amount (80) in the direction opposite to the detected displacement direction (Do), correct it to the planned erection posture, and temporarily fix it. It consists of a process.

前記第2工程は、 前記第1工程後における8本の鉄骨柱(C。The second step is Eight steel columns after the first step (C.

〜C,)の建込み姿勢の予定建込み姿勢に対する変位方
向(Dt−08)および変位量(Al−A11)を、前
記第1工程の検出工程と同様な手段をもって検出する検
出工程と、 その検出変位方向(at〜D8)および検出変位u(八
、〜A8)と、実験データとに基づいて鉄骨柱(C,〜
C8)を予定建込み姿勢に修正して固定する修正固定工
程と からなる。
A detection step of detecting the displacement direction (Dt-08) and displacement amount (Al-A11) of the built-in posture of ~C,) with respect to the planned built-in posture using the same means as the detection step of the first step; Based on the detected displacement direction (at~D8) and detected displacement u (8, ~A8), and the experimental data, the steel column (C, ~
C8) is corrected to the planned erection posture and fixed.

前記第2工程の修正固定工程は、第1図に示すように、
仮に、8本の鉄骨柱(C+〜Ca+)のうち、中央鉄骨
柱(C0)に鉄骨梁(G)を介して連結する鉄骨柱の1
つを第1鉄骨柱(C3)とし、その第1鉄骨柱(C2)
を基準に反時計回りに順に位置する鉄骨柱を第2、第3
、第4、第5、第6、第7、第8の鉄骨柱(C2〜CO
)として、第1図に示すように、第1鉄骨柱(C1)を
2本のワイヤ(3)で固定するとともに、第1鉄骨柱(
COと第3鉄骨柱(C1)との間、第3鉄骨柱(C3)
と第5鉄骨柱(C3)との間、第5鉄骨柱(C2)と第
7鉄骨柱(C1)との間のそれぞれに第1、第2、第3
の引寄せ用のプレース(bl)、 (bz) 、 (b
3)を張設し、かつ、第2鉄骨柱(C2)、第4鉄骨柱
(C4)、第6鉄骨柱(C8)それぞれと中央鉄骨柱(
C0)との間に第1、第2、第3の引離し用のプレース
(b、“)、 (b2’)、 (b3’)を張設し、そ
の状態で各プレース(b、〜b:+)、(b、’〜b3
゛)のそれぞれを電動式ターンバックル(4)を介して
伸縮することにより行われる。なお、第1鉄骨柱(C+
)と第7鉄骨柱(C7)との間および、中央鉄骨柱(C
0)と第8鉄骨柱(C8)との間には、中央および第1
から第7までの鉄骨柱(C,〜C,)の姿勢が決まれば
第8鉄骨柱(C8)の建込み姿勢が自然と決定される関
係上、プレースを介装する必要はない。
As shown in FIG. 1, the second correction fixing step is as follows:
Suppose that one of the eight steel columns (C+ to Ca+) is connected to the central steel column (C0) via a steel beam (G).
One is the first steel column (C3), and the first steel column (C2)
2nd and 3rd steel columns located in order counterclockwise based on
, 4th, 5th, 6th, 7th, 8th steel columns (C2 to CO
), as shown in Fig. 1, the first steel column (C1) is fixed with two wires (3), and the first steel column (C1) is fixed with two wires (3).
Between CO and the third steel column (C1), the third steel column (C3)
and the fifth steel column (C3), and between the fifth steel column (C2) and the seventh steel column (C1), respectively.
Places for attracting (bl), (bz), (b
3), and each of the second steel column (C2), fourth steel column (C4), and sixth steel column (C8) and the central steel column (
The first, second, and third separating places (b, "), (b2'), (b3') are stretched between C0), and in that state, each place (b, ~b :+), (b,'~b3
This is done by expanding and contracting each of the parts (2) and (4) via electric turnbuckles (4). In addition, the first steel column (C+
) and the seventh steel column (C7), and between the central steel column (C
0) and the eighth steel column (C8).
Once the postures of the seventh steel column (C, to C,) are determined, the erection posture of the eighth steel column (C8) is automatically determined, so there is no need to provide a place.

前記引寄せ用プレース(bl−b3)および引^1[シ
用プレース(b、”〜b3“)の伸縮量は次のようにし
て決定する。
The amount of expansion and contraction of the pulling place (bl-b3) and the pulling place (b, "~b3") is determined as follows.

今、鉄骨柱(C)の姿勢変更に伴う鉄骨梁(G)の間軸
方向のたわみ量は鉄骨柱(C)の変位■に比べて十分に
小さく、実用上、無視しても支障がないという前提にた
って、中央鉄骨柱(C0)を原点(0,0)をし、中央
鉄骨柱(CO)と第1鉄骨柱(C1)とを結ぶ方向をX
軸方向とし、中央鉄骨柱(C0)と第3鉄骨柱(C3)
とを結ぶ方向をX軸方向とする座標系を想定し、前記引
寄せ用プレース(b + ) 。
Now, the amount of axial deflection between the steel beams (G) due to the change in the posture of the steel column (C) is sufficiently small compared to the displacement of the steel column (C), and can be ignored in practice. Based on the premise, the central steel column (C0) is the origin (0,0), and the direction connecting the central steel column (CO) and the first steel column (C1) is X.
In the axial direction, the central steel column (C0) and the third steel column (C3)
Assuming a coordinate system in which the direction connecting the above is the X-axis direction, the drawing place (b + ).

(β2)、(β3)を縮めることによる第1、第3、第
5、第7の鉄骨柱(CI)、 (C3) 、 (cs)
 、 (ct)の原点周りの回転角をそれぞれβ1.β
2.β3.β4とすると、 [+]第1の引寄せ用プレース(b、)を伸縮した場合
、 ([’l]第2の引寄せ用プレース(β2)を伸♀宿し
た場合、 [[11]第3の引寄せ用プレース(β3)を伸縮した
場合 それぞれに幾何学的に以下の関係式が成立する。
1st, 3rd, 5th, 7th steel columns (CI), (C3), (cs) by shrinking (β2), (β3)
, (ct) around the origin are β1. β
2. β3. Assuming β4, [+] If the first attracting place (b,) is expanded or contracted, (['l] If the second attracting place (β2) is expanded or compressed, [[11] When the drawing place (β3) of No. 3 is expanded or contracted, the following relational expressions are established geometrically.

なお、第1の引寄せ用プレース(bl)を伸ばすことは
第1の引離し用プレース(b + ’ )を縮めること
であり、第2、第3の引寄せ用プレース(bz)。
Note that extending the first pulling place (bl) means shortening the first pulling place (b + '), and the second and third pulling places (bz).

(β3)についても第2、第3の引離し用プレース(b
2’)、 (b3’)と同様な関係にある。
Regarding (β3), the second and third separating places (b
2') and (b3').

とし、第1から第8までの鉄骨柱(C+〜cn)それぞ
れの予定建込み姿勢での正規の上端位置(p。
and the regular upper end position (p) of each of the first to eighth steel columns (C+ to cn) in the planned erection posture.

〜PIl)の座標値をそれぞれ、酷、β2.西IP41
P51p6.p7.r+、とし、建込み姿勢での上端位
置(P1゛〜P6゛)の座標値をそれぞれ、P 1’+
P2’+P3ZP4ZP S’1P6Z117ZP[l
゛とすると、[+]  [ul]EIII’1の場合の
それぞれについて P+’−K(θ、)・酷 β2°= K(θ、)・L(θの・p1+  K(β1
)・K(−β2)・p。
~PIl) coordinate values, β2. West IP41
P51p6. p7. r+, and the coordinate values of the upper end positions (P1゛~P6゛) in the built-in posture are P1'+, respectively.
P2'+P3ZP4ZP S'1P6Z117ZP[l
゛, then for each case of [+] [ul]EIII'1, P+'-K(θ,)・μβ2°= K(θ,)・L(θ's・p1+K(β1
)・K(−β2)・p.

+  L(−β1)・K(−β2)・p3p、−K(−
β2)・−3 04″−K(−02)・L(03)・p。
+ L(-β1)・K(-β2)・p3p, −K(-
β2)・-3 04″-K(-02)・L(03)・p.

+  K(−02)・K(−θ:l)・ト。+K(-02)・K(-θ:l)・t.

+L(−β2)・K(β3)・ト。+L(-β2)・K(β3)・t.

?、’=  K(−β3)・β5 I)6″−K(−β3)・L(−β4)・Ps+  K
(−β3)・K(−β4)・p6士L(−β3)・K(
−β4)・四 p、”−K(β4)・07 pa’=  K(β4)・L(−θ−)Pv+  K(
β4)・K(−θ、)・p8十L(β4)・K(−θ、
)・pl が成立する。
? ,'= K(-β3)・β5 I)6″-K(-β3)・L(-β4)・Ps+ K
(-β3)・K(-β4)・p6shiL(-β3)・K(
-β4)・4p,”−K(β4)・07 pa'= K(β4)・L(−θ−)Pv+K(
β4)・K(-θ, )・p80L(β4)・K(-θ,
)・pl holds true.

ここで、第1、第3、第5、第7の鉄骨柱(CI)、 
(c:l)、(cs)、(C7)それぞれと中央の鉄骨
柱(Co)との距離をL+、Lz、Lx、β4とし、引
寄せ用プレース(b+)、(bz) 、 (β3)の縮
み量をそれぞれXl+X2.X3 とすると、 [1]の場合は、 β1= C1・β2         ・・・・・・[
1]θ3− C2・β2         ・・・・・
・[3]θ4− C3・β1         ・・・
・・・[4][11]の場合は、 θ、= β1・β2         ・・・・・・[
5]θ2−−β2・β3          ・・・・
・・ [6]θ4−−β3・β3          
・・・・・・ [8][1111の場合は、 θ+=   TI・ β2           ・・
・・・・ [9コθ2−〜T2・β3        
・・・・・・[10;β3− T3・β4      
   ・・・・・・[11]である。
Here, the first, third, fifth, and seventh steel columns (CI),
The distances between each of (c:l), (cs), (C7) and the central steel column (Co) are L+, Lz, Lx, β4, and the pulling places (b+), (bz), (β3) The amount of shrinkage of Xl+X2. Assuming X3, in the case of [1], β1= C1・β2 ......[
1] θ3- C2・β2...
・[3]θ4- C3・β1...
...[4] In the case of [11], θ, = β1・β2 ......[
5] θ2−−β2・β3 ・・・・
... [6] θ4−−β3・β3
...... [8] In the case of [1111, θ+= TI・β2 ・・
... [9 pieces θ2-~T2・β3
......[10;β3- T3・β4
...[11].

そして、モデルを使っての実験や実際の建直しによって
、鉄骨梁(G)の剛性や鉄骨梁(G)と鉄骨柱(C)と
の接合形式等が異なる各種条件下での前記式[1]〜[
12]の係数を求めデータ化しておくことにより、[+
]  [n]  [Ir]の場合それぞれにおける鉄骨
柱(CI”Cs)の姿勢変化を上述の式を用いて定量化
し、予測する。
Through experiments using the model and actual reconstruction, we determined that the above formula [1 ]~[
12] and convert it into data, [+
] [n] [Ir] The posture change of the steel column (CI"Cs) in each case is quantified and predicted using the above formula.

次いで、その予測値に基づいて、検出変位方向(D、〜
Ds)および検出変位’2 (A、〜A8)から算定さ
れる基本修正方向および基本修正量を、他の鉄骨柱(C
,〜C,)の建込み姿勢の修正に伴う建込み姿勢の変化
を吸収して鉄骨柱(CI−CO)のそれぞれを予定建込
み姿勢に変化させる値に補正する。この補正された修正
方向および修正量をもって鉄骨柱(C1〜C8)の姿勢
を変更させるために必要なプレース(b、〜b3)、(
b、’〜b、゛)の伸縮量を求める。
Next, based on the predicted value, the detected displacement direction (D, ~
Ds) and the detected displacement '2 (A, ~A8), the basic correction direction and basic correction amount are calculated from other steel columns (C
, ~C,) is corrected to a value that changes each of the steel columns (CI-CO) to the planned erection posture by absorbing the change in the erection posture caused by the correction of the erection posture. Places (b, to b3), (
Find the amount of expansion and contraction of b,' to b, ゛).

実際には、鉄骨柱(C)と鉄骨梁(G)との接合部の製
作誤差や鉄骨梁(G)の長さ等の不可避的なバラツキが
原因で全ての鉄骨柱(C)を予定建込み姿勢に正確に位
置させることができないことを考慮して、極値探索法に
より、支障のない範囲内いて姿勢修正後の鉄骨柱(CI
−cs)それぞれの上端位置(p、II〜p、l ’)
の正規の上端位置(p+〜pe)からの変位量の平方和
を最小とさせる値である。
In reality, due to manufacturing errors in the joints between steel columns (C) and steel beams (G) and unavoidable variations in the length of steel beams (G), all steel columns (C) are not as planned. Considering that it is impossible to accurately position the steel column in a crowded posture, we use the extreme value search method to locate the steel column (CI
-cs) respective upper end positions (p, II to p, l')
This is the value that minimizes the sum of squares of the displacement amount from the normal upper end position (p+ to pe).

なお、第1のプレース(bt)、(bt”)の伸縮量を
決定する際には、検出した鉄骨柱(CI=C5)それぞ
れの上端位置(P1′〜P、”)の座標値(?、”〜l
11g’)を用いるが、第2のプレース(bz) 、(
bz’ )の伸縮量を決定する際には、前記の第1のプ
レース(bt)、 (bt“)を決定した伸縮量をもっ
て伸縮させたと仮定した場合の鉄骨柱(C,〜CS)の
上端位置の座標値を用い、第3のプレース(b3) 、
(bt’ )の伸縮量を決定する際には、前述のように
第1、第2のプレース(bt)、 (bl’)、 (b
2) 、 (b2’)を決定した伸縮量をもって伸縮さ
せたと仮定した場合の鉄骨柱(C,〜ce)の上端位置
の座標値を用いる。つまり、第1から第3のプレース(
b、〜b、)。
Note that when determining the amount of expansion and contraction of the first places (bt) and (bt''), the coordinate values (? ,”~l
11g'), but the second place (bz), (
When determining the amount of expansion and contraction of Using the coordinate values of the position, the third place (b3),
When determining the amount of expansion/contraction of (bt'), the first and second places (bt), (bl'), (b
2) Use the coordinate values of the upper end position of the steel column (C, ~ce) assuming that (b2') is expanded and contracted by the determined amount of expansion and contraction. In other words, the first to third places (
b,~b,).

(b、〜b3”)の伸縮量を最適化する際、検出した上
端位置(P、〜P8゛)の座標値(p、’〜ト、゛)を
用いて一度に最適化するのではなく、段階的に行うこと
により、演算し易くしである。
When optimizing the amount of expansion/contraction of (b, ~b3''), instead of optimizing at once using the coordinate values (p, '~t, ゛) of the detected upper end position (P, ~P8゛), , it is easier to calculate by doing it step by step.

前記電動式ターンバックル(4)は、第3図に示すよう
に、2本のプレース材(b) 、 (b)の端部間に介
装されて、それらプレース材(b) 、 (b)の端部
間距離を変更することによって、プレースを伸縮するも
のであって、その−例を次に示す。
As shown in FIG. 3, the electric turnbuckle (4) is interposed between the ends of two place materials (b), (b), and The place is expanded or contracted by changing the distance between the ends of the place.An example of this is shown below.

第3図に示すように、プレース材(b) 、 (b)そ
れぞれの端部に止着する2つのフレーム(5A)。
As shown in FIG. 3, two frames (5A) are fixed to the ends of the place materials (b) and (b).

(5B)を、1つのガイドフレーム(6)に遠近方向に
のみスライド自在に取付け、一方のフレーム(5八)に
、電動モータ(7)を介して駆動されるねじ軸(8)を
取付け、前記ガイドフレーム(6)に、前記ねじ軸(8
)の第1ねじ部(8A)に螺合してそのねじ軸(8)の
回転によって一方のフレーム(5A)とガイドフレーム
(6)とを遠近方向に相対移動させるナツト(9)を固
着し、前記他方のフレーム(5B)に、前記ねじ軸(8
)のうち前記第1ねじ部(8A)とは逆ねじの第2ねじ
部(8B)に螺合してねじ軸(8)の回転によって他方
のフレーム(5B)を一方のフレーム(5^)に対して
遠近方向に移動させるナツト(lO)を固着して、構成
されている。
(5B) is attached to one guide frame (6) so as to be slidable only in the far and near direction, and a screw shaft (8) driven by an electric motor (7) is attached to one frame (58), The screw shaft (8) is attached to the guide frame (6).
) is fixed with a nut (9) which is screwed onto the first threaded portion (8A) of the frame and which moves one frame (5A) and the guide frame (6) relative to each other in the far and near directions by rotation of the threaded shaft (8). , the screw shaft (8) is attached to the other frame (5B).
), the first threaded part (8A) is screwed into the second threaded part (8B), which has a thread opposite to the first threaded part (8A), and the other frame (5B) is connected to one frame (5^) by rotation of the screw shaft (8). It is constructed by fixing a nut (lO) that moves it in the distance direction.

なお、前記最適化のための演算およびそれに基づく電動
式ターンバックル(4)の制御は、第2図に示すように
、コンピュータ(11)を用いて行われる。
Note that the calculation for optimization and the control of the electric turnbuckle (4) based on the calculation are performed using a computer (11), as shown in FIG. 2.

〔別実施例〕[Another example]

以下、本発明の別実施例を示す。 Another example of the present invention will be shown below.

[1]上記実施例では、第1から第3のプレース(bt
 −bt) 、 (bt ’〜b3゛)の伸縮量の最適
化を段階的に行ったが、−度に行っても良い。
[1] In the above embodiment, the first to third places (bt
-bt) and (bt' to b3') were optimized in stages, but the optimization may be done in - degrees.

[2]上記実施例では、ブロック(B)間で共通の鉄骨
柱(C)がない状態に鉄骨柱群をブロック分けしたが、
第5図に示すように、隣接ブロック(B)間で共通の鉄
骨柱(C)が3本ある状態や第6図に示すように隣接ブ
ロック(B)間で共通の鉄骨柱(C)6本がある状態に
鉄骨柱群をブロック分けして実施しても良い。前者の場
合は、最初のブロック以外においては、修正対象の鉄骨
柱(C)の数が6本となり、後者の場合には3本となり
、修正の最適化が容易となる。
[2] In the above embodiment, the steel column group was divided into blocks such that there was no common steel column (C) between the blocks (B).
As shown in Figure 5, there are three common steel columns (C) between adjacent blocks (B), and as shown in Figure 6, there are 6 steel columns (C) common between adjacent blocks (B). It is also possible to carry out the process by dividing the steel frame columns into blocks while there are books. In the former case, the number of steel columns (C) to be modified is six in blocks other than the first block, and in the latter case, it is three, which facilitates optimization of modification.

[3]上記実施例では、鉄骨梁(G)の間軸方向のたわ
み量が少ないことを利用して、1つの鉄骨柱(C0)を
予定建込み姿勢に修正し、その周りに位置する鉄骨柱(
C,〜CS)をその予定建込み姿勢に修正した鉄骨柱(
CO)周りに回転させることで、姿勢を修正するように
したが、鉄骨柱(C)のそれぞれをx、y方向にワイヤ
等で引っ張ることにより、姿勢を修正しても良い。
[3] In the above example, one steel column (C0) is corrected to the planned erection posture by taking advantage of the small amount of axial deflection between the steel beams (G), and the steel frames located around it are corrected. Pillar (
C, ~CS) corrected to its planned erection posture (
CO), but the posture may be corrected by pulling each of the steel columns (C) in the x and y directions with a wire or the like.

し、41上記実施例では、鉄骨柱群をブロックに分け、
ブ「、フックごとに姿勢を修正するようにしたが、ブロ
ックに分けずに、鉄骨柱(C)のそれぞれについて修正
方向および修正量を最適化して実施しても良い。
41 In the above embodiment, the steel column group is divided into blocks,
Although the posture is corrected for each hook, the direction and amount of correction may be optimized for each steel column (C) without dividing into blocks.

[51対象とする鉄骨柱(C)は、それ自身のみで柱と
なるものの他に、鉄骨コンクリート柱や鉄骨鉄筋コンク
リート柱を構成する鉄骨柱や鋼管コンクリート柱を挙げ
ることができる。
[51 Targeted steel columns (C) include not only those that serve as columns by themselves, but also steel-framed concrete columns, steel-framed concrete columns that constitute steel-framed reinforced concrete columns, and steel-pipe concrete columns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の実施例を示し、第1図は
要部の平面図、第2図は斜視図、第3図はターンハンク
ルの断面図、第4図は平面図であり、第5図、第6図は
別実施例を示す平面図である。 (C)・・・・・・鉄骨柱、(G)・・・・・・梁。
Figures 1 to 4 show embodiments of the present invention, with Figure 1 being a plan view of the main parts, Figure 2 being a perspective view, Figure 3 being a sectional view of the turn handle, and Figure 4 being a plan view. 5 and 6 are plan views showing another embodiment. (C)... Steel column, (G)... Beam.

Claims (1)

【特許請求の範囲】 梁(G)で相互に連結されて仮組状態に建込まれた複数
の鉄骨柱(C)のそれぞれを予定の建込み姿勢に建直す
方法であって、 [1]複数の所定鉄骨柱(C_1〜C_n)のそれぞれ
について、それら建込み姿勢に対する変位方向(D_1
〜D_n)および変位量(A_1〜A_n)を検出し、 [2]実験データに基づいて、その建込み状態における
所定鉄骨柱(C_1〜C_n)それぞれの他の所定鉄骨
柱(C_1〜C_n)の建込み姿勢変更に伴う建込み姿
勢の変化を定量的に予測し、 [3]その予測値に基づいて、前記検出変位方向(D_
1〜D_n)および検出変位量(A_1〜A_n)から
算定される所定鉄骨柱(C_1〜C_n)それぞれの予
定建込み姿勢への基本修正方向および基本修正量を、他
の所定鉄骨柱(C_1〜C_n)の建込み姿勢修正に伴
う建込み姿勢変化を吸収して所定鉄骨柱(C_1〜C_
n)を予定建込み姿勢又はそれに近い姿勢に変更させる
方向および量に補正し、 [4]その補正した修正方向および修正量をもって所定
鉄骨柱(C_1〜C_n)のそれぞれを姿勢変更し、 その後、所定鉄骨柱(C_1〜C_n)とそれら所定鉄
骨柱(C_1〜C_n)間にわたる梁(G)とを木組状
態に連結する鉄骨柱の建直し方法。
[Scope of Claims] A method for rebuilding each of a plurality of steel columns (C), which are interconnected by beams (G) and erected in a temporarily assembled state, into a planned erection posture, [1] For each of the plurality of predetermined steel columns (C_1 to C_n), the displacement direction (D_1
~D_n) and the displacement amount (A_1~A_n), [2] Based on the experimental data, detect the other prescribed steel columns (C_1~C_n) of each of the prescribed steel columns (C_1~C_n) in the erection state. [3] Quantitatively predict the change in the built-in attitude due to the change in the built-in attitude; [3] Based on the predicted value, the detected displacement direction (D_
1 to D_n) and the detected displacement amount (A_1 to A_n), the basic correction direction and basic correction amount to the planned erection posture of each predetermined steel column (C_1 to C_n) are calculated from the other predetermined steel columns (C_1 to C_n). The predetermined steel columns (C_1 to C_
n) in the direction and amount to change the planned erection posture or a posture close to it, [4] Change the posture of each of the predetermined steel columns (C_1 to C_n) using the corrected correction direction and correction amount, and then, A method for rebuilding a steel frame column in which predetermined steel frame columns (C_1 to C_n) and beams (G) extending between the predetermined steel frame columns (C_1 to C_n) are connected in a wooden frame state.
JP63072567A 1988-03-26 1988-03-26 How to rebuild steel columns Expired - Fee Related JP2675570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072567A JP2675570B2 (en) 1988-03-26 1988-03-26 How to rebuild steel columns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072567A JP2675570B2 (en) 1988-03-26 1988-03-26 How to rebuild steel columns

Publications (2)

Publication Number Publication Date
JPH01247660A true JPH01247660A (en) 1989-10-03
JP2675570B2 JP2675570B2 (en) 1997-11-12

Family

ID=13493076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072567A Expired - Fee Related JP2675570B2 (en) 1988-03-26 1988-03-26 How to rebuild steel columns

Country Status (1)

Country Link
JP (1) JP2675570B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610523U (en) * 1992-07-20 1994-02-10 多摩川精機株式会社 Distorting device for steel structure
JP2014136915A (en) * 2013-01-17 2014-07-28 Toda Constr Co Ltd Steel-framed column distortion correcting method
CN112252734A (en) * 2020-10-30 2021-01-22 东南大学 Auxiliary tool and method for hoisting prefabricated part of fabricated building in place

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110446U (en) * 1985-12-28 1987-07-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110446U (en) * 1985-12-28 1987-07-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610523U (en) * 1992-07-20 1994-02-10 多摩川精機株式会社 Distorting device for steel structure
JP2014136915A (en) * 2013-01-17 2014-07-28 Toda Constr Co Ltd Steel-framed column distortion correcting method
CN112252734A (en) * 2020-10-30 2021-01-22 东南大学 Auxiliary tool and method for hoisting prefabricated part of fabricated building in place
CN112252734B (en) * 2020-10-30 2024-05-31 东南大学 Auxiliary tool and hoisting method applied to hoisting in-place of prefabricated building components

Also Published As

Publication number Publication date
JP2675570B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
CN1978801B (en) Super-span steel skew arch construction method
CN104440875B (en) The 3-freedom parallel mechanism that working space is adjustable and method of adjustment thereof
Kamgar et al. Determination of optimum location for flexible outrigger systems in non-uniform tall buildings using energy method
JP6596610B1 (en) ROOF, ROOF DESIGN METHOD, AND ROOF DESIGN DEVICE
Jahanshahi et al. Optimum location of outrigger-belt truss in tall buildings based on maximization of the belt truss strain energy
JPH01247660A (en) Rebuilding method for steel frame pillar
Bakalis et al. Seismic enforced-displacement pushover procedure on multistorey R/C buildings
Mohammadnejad et al. Dynamic response analysis of a combined system of framed tubed, shear core and outrigger-belt truss
Muto Seismic analysis of reinforced concrete buildings
Bakalis et al. Seismic assessment of asymmetric single-story RC buildings by modified pushover analysis using the “capable near collapse centre of stiffness”: Validation of the method
CN104594508A (en) Multidimensional space steel structure installation joint positioning construction method
Aksogan et al. Dynamic analysis of non-planar coupled shear walls with stiffening beams using Continuous Connection Method
USMANOV DESIGN OF LIGHT METAL TRUSSES
Soh et al. Stress analysis of reinforced tubular joints subjected to different load types.
CN1164841C (en) Very large span spatial strcture
JPH09158387A (en) Roof frame
Tehranizadeh et al. A Simplified Method to Conform 3D Symmetric RC Core Walls to Equivalent Planar Systems
KR102325677B1 (en) Seismic isolation structure applied to the wall
CN106245909A (en) A kind of column template encloses support protecting assembly
Nelson et al. Light agricultural and industrial structures: analysis and design
Ashiquzzaman Effectiveness of Exterior Girder Rotation Prevention Systems for Bridge Deck Construction
Krystosik Design Resistance of Welded Knees in Steel Frames
Li et al. A unified matrix approach for nonlinear analysis of steel frames subjected to wind or earthquakes
JP6949691B2 (en) Post-attached brace joint structure
Emsen et al. Static analysis of non-planar coupled shear walls with stepwise changes in geometrical properties using continuous connection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees