JPH01246389A - Production of metal mold - Google Patents

Production of metal mold

Info

Publication number
JPH01246389A
JPH01246389A JP7337888A JP7337888A JPH01246389A JP H01246389 A JPH01246389 A JP H01246389A JP 7337888 A JP7337888 A JP 7337888A JP 7337888 A JP7337888 A JP 7337888A JP H01246389 A JPH01246389 A JP H01246389A
Authority
JP
Japan
Prior art keywords
electroforming
electric current
electroformed
current
backward direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337888A
Other languages
Japanese (ja)
Inventor
Keiichiro Nishizawa
恵一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP7337888A priority Critical patent/JPH01246389A/en
Publication of JPH01246389A publication Critical patent/JPH01246389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To smoothen the electrodeposited surface of a metal mold by carrying out conventional high-speed electrodeposition and supplying electric current in the backward direction or repeatedly supplying electric current in the backward direction and electric current in the forward direction to dissolve part of the surface of an electroformed layer. CONSTITUTION:When electroforming is carried out on a matrix, conventional high-speed electrodeposition is carried out in a first stage. In a second stage, electric current in the backward direction is supplied or electric current in the backward direction and electric current in the forward direction are repeatedly supplied. By this current supply, the tips of electrodeposited coarse grains having high surface energy are preferentially dissolved and the resulting electrodeposited surface is smoothened. Thus, an electroformed layer having a smooth surface is formed without strictly controlling electroforming conditions or adding a leveling agent and a metal mold for molding a substrate, etc., can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金型、特に基板成形用金型(以下スタンバとい
う)の製造方法に関する。特に、高速電鋳を実施する場
合に適する金型の製造方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a mold, particularly a substrate molding mold (hereinafter referred to as a standber). This is a mold manufacturing method particularly suitable for performing high-speed electroforming.

[従来の技術] 従来、スタンパは、レジスト等に凹凸を形成したガラス
マスター上にニッケル等の金属をスパッタおよび電鋳に
より形成し、レジスト上の凹凸を転°写し、それを剥離
して作製している。
[Prior Art] Conventionally, a stamper is manufactured by sputtering or electroforming a metal such as nickel onto a glass master with a patterned resist or the like, transferring the patterning on the resist, and then peeling it off. ing.

電鋳工程はスタンバ作製工程の中でも特に長時間を要す
る為、電鋳時間削減を目的とした高速電鋳技術が数多く
報告されている。
Since the electroforming process takes a particularly long time among the standby manufacturing processes, many high-speed electroforming technologies aimed at reducing the electroforming time have been reported.

(Galvanotechnlc (Sau1gau/
Vurtt、) 5B(1965) Nr、B) しかし、高速電鋳を行うと、電鋳結晶粒の粗大化を招き
、電鋳面が粗く成るという欠点を存している。
(Galvanotechnlc (Sau1gau/
Vurtt, ) 5B (1965) Nr, B) However, high-speed electroforming causes coarsening of electroformed crystal grains, resulting in a rough electroformed surface.

通常のスタンバ製造法であるスルファミン酸ニッケル系
の電鋳浴で高速電鋳した場合、電鋳面の結晶粒径は数十
μm〜数百μmにも成長し、電鋳面の粗さはRwaxで
数十μmにもなる。
When high-speed electroforming is performed in a nickel sulfamate-based electroforming bath, which is the usual method of manufacturing a standby, the crystal grain size on the electroformed surface grows to several tens of μm to several hundred μm, and the roughness of the electroformed surface is Rwax. It can be several tens of micrometers.

一般に、スタンパの電鋳面は、プラスチック基板への転
写性の問題から鏡面に仕上げる為、精密研磨するのが普
通であるがこの電鋳面を鏡面にするためには長時間に渡
る研磨をするか、あるいは、荷重を増加させる必要があ
る。このように、研磨工程に大きな負荷をかけると、粗
大結晶粒の欠落からビールが発生し金型から転写される
プラスチック基板の欠陥要因となる。さらに、数μm〜
数十μm研磨する事による金型の厚さむらが生じ、プラ
スチック基板の厚さむらを生じさせる為、基板の機械特
性の悪化の原因となる。そのため、高速電鋳を行う場合
、pHは±0.1.電流密度は±0、lA/dn+2.
温度は±1℃という非常に厳密な制御を行うが、これら
の制御に於いても電鋳層の粗さは完全には制御しきれな
い。
Generally, the electroformed surface of a stamper is precision polished to achieve a mirror finish due to transferability issues to plastic substrates, but in order to make this electroformed surface a mirror finish, polishing is required for a long period of time. Or, it is necessary to increase the load. As described above, if a large load is applied to the polishing process, beer will be generated due to the loss of coarse crystal grains, which will cause defects in the plastic substrate transferred from the mold. Furthermore, several μm ~
Polishing by several tens of μm causes unevenness in the thickness of the mold, which causes unevenness in the thickness of the plastic substrate, which causes deterioration of the mechanical properties of the substrate. Therefore, when performing high-speed electroforming, the pH is ±0.1. Current density is ±0, lA/dn+2.
Although the temperature is very strictly controlled at ±1° C., even with these controls, the roughness of the electroformed layer cannot be completely controlled.

そこで、電鋳浴中に平滑剤を混入し粗さの改善する方法
を適用する場合もある。しかし、界面活性剤の添加は電
鋳浴の劣化を招く上に、電鋳層中に大きな応力が入って
しまいスタパに反りが生じるという問題がある。
Therefore, a method of improving the roughness by mixing a smoothing agent into the electroforming bath is sometimes applied. However, addition of a surfactant not only causes deterioration of the electroforming bath, but also introduces large stress into the electroformed layer, causing warping of the taper.

スタンバに反りが存在するとプラスチックの成形時、射
出成形機にセット不可能となり、実質上、使用できない
。したがって、通常;電解液組成・添加物の使用・温度
・pH・電流密度等で電鋳面結晶粒の制御を行うが、非
常に厳密な制御を必要とする上、再現性に劣る等の問題
が避けられないのが現状である。
If the stand bar is warped, it will not be able to be set in an injection molding machine during plastic molding, making it practically unusable. Therefore, the crystal grains on the electroformed surface are usually controlled by controlling the electrolyte composition, use of additives, temperature, pH, current density, etc., but this requires very strict control and has problems such as poor reproducibility. The current situation is that it is unavoidable.

[発明が解決しようとする問題点] 本発明が解決しようとする問題点は、上記の様に、従来
の技術では電鋳条件を非常に厳密に制御しているのにも
かかわらず、作製した電鋳面は大変粗くなり研磨の工程
に負担がかかる為、研磨に長時間必要であり、さらに、
電鋳結晶粒子が欠落しビールを発生したり、厚さの分布
にばらつきが生じるという問題である。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are as described above. The electroformed surface becomes very rough and puts a strain on the polishing process, so polishing requires a long time.
The problem is that electroformed crystal particles are missing, resulting in the generation of beer, and variations in thickness distribution.

[問題点を解決するための手段] 本発明は、これらの問題点を解決するため、母型上に電
鋳を行う工程において、通常の高速電鋳を行う第一の工
程と、逆方向の電流を流すか、または、逆方向の電流と
正方向の電流を繰返し流し、溶解・析出を繰返す事によ
って形成された電鋳層表面の一部を溶解させる第二の工
程により電鋳面の粗大結晶粒を溶解させ、電鋳面が平滑
な面を有する金型の製造方法を提供するものである。
[Means for Solving the Problems] In order to solve these problems, the present invention, in the process of performing electroforming on the mother mold, has a first process of performing normal high-speed electroforming and a process in the opposite direction. The electroformed surface is roughened by the second step of dissolving a part of the surface of the electroformed layer formed by passing a current or repeatedly passing a current in the opposite direction and a current in the forward direction and repeating melting and precipitation. The present invention provides a method for manufacturing a mold having a smooth electroformed surface by melting crystal grains.

[作用] 本発明によれば、通常の高速電鋳を実施した後逆向きの
電流もしくは、逆方向の電流と正方向の電流を繰返し流
し、電鋳により形成された粗大結晶粒の表面エネルギー
の高い先端部分から優先的に溶解させ、電鋳面を平滑に
する事で電鋳条件の厳密な制御を必要とせず、かつ、平
滑剤の添加なしで上記の問題点を解決することができる
。 本発明の第一工程の電鋳は慣用の方法に従がってよ
い。後に、表面の一部を溶解させる事を考慮して多少電
鋳層を厚くしても良い。
[Function] According to the present invention, after performing normal high-speed electroforming, a reverse current or a reverse current and a positive current are repeatedly passed to reduce the surface energy of coarse crystal grains formed by electroforming. By melting preferentially from the high end portion and smoothing the electroforming surface, the above problems can be solved without requiring strict control of electroforming conditions and without adding a smoothing agent. The first step of electroforming of the present invention may follow a conventional method. The electroformed layer may be made somewhat thicker in consideration of dissolving part of the surface later.

電鋳により形成された粗大結晶粒を有する電鋳層表面を
溶解する為の逆向きの電流密度は、特に制限はないが、
通常電鋳の場合よりも多少電流密度が小さい方が好まし
く、−膜内には、数〜数十A/dm2程度が良好である
。この逆通電はパルス状に電流を流しても良く、パルス
の波形は特に制限がなく、正弦波、矩形波、三角波、側
波等を用いて良い。パルスの高さ、幅、間隔等は電鋳層
の溶解に応じて適時決定してよい。また、逆通電だけで
なく、正方向への通電による電鋳を途中で行って良い。
There is no particular restriction on the current density in the opposite direction for melting the surface of the electroformed layer having coarse crystal grains formed by electroforming, but
It is preferable that the current density is somewhat lower than that in the case of normal electroforming, and - within the film, a current density of about several to several tens of A/dm2 is good. This reverse energization may be performed by passing current in a pulsed manner, and the waveform of the pulse is not particularly limited, and a sine wave, rectangular wave, triangular wave, side wave, etc. may be used. The height, width, interval, etc. of the pulses may be determined as appropriate depending on the melting of the electroformed layer. Furthermore, in addition to reverse energization, electroforming by energization in the forward direction may be performed midway through.

従って、正逆両方向へのパルスを用いて行って良く、パ
ルス電流を使用して溶解・析出を繰り返し、結果的に最
初に形成した電鋳層を若干溶解する様な溶解方法も適用
できる。その際の、正逆両方向へのパルスの波形は正弦
波、矩形波、三角波、側波等を用いて良い。また、波高
、幅、間隔、等は逆通電の場合と同様適時決定する。
Therefore, pulses may be used in both forward and reverse directions, and melting methods may also be applied in which melting and precipitation are repeated using pulsed current, and as a result, the initially formed electroformed layer is slightly melted. At this time, the waveform of the pulse in both the forward and reverse directions may be a sine wave, a rectangular wave, a triangular wave, a side wave, or the like. In addition, the wave height, width, interval, etc. are determined in a timely manner as in the case of reverse energization.

以上の方法により、電鋳層表面を平滑化する事で厳密な
制御を必要としない高速電鋳により作製された電鋳面は
通常RIIaxで2μm以下に仕上がり、研磨工程での
問題を解決することができる。
By using the above method, the surface of the electroformed layer is smoothed, and the electroformed surface produced by high-speed electroforming, which does not require strict control, is usually finished to a thickness of 2 μm or less using RIIax, which solves problems in the polishing process. Can be done.

[実施例] 次に、本発明を実施例によりさらに詳細に説明するが、
−例を示すものであり、本発明はこれらの実施例に同等
限定される物ではない。
[Example] Next, the present invention will be explained in more detail with reference to Examples.
- Examples are given, and the present invention is not equally limited to these examples.

(実施例1) 表1に示す電解浴を使用し、第一の工程として表2に示
す条件で定電流高速電鋳を2時間行った。
(Example 1) Using the electrolytic bath shown in Table 1, constant current high-speed electroforming was performed for 2 hours under the conditions shown in Table 2 as the first step.

終了後、第二の工程として速やかに通電を反転させ、I
OA/dr#の電流密度で10分間定電流溶解を行った
結果、電鋳表面の粗さはRl1axで1゜5μmであっ
た。一方、逆通電を実施しなかった時の電鋳表面の粗さ
はRlaXで54μmであった。
After completion, the second step is to immediately reverse the energization and turn the I
As a result of constant current melting for 10 minutes at a current density of OA/dr#, the roughness of the electroformed surface was 1°5 μm in Rl1ax. On the other hand, the roughness of the electroformed surface when reverse energization was not performed was 54 μm in RlaX.

表1 表2 (実施例2) 実施例1と同様にして定電流高速電鋳を2時間行った。Table 1 Table 2 (Example 2) Constant current high-speed electroforming was performed for 2 hours in the same manner as in Example 1.

その後、第二の工程として、速やかに電流を反転させI
OA/drr?の電流密度で5分間定電流溶解させ、さ
らに、再度通電を反転させ10A/dr&で定電流電鋳
を1分間行うと言う溶解・析出の操作を10回繰り返し
た後電鋳された陰極を取り出した。電鋳表面の粗さはR
1laXで0. 9μmであった。一方、第二の工程を
実施しなかった時は電鋳表面の粗さはR1laXで60
μmであった。
Then, as a second step, the current is quickly reversed and I
OA/drr? The electroformed cathode was removed after repeating the melting and precipitation operation 10 times, in which the electrode was melted at a constant current for 5 minutes at a current density of Ta. The roughness of the electroformed surface is R
1 laX is 0. It was 9 μm. On the other hand, when the second step was not carried out, the roughness of the electroformed surface was 60 in R1laX.
It was μm.

[発明の効果] 以上説明した通り、本発明の金型の製造方法によれば、
電鋳条件の厳密な制御を必要とせず、かつ、平滑剤の添
加なしで電鋳層表面を平滑にする事ができ、研磨工程で
生じる問題や反りの問題を解決することができる。
[Effects of the Invention] As explained above, according to the mold manufacturing method of the present invention,
It is possible to smooth the surface of the electroformed layer without requiring strict control of electroforming conditions and without adding a smoothing agent, and it is possible to solve problems that occur during the polishing process and warpage.

Claims (1)

【特許請求の範囲】[Claims] 母型上に電鋳を行い金型を製造する工程において、電鋳
を行う第一の工程と逆方向の電流を流すか、または、逆
方向の電流と正方向の電流を繰返し流し、溶解・析出を
繰返す事によって形成された電鋳層表面の一部を溶解さ
せる第二の工程とから成ることを特徴とする金型の製造
方法。
In the process of manufacturing a mold by electroforming on the mother mold, a current is passed in the opposite direction to the first process of electroforming, or a current in the opposite direction and a current in the forward direction are repeatedly passed to melt and melt. A method for manufacturing a mold, comprising a second step of dissolving a part of the surface of the electroformed layer formed by repeated precipitation.
JP7337888A 1988-03-29 1988-03-29 Production of metal mold Pending JPH01246389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337888A JPH01246389A (en) 1988-03-29 1988-03-29 Production of metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337888A JPH01246389A (en) 1988-03-29 1988-03-29 Production of metal mold

Publications (1)

Publication Number Publication Date
JPH01246389A true JPH01246389A (en) 1989-10-02

Family

ID=13516463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337888A Pending JPH01246389A (en) 1988-03-29 1988-03-29 Production of metal mold

Country Status (1)

Country Link
JP (1) JPH01246389A (en)

Similar Documents

Publication Publication Date Title
US6607614B1 (en) Amorphous non-laminar phosphorous alloys
JP4009750B2 (en) How to provide a diffuser riser on a Fresnel lens die
JPH09503550A (en) Electrical application method for surface coating
JP4554330B2 (en) High durability heat insulating stamper structure
JPH01246389A (en) Production of metal mold
CN111593376A (en) Method for electrodepositing bright copper
US20020079026A1 (en) Process for preparing novel amorphous non-laminar phosphate alloys
US6402922B1 (en) Pulse plating
CA2306819C (en) Novel amorphous non-laminar phosphorous alloys
US4610933A (en) Duplication master suitable for the manufacture of electroplated copies
JP2007172712A (en) Electrocast, stamper, manufacturing method of base
JPH03126885A (en) Electroforming method and device for controlling electroforming
CN109234769A (en) A kind of preparation method of ultra-thin metal layer
JPH07241856A (en) Manufacture of electroformed duplicate stamper
JPH01247588A (en) Metal mold and its production
JPH09223337A (en) Production of stamper
JPH04176892A (en) Nickel electrocasting method in process for production stamper
JPH01198493A (en) Iron electroforming bath, production of molding tool by iron electroforming and electroforming apparatus
JPH01138618A (en) Production of magnetic disk substrate
JPH09291390A (en) Production of stamper
JPS63105986A (en) Production of stamper for optical disk
CN113403650A (en) Method for improving coating uniformity of release agent by using discrete crystal nuclei
JPS62236155A (en) Production of optical disk stamper
JPH02285518A (en) Production of magnetic recording disk substrate
JPH06146050A (en) Production of stamper for optical disk