JPH01247509A - Production of metal sphere - Google Patents

Production of metal sphere

Info

Publication number
JPH01247509A
JPH01247509A JP7789288A JP7789288A JPH01247509A JP H01247509 A JPH01247509 A JP H01247509A JP 7789288 A JP7789288 A JP 7789288A JP 7789288 A JP7789288 A JP 7789288A JP H01247509 A JPH01247509 A JP H01247509A
Authority
JP
Japan
Prior art keywords
electrode
particles
distance
atm
plasma arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7789288A
Other languages
Japanese (ja)
Inventor
Masaharu Tokizane
時実 正治
Kazuo Isonishi
磯西 和夫
Ryohei Kumagai
熊谷 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP7789288A priority Critical patent/JPH01247509A/en
Publication of JPH01247509A publication Critical patent/JPH01247509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To stably produce metal spheres having a large diameter by a rotating electrode method by increasing the pressure of He or Ar used as atmospheric gas and specifying the distance of scattering of drops of a melt from the periphery of an electrode as stock. CONSTITUTION:When metal spheres having a large diameter of >=110mum are produced by a plasma arc rotating electrode method, He or He-based mixed gas under >=1 atm, Ar or Ar-based mixed gas under >=1.1 atm is used as atmospheric gas and the distance of scattering of drops of a melt from the periphery of an electrode as stock is regulated to >=1.3m. This regulation is performed by controlling the speed ot rotation of the electrode, electric current and voltage for plasma arc and the distance between electrodes so as to prevent the projection of the molten end of the electrode as stock and the formation of a locally deep molten part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転電極法により粒体を製造する方法に関す
るもので、さらに詳しくは、粒径が100μm以上の大
径で球状の粒体を得るために必要な製造方法にある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing granules by a rotating electrode method, and more specifically, the present invention relates to a method for producing granules using a rotating electrode method. It lies in the manufacturing method necessary to obtain it.

〔従来の技術〕[Conventional technology]

回転を極性は、粉末の製造方法として公知の技術である
。すなわち、この方法は粉末にしたい素材を外観的に丸
棒の形とし、これをその円筒軸を中心に高速回転させ、
その一端よりプラズマアーク等の熱源によって溶融し、
遠心力で融液をまわりに飛散させることにより、その飛
行中に凝固して球形の粉末が得られる方法である。回転
電極法は、金属粉末製造方法として、一般によく知られ
ているが、製造コストが高い方法であるため、粉末の工
業生産用に採用された例は極く稀少である。
Rotating polarity is a well-known technique for producing powders. In other words, in this method, the material to be powdered is made into a round bar in appearance, and this is rotated at high speed around its cylindrical axis.
It is melted from one end by a heat source such as a plasma arc,
In this method, the melt is scattered around by centrifugal force, solidifying during flight to obtain spherical powder. The rotating electrode method is generally well known as a method for producing metal powder, but since it is a method with high production costs, it has rarely been adopted for industrial production of powder.

本発明者らは、回転電極法で得られる粉末が、均一粒径
、高眞球度、科学的汚染の極少という長所を生かして、
他方ではコストダウンに寄与できる方向を探索して来た
。それらの−環技術として、本発明では粉末の製法であ
った回転電極法を、粒体の製造にも利用できる道を拓い
たものである。
The present inventors took advantage of the advantages of the powder obtained by the rotating electrode method: uniform particle size, high sphericity, and minimal chemical contamination.
On the other hand, we have been searching for ways to contribute to cost reduction. As one of these ring technologies, the present invention opens the door for the rotating electrode method, which was a method for manufacturing powder, to be used for manufacturing granules as well.

すなわち、回転電極法では素材電極の回転速度をあげる
程、得られる粉末の平均粒径は小さくなる。
That is, in the rotating electrode method, the higher the rotation speed of the material electrode, the smaller the average particle size of the powder obtained.

HIP、焼結等の粉末冶金加工に用いる粉末としては一
般に粒径50μm以下をねらうので回転速度あるいは回
転の周速度は30.0OOrpn+以上あるいは周速度
は2,800M/分以上の高速で利用されることが多い
。これらの粉末製造では、素材電極から融液が飛散し、
その粒子が凝固するまでに要する時間もしくは飛行距離
と、冷却速度に関係する雰囲気組成と気圧については特
別の配慮を必要としないが、本発明がねらいとする10
0μm以上の粒径を得ようと意図する場合は、粒子の冷
却について特別の条件を明確にしなければならない。
Powder used in powder metallurgy processing such as HIP and sintering generally aims to have a particle size of 50 μm or less, so it is used at high rotational speeds or circumferential speeds of 30.0 OOrpn+ or higher or 2,800 M/min or higher. There are many things. In the production of these powders, the melt is scattered from the material electrode,
Although there is no need to give special consideration to the time or flight distance required for the particles to solidify, and the atmospheric composition and atmospheric pressure that are related to the cooling rate, the present invention aims to
If it is intended to obtain particle sizes of 0 μm or more, special conditions must be defined for the cooling of the particles.

化学反応における触媒に利用する粉粒体は2反応装置内
での循環、回収、再生ならびに反応にかかわる気、液体
の浸透を良くするため、流動性の良い球体で100μm
以上の粒径のものが必要である。また、樹脂等に混入し
て機械部品等へ成形する場合も、その成形性、あるいは
製品の耐摩耗性や潤滑性をあげるためにも球形で大径の
粒子がのぞまれる。
The powder and granules used as catalysts in chemical reactions are well-flowing spheres with a diameter of 100 μm in order to improve circulation, recovery, and regeneration within the reactor, as well as the penetration of gas and liquid involved in the reaction.
Particles with a larger particle size are required. Furthermore, when mixed with resin and molded into machine parts, spherical and large-diameter particles are desired in order to improve moldability, wear resistance, and lubricity of the product.

また、人工骨や歯根材のようなサージカルインブラント
材の表面に焼結等で粉粒体を被覆する場合、表面に約1
50μm以上の空孔を形成することによって、骨や肉の
生体とのなじみが良くなることから数100μm以上の
均一粒径の球体がのぞましい。
In addition, when coating the surface of surgical implant materials such as artificial bone or tooth root material with powder or granules by sintering, etc., approximately 1.
Forming pores of 50 μm or more improves the compatibility of bones and meat with living organisms, so spheres with a uniform particle size of several 100 μm or more are desirable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、金属球には上述した要求があるにもかかわら
ず、球径、球径の均一度が高く、真球度の高い金属球を
得ることにある。
However, despite the above-mentioned requirements for metal balls, the objective is to obtain metal balls with high uniformity of ball diameter and ball diameter and high sphericity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はプラズマアーク回転電極法によって、100μ
m以上の大径金属球を製造するために、雰囲気ガスの圧
力を高めることにより飛行する溶滴の冷却速度を高める
ことをその構成要件のひとつにしている。雰囲気ガスに
アルゴンを用いる場合とヘリウムを用いる場合とでは溶
滴の冷却速度に大きなちがいがあり、ヘリウムはより速
い冷却速度を得ることができる。また得ようとする金属
球の製造目的によっては雰囲気ガス中に水素ガスを混入
することができる場合があり、溶滴の冷却速度を若干高
めることができる。
The present invention uses a plasma arc rotating electrode method to produce a 100μ
In order to manufacture large-diameter metal spheres with a diameter of m or more, one of the constituent requirements is to increase the cooling rate of the flying droplets by increasing the pressure of the atmospheric gas. There is a big difference in the cooling rate of droplets when using argon and helium as the atmospheric gas, and helium can achieve a faster cooling rate. Furthermore, depending on the purpose of manufacturing the metal sphere, it may be possible to mix hydrogen gas into the atmospheric gas, which can slightly increase the cooling rate of the droplets.

以上のような雰囲気ガスと圧力を用いても、本発明が目
的とする大径金属球を得るためには、製造装置の内壁を
電極材表面から特定の値以上にし十分な飛行距離を備え
ないと、衝突力と凝固後の粒子の高温変形力との関係に
おいて、球形でない粒子を形成することになる。しかる
に際限なく長飛行距離を得ようとすれば、装置はいたづ
らに大きくなり、経済的ではない。また、長飛行距離の
みを目指しても、前記のように大径粒子製造条件が低回
転速度側にあるため、溶滴の飛行における遠心力が不足
し、粒子同志の衝突合併がおこるので、雰囲気ガスの圧
力を上げて冷却効果を高めておくことが必要となる。よ
って、本発明はプラズマアーク回転電極による金属球の
製造方法において、雰囲気を1気圧以上のヘリウムまた
はヘリウムを主体とした他のガスとの混合ガスあるいは
1゜1気圧以上のアルゴンまたはアルゴンを主体とした
他のガスとの混合とし、且つ、電極素材の外周からの溶
滴の飛行距離を1.3M以上としたことを特徴とする。
Even if the atmospheric gas and pressure described above are used, in order to obtain the large-diameter metal sphere that is the object of the present invention, the inner wall of the manufacturing equipment must be set above a certain value from the surface of the electrode material to provide a sufficient flight distance. In this case, non-spherical particles are formed due to the relationship between the collision force and the high-temperature deformation force of the particles after solidification. However, if one were to try to obtain an infinitely long flight distance, the device would become unnecessarily large and uneconomical. In addition, even if we only aim for long flight distances, as mentioned above, the conditions for producing large diameter particles are on the low rotational speed side, so the centrifugal force during the flight of the droplets is insufficient, and collisions and mergers of particles occur. It is necessary to increase the gas pressure to enhance the cooling effect. Therefore, the present invention provides a method for manufacturing a metal sphere using a plasma arc rotating electrode, in which the atmosphere is helium at 1 atm or more or a mixture of helium and other gases mainly consisting of helium, or argon at 1° or more at 1 atm or mainly argon. It is characterized in that it is mixed with other gases, and the flight distance of the droplets from the outer periphery of the electrode material is 1.3M or more.

〔作用〕[Effect]

本発明の構成要件のひとつである雰囲気ガスについては
ヘリウムまたはヘリウムを主体としたガスにおいては1
気圧以上とする。該気体の圧力は高いほど溶滴の冷却効
果は向上するが、ヘリウムにおいてはアルゴンにくらべ
ると同じ気圧でも冷却効果は大きく、実用的に1気圧で
あれば溶滴の飛行距離を特別に大きくとる必要はなく、
実用的に1.3Mであれば十分である。これと同じ1.
3Mの溶滴飛行距離で雰囲気ガスにアルゴンを用いる場
合は、最低1.1気圧が必要であり、それ以下では粒子
が内壁に衝突した際変形するか、または部分で粒子どお
しの衝突による合併型の粒子がみられるようになる。第
1図は次に示す第1表のNo。
Regarding the atmospheric gas, which is one of the constituent elements of the present invention, for helium or a gas mainly composed of helium, 1
Atmospheric pressure or higher. The higher the pressure of the gas, the better the cooling effect of the droplets, but compared to argon, the cooling effect of helium is greater even at the same pressure, and in practical terms, if it is 1 atm, the flight distance of the droplets will be extra long. There is no need,
For practical purposes, 1.3M is sufficient. Same as this 1.
When using argon as the atmospheric gas with a droplet flight distance of 3M, a minimum of 1.1 atm is required; if it is lower than that, the particles may be deformed when they collide with the inner wall, or particles may collide in some areas. Merged particles become visible. Figure 1 shows the numbers in Table 1 shown below.

5の実施例で得られた均一粒径、真球度の高い本発明に
よって得られた金属球の外観写真である。
5 is a photograph of the appearance of a metal sphere obtained according to the present invention having a uniform particle size and high sphericity obtained in Example 5.

以上に例示したように回転電極法において本発明が示す
条件を満すことによって達成される球形の金属粒をつく
るには制御された量の金属融体を気体中で凝固させる方
法が有効であり回転電極法もそのひとつの方法である。
As exemplified above, a method of solidifying a controlled amount of molten metal in a gas is effective in producing spherical metal particles that are achieved by satisfying the conditions specified by the present invention in the rotating electrode method. The rotating electrode method is one such method.

とくにこの方法の場合、電極における溶融形状を特定の
形に制御することで飛行する溶滴の量を規制することが
でき均一粒径を得ることができる。その制御とは、電極
素材の比重に応じた回転速度と溶融熱源であるプラズマ
アークの電流、電圧、極間距離を特定の値に制御し素材
電極の溶解端面が凸にならず且つ局部的に深いとけ込み
をつくらないように制御することによって、融液の端面
における流れを定常に保ち且つ気体中への離脱は、その
溶解端面の外周部のみに制御されることによって達成さ
れる。ここで、前記のように100μm以上の金属球を
得るためには電極素材の回転速度を低く保つことが必要
である。このため電極材から離脱した融液粒は粒子どう
しが飛行中に衝突し合併しやすくなる。
Particularly in the case of this method, by controlling the melt shape in the electrode to a specific shape, the amount of flying droplets can be regulated and a uniform particle size can be obtained. This control involves controlling the rotational speed according to the specific gravity of the electrode material, the current and voltage of the plasma arc that is the melting heat source, and the distance between the electrodes to specific values to prevent the melting end surface of the material electrode from becoming convex and locally. By controlling the melt so as not to create deep penetration, the flow of the melt at the end face is kept constant and the release into the gas is controlled only at the outer periphery of the melt end face. Here, in order to obtain metal spheres of 100 μm or more as described above, it is necessary to keep the rotation speed of the electrode material low. For this reason, the melt particles separated from the electrode material collide with each other during flight and are likely to merge.

この現象は100μm以上の粒子においてとくに見られ
るもので、第2図は第1表N004の例である。これを
防止するためには飛行中の冷却速度を早めることが有効
である。また、大径粒子になると、製造装置の内壁等の
衝突し変形粒を形成するようになる。その例を第1表N
o、 15第3図に示す。したがってこれを防止するに
は十分な飛行距離を確保する必要がある。
This phenomenon is particularly observed in particles of 100 μm or more, and FIG. 2 shows an example of No. 004 in Table 1. To prevent this, it is effective to speed up the cooling rate during flight. Moreover, when the particles become large, they collide with the inner wall of the manufacturing equipment, etc., forming deformed particles. An example of this is shown in Table 1.
o, 15 shown in Figure 3. Therefore, to prevent this, it is necessary to ensure a sufficient flight distance.

鉄系金属球のように、球の表面活性を維持するために、
若干の還元雰囲気で金属球をつくりたい場合、ガス中に
水素を少量添加することは有効である。また、チタン球
で表面に故意に着色したい場合は雰囲気ガス中に極く僅
かの窒素を添加する場合がある。これらの添加ガスは、
それぞれの目的に対し、少量ですむため、実質的に溶滴
の冷却速度を調整するための雰囲気ガス圧や溶滴の飛行
距離を別途特定するまでには到らない。
In order to maintain the surface activity of the sphere, like iron-based metal spheres,
When it is desired to make metal spheres in a slightly reducing atmosphere, it is effective to add a small amount of hydrogen to the gas. Furthermore, when it is desired to intentionally color the surface of a titanium ball, a very small amount of nitrogen may be added to the atmospheric gas. These additional gases are
Since a small amount is required for each purpose, it is not necessary to separately specify the atmospheric gas pressure or the flight distance of the droplets to substantially adjust the cooling rate of the droplets.

〔実施例〕〔Example〕

第1表は、回転電極法で100μm以上の金属球をつく
るための製造条件を示すものである。ニーで溶滴の飛行
距離とは電極素材の外周から溶滴を飛行させるための容
器内壁までの直線距離を以って表す。また電極素材の外
径は30闘φのものを用い、プラズマアーク電流は21
0A、電圧は35Vを用い、電極の溶融消耗による極間
距離の変化は、電圧の変化を検知してプラズマトーチの
出入を自動的に微小制御することで一定に維持した。実
施例に使用した装置は第4図にその概要を示すような円
筒形の容器1を用い、溶滴飛行距離の変化は、内壁内に
更にもうひとつの調整自在な内壁2を用いることで検討
した。第4図において、lは装置の内壁、2は溶滴の飛
行距離を小さくするための内径可変壁、3は雰囲気ガス
の圧力計、4は電極素材丸棒、5はプラズマアークトー
チ、6は回転電極の回転駆動装置、7はプラズマアーク
トーチの移動保持装置である。
Table 1 shows manufacturing conditions for manufacturing metal spheres of 100 μm or more using the rotating electrode method. The flying distance of a droplet at the knee is expressed as the straight-line distance from the outer periphery of the electrode material to the inner wall of the container through which the droplet is made to fly. In addition, the outer diameter of the electrode material is 30 mm, and the plasma arc current is 21 mm.
0 A and a voltage of 35 V were used, and changes in the distance between electrodes due to melting and consumption of the electrodes were maintained constant by detecting changes in voltage and automatically micro-controlling the entrance and exit of the plasma torch. The apparatus used in the example uses a cylindrical container 1 as shown in the outline in Fig. 4, and changes in droplet flight distance were investigated by using another adjustable inner wall 2 within the inner wall. did. In Fig. 4, l is the inner wall of the device, 2 is a variable inner diameter wall for reducing the flight distance of droplets, 3 is a pressure gauge for atmospheric gas, 4 is a round bar of electrode material, 5 is a plasma arc torch, and 6 is a A rotation drive device for the rotating electrode, and 7 a moving and holding device for the plasma arc torch.

第  1  表 〔発明の効果〕 金属粉末を焼結や加圧によって成形するための素材とし
て用いるいわゆる粉末冶金の分野では、粒径を小さくし
て、その急冷効果を利用した結晶粒径の微細化によるい
くつかの効果を期待するものであるが、粉末のまま用い
る適用分野においてはやや大径の粒子を必要とする場合
が多い。例えば、本発明の実施例に示されるものは、マ
イクロスポット溶接時にフラックスと共にペースト状に
してインサート材として用いる場合あるいは同じくペー
スト状のろう接材などは球状の粒子にすることで取扱い
が容易となり且つ自動機での適用が可能となるものであ
る。
Table 1 [Effects of the invention] In the field of so-called powder metallurgy, where metal powder is used as a material for molding by sintering or pressurization, the grain size is reduced and the crystal grain size is refined using the rapid cooling effect. However, in applications where powder is used as a powder, particles with a slightly larger diameter are often required. For example, what is shown in the embodiments of the present invention is used when it is made into a paste with flux during micro spot welding and used as an insert material, or when a paste-like brazing material is made into spherical particles, it becomes easier to handle. This makes it possible to use automatic machines.

また、気体や液体との反応や触媒としての利用では球状
で大径であるため流動性が良く、装置の中で詰るような
トラブルをなくし、且つ反応流体の浸透性を向上する。
In addition, when reacting with gas or liquid or using as a catalyst, the spherical shape and large diameter provide good fluidity, eliminating troubles such as clogging in the device and improving the permeability of the reaction fluid.

化学的に反応性の高い液体中の回転機械部品ではプラス
チックの利用があるが、これらの材質強化ならびに耐摩
耗手段として、同じく化学的に不動態のチタン合金粒な
どの混入利用がある。この場合も球状で大径の粒子が成
形上も、性能向上のためにも利用価値が高い。
Plastics are used in rotating mechanical parts that are immersed in chemically highly reactive liquids, and chemically passive titanium alloy grains and the like are also mixed in to strengthen these materials and provide wear resistance. In this case as well, spherical, large-diameter particles are highly useful both for molding and for improving performance.

これらの用途に適する金属粒子は機械的研摩によってつ
くるには小さすぎるし、一般の粉末製造法を利用するに
は大きさが不足する。
Metal particles suitable for these applications are too small to be produced by mechanical abrasion and insufficiently large to utilize conventional powder manufacturing methods.

本発明は従来粉末しかつくれないとされている回転電極
法を用いて100μm以上のさらに多くの場合400μ
m前後の金属球を安定した粒径と形状とでつくる技術を
提供するものである。
The present invention uses the rotating electrode method, which has conventionally been thought to only be able to produce powder, to produce particles with a diameter of 100 μm or more, and in many cases 400 μm.
The present invention provides a technology for producing metal spheres with a stable particle size and shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって得られた金属球を示す写真、 第2図は粒子同志が衝突合併した例を示す写真、第3図
は金属球が大径であるため冷却速度が不足し、製造装置
の内壁に衝突して変形した粒子の例を示す写真、 第4図は本発明による金属球の製造装置の模式1、装置
の内壁、 2.内径可変壁、 3.雰囲気ガス圧力計、
 4.電極素材丸棒、 5.プラズマアークトーチ。 出 願 人  日鐵溶接工業株式会社 代理人弁理士  青  柳      稔第1日 第2図
Figure 1 is a photograph showing a metal sphere obtained by the present invention, Figure 2 is a photograph showing an example of particles colliding and merging, and Figure 3 is a photograph showing an example of particles colliding and merging together. A photograph showing an example of particles deformed by colliding with the inner wall of the apparatus; FIG. 4 is a schematic diagram of the apparatus for producing metal balls according to the present invention; Variable inner diameter wall, 3. atmospheric gas pressure gauge,
4. Electrode material round rod, 5. plasma arc torch. Applicant: Nippon Steel Welding Industry Co., Ltd. Representative Patent Attorney Minoru Aoyagi Day 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマアーク回転電極による金属球の製造方法に
おいて、雰囲気を1気圧以上のヘリウムまたはヘリウム
を主体とした他のガスとの混合ガスあるいは1.1気圧
以上のアルゴンまたはアルゴンを主体とした他のガスと
の混合とし、且つ、電極素材の外周からの溶滴の飛行距
離を1.3M以上としたことを特徴とする粒径が100
μm以上の金属球製造方法。
1. In the method for manufacturing metal spheres using a plasma arc rotating electrode, the atmosphere is helium at 1 atm or higher or a mixture of helium-based gases and other gases, or argon or other argon-based gases at 1.1 atm or higher. A particle size of 100, characterized in that it is mixed with a gas and the flying distance of the droplet from the outer periphery of the electrode material is 1.3M or more.
A method for manufacturing metal balls of μm or larger.
JP7789288A 1988-03-30 1988-03-30 Production of metal sphere Pending JPH01247509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7789288A JPH01247509A (en) 1988-03-30 1988-03-30 Production of metal sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7789288A JPH01247509A (en) 1988-03-30 1988-03-30 Production of metal sphere

Publications (1)

Publication Number Publication Date
JPH01247509A true JPH01247509A (en) 1989-10-03

Family

ID=13646728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7789288A Pending JPH01247509A (en) 1988-03-30 1988-03-30 Production of metal sphere

Country Status (1)

Country Link
JP (1) JPH01247509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900371A (en) * 2017-12-21 2018-04-13 西安欧中材料科技有限公司 A kind of Preparation equipment and method of ball pen antifriction metal (AFM) ball
JP2019530803A (en) * 2016-09-23 2019-10-24 オーロラ ラブス リミテッド Powder forming apparatus and powder forming process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914084A (en) * 1982-07-15 1984-01-24 Toppan Printing Co Ltd Production of card incorporating ic or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914084A (en) * 1982-07-15 1984-01-24 Toppan Printing Co Ltd Production of card incorporating ic or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530803A (en) * 2016-09-23 2019-10-24 オーロラ ラブス リミテッド Powder forming apparatus and powder forming process
CN107900371A (en) * 2017-12-21 2018-04-13 西安欧中材料科技有限公司 A kind of Preparation equipment and method of ball pen antifriction metal (AFM) ball

Similar Documents

Publication Publication Date Title
JP6449982B2 (en) Titanium powder and its melted and sintered products
KR102292150B1 (en) Centrifugal atomization of iron-based alloys
CN104148658B (en) One is prepared increasing material and is manufactured special Ti6Al4V alloy powder process
JPS6242705B2 (en)
CN108213449A (en) A kind of device for preparing matrix powder material
US3407057A (en) Molybdenum powder for use in spray coating
US6481638B1 (en) Method and device for producing fine powder by atomizing molten material with gases
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
JPS62167807A (en) Apparatus for producing quenched metal particle
Schade et al. Atomization
JP2007332406A (en) Method for forming fine powder by using rotary crucible, and apparatus therefor
JPH07179912A (en) Production of globular metallic grain
CA1325317C (en) Method and device for granulating molten material
ZA200405477B (en) Method for producing particle shaped material
JPH01247509A (en) Production of metal sphere
CN107812937A (en) One kind is applied to laser gain material manufacture titanium alloy powder and preparation method
WO2010010627A1 (en) Device and method for manufacturing fine powder by using rotary crucible
JP2018145467A (en) Titanium-based powder, titanium-based ingot obtained by fusing titanium-based powder, and titanium-based sintered article obtained by sintering titanium-based powder
JPS6280205A (en) Production of fine metallic powder
JPH0437122B2 (en)
Kolmakov et al. Technology for Producing Fine Tungsten Carbide Powders
JPH08209207A (en) Production of metal powder
CN109530713B (en) Device and method for preparing composite metal powder and composite metal powder
EP3290136A1 (en) Method for the production of metallic powders
Denmud et al. Characteristics of SAC305 Lead-Free Powder Prepared by Centrifugal Atomization