JPH01246139A - Production of titania fiber - Google Patents
Production of titania fiberInfo
- Publication number
- JPH01246139A JPH01246139A JP7409188A JP7409188A JPH01246139A JP H01246139 A JPH01246139 A JP H01246139A JP 7409188 A JP7409188 A JP 7409188A JP 7409188 A JP7409188 A JP 7409188A JP H01246139 A JPH01246139 A JP H01246139A
- Authority
- JP
- Japan
- Prior art keywords
- potassium
- fibers
- titania
- tio2
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000000835 fiber Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 31
- 239000011591 potassium Substances 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 9
- 150000003112 potassium compounds Chemical class 0.000 claims abstract description 8
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 8
- 239000004408 titanium dioxide Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 7
- FZFYOUJTOSBFPQ-UHFFFAOYSA-M dipotassium;hydroxide Chemical compound [OH-].[K+].[K+] FZFYOUJTOSBFPQ-UHFFFAOYSA-M 0.000 claims description 2
- 238000011049 filling Methods 0.000 abstract description 3
- 239000011812 mixed powder Substances 0.000 abstract description 3
- 239000004033 plastic Substances 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 2
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 238000010304 firing Methods 0.000 description 12
- 238000001816 cooling Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000004576 sand Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000002783 friction material Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- -1 rutile sand Chemical compound 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、断熱材、摩擦材、補強材等として有用なチタ
ニア繊維の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing titania fibers useful as heat insulating materials, friction materials, reinforcing materials, and the like.
チタニア(TiO2)繊維の製造方法として、二酸化チ
タン(T i Oz)と、加熱によりに2Oとなるカリ
ウム化合物との混合物を出発原料とし、これを加熱溶融
し、その溶融物を冷却して、初生絹繊維としてニチタン
酸カリウム結晶体(K2O・2TiOz)からなる繊維
物を生成させたのち、該繊維物を酸水溶液で脱カリウム
処理してカリウムの全量を抽出することにより結晶質チ
タン酸繊維となし、ついで焼成処理を施してチタニア繊
維に変換する方法が知られている。また、その製造コス
トを低減するために、出発原料調製用の二酸化チタン源
として、高純度の精製二酸化チタンに代え、天然産の安
価で入手し易いルチルサンドやアナターゼサンドを使用
することも提案されている。As a method for producing titania (TiO2) fibers, a mixture of titanium dioxide (T iOz) and a potassium compound that becomes 2O when heated is used as a starting material, and this is heated and melted, and the melt is cooled to obtain initial After producing a fibrous material made of potassium nititanate crystals (K2O.2TiOz) as silk fibers, the fibrous material is depotassium treated with an acid aqueous solution to extract the entire amount of potassium, thereby producing crystalline titanate fibers. A method is known in which the titania fiber is then converted into titania fiber by performing a firing treatment. In addition, in order to reduce the manufacturing cost, it has been proposed to use naturally produced, inexpensive and easily available rutile sand or anatase sand as a source of titanium dioxide for the preparation of starting materials, instead of highly purified purified titanium dioxide. ing.
上記従来の製造方法により得られるチタニア繊維は一般
に繊維径が約10〜30μmと粗大であり、その繊維形
態(太さ、長さ)も不揃いで均質性に乏しい。これは、
出発原料の加熱溶融物を冷却させて得られる初生絹繊維
であるチタン酸化リウム熱維が一般に粗大で、しかもそ
の繊維形態が、冷却過程における冷却速度の部分的な差
異(例えば、冷却用金型に接する部分と、そうでない部
分)により異なったものとなり、その初生絹繊維の形態
が、最終製品であるチタニア繊維の形態に強い影響を残
すことによる。従って、繊維径が細く、均質性にすくれ
たチタニア繊維を得るには、加熱溶融物の冷却工程にお
いて、初生絹繊維の粗大化やその形態のバラツキが生じ
ないように精密な冷却速度の制御を行うことが必要であ
る。しかし、そのような冷却速度の精密な制御を大量生
産・連続生産において実施することは甚だ困難である。Titania fibers obtained by the above-mentioned conventional manufacturing method generally have a coarse fiber diameter of about 10 to 30 μm, and the fiber morphology (thickness and length) is also irregular and lacks homogeneity. this is,
Titanium oxide thermal fibers, which are primary silk fibers obtained by cooling a heated melt of the starting material, are generally coarse, and their fiber morphology may be affected by local differences in cooling rate during the cooling process (for example, cooling molds). This is because the morphology of the primary silk fiber has a strong influence on the morphology of the final product, the titania fiber. Therefore, in order to obtain titania fibers with fine fiber diameter and low homogeneity, the cooling rate must be precisely controlled in the cooling process of the heated melt to avoid coarsening of the primary silk fibers or variations in their morphology. It is necessary to do this. However, it is extremely difficult to carry out such precise control of the cooling rate in mass production and continuous production.
本発明は、上記従来法における問題点を解決するための
改良されたチタニア繊維の製造方法を提供するものであ
る。The present invention provides an improved method for producing titania fibers that solves the problems of the conventional methods described above.
〔問題点を解決するための手段および作用〕本発明に係
るチタニア繊維の製造方法は、加熱により二酸化チタン
(T i O2)となるチタン化合物と加熱により酸化
カリウム(K2O) となるカリウム化合物とを、Ti
O2/に20のモル比が1.5〜2.5となるように配
合した混合物を加熱溶融し、その溶融物を急冷して非晶
質固化物を得、該非晶質固化物に、二酸化チタンを、T
iO□/に、0のモル比が3〜4となるように加えて均
一な粉末混合物となし、これを焼成処理して四チタン酸
カリウム繊維を生成させたのち、脱カリウム処理に付し
てカリウム分の全量を抽出し、ついで400〜1100
’cで焼成処理することを特徴としている。[Means and effects for solving the problems] The method for producing titania fibers according to the present invention consists of a titanium compound that becomes titanium dioxide (T i O2) when heated and a potassium compound that becomes potassium oxide (K2O) when heated. , Ti
A mixture in which the molar ratio of O2/20 to Titanium, T
It is added to iO□/ so that the molar ratio of 0 is 3 to 4 to form a uniform powder mixture, which is fired to produce potassium tetratitanate fibers, and then subjected to a potassium removal treatment. Extract the entire amount of potassium, then add 400 to 1100
It is characterized by being fired at 'c.
以下、本発明方法を工程順に説明する。Hereinafter, the method of the present invention will be explained in order of steps.
本発明における出発原料を調製するための二酸化チタン
源、すなわち、加熱により二酸化チタンとなるチタン化
合物としては、高純度精製酸化チタン、合成ルチル、チ
タンスラグ、または天然産のルチルサンドやアナターゼ
サンド等が用いられる。天然産のルチルサンドやアナタ
ーゼサンドは、一般式(Ti、M)O□〔式中のMは不
純物元素〕で示される安価な二酸化チタン原料である。As the titanium dioxide source for preparing the starting material in the present invention, that is, the titanium compound that becomes titanium dioxide by heating, highly purified titanium oxide, synthetic rutile, titanium slag, naturally produced rutile sand, anatase sand, etc. are used. used. Naturally produced rutile sand and anatase sand are inexpensive titanium dioxide raw materials represented by the general formula (Ti, M)O□ [where M is an impurity element].
その組成は、TiO□が約95%で、不純物としてFe
zOz、S ioz、A/!zo:+、Zr0z、Cr
zOh等がそれぞれ少量含まれている。Its composition is approximately 95% TiO□, with Fe as an impurity.
zOz, S ioz, A/! zo:+, Zr0z, Cr
Contains small amounts of zOh and the like.
上記チタン化合物に配合されるカリウム化合物は、代表
的にはに2CO,であり、その他、KOH。The potassium compound blended into the titanium compound is typically 2CO, and others include KOH.
KNO,、に2CO,、に2Oなどが挙げられる。Examples include KNO, 2CO, 2O, etc.
チタン化合物とカリウム化合物との混合比は、TiO2
/K2Oのモル比で1.5〜2.5にチタン酸カリウム
相当組成)の範囲が適当であり、その加熱溶融は、約9
50〜1100℃と比較的低い温度域で行うことができ
る。The mixing ratio of titanium compound and potassium compound is TiO2
/K2O molar ratio of 1.5 to 2.5 (potassium titanate equivalent composition) is suitable, and heating and melting is approximately 9
It can be carried out at a relatively low temperature range of 50 to 1100°C.
上記混合物を溶解炉内で加熱溶融し、その溶融物を急冷
処理(例えば10”C/秒以上の冷却速度)に付すこと
により、ニチタン酸カリウム結晶の生成を阻止し、非晶
質固化物を得る。その急冷処理は、例えば双ロール法に
より行なわれる。金属双ロールを高速回転させながら、
双ロール間隙に溶融物を流下させることにより箔片状の
非晶質固化物を効率よく得ることができる。By heating and melting the above mixture in a melting furnace and subjecting the melt to a rapid cooling process (for example, at a cooling rate of 10"C/sec or more), the formation of potassium nititanate crystals is prevented and the amorphous solidified product is The quenching treatment is carried out, for example, by the twin roll method. While rotating the metal twin rolls at high speed,
By flowing the melt into the gap between the twin rolls, a flaky amorphous solidified material can be efficiently obtained.
上記急冷処理により得られた非晶質固化物を二酸化チタ
ン(例えば、ルチルサンド、高純度精製酸化チタン粉末
等)と混合してTiO,/に20のモル比が3〜4(四
チタン酸カリウム相当組成)の混合物とし、これをディ
スクミル等により粉砕して均一な粉末混合物となしたう
え、焼成処理に付す。粉末の粒径は特に限定されないが
、繊維の収率を高め、かつ細径・長寸の繊維を成長させ
るためには、微細粒である程よい。その好ましい粒径は
10μm以下である。焼成処理は800〜1200℃に
適当時間(例えば30分間)保持することにより達成さ
れる。この焼成処理において非晶質固化物粒子に二酸化
チタンが固溶し、その固溶物から初生絹繊維として四チ
タン酸カリウム繊維(K2O・4TiOz)が生成する
。その繊維は、細く、かつ均一な繊維形態を存している
。このようにして得られた四チタン酸カリウム繊維は、
そのままでは、一部に繊維同士が付着した束状の集合状
態を呈しているが、これを例えば水に懸濁させてミキサ
ーで撹拌する解繊処理を施せば、単繊維ごとに分離され
た繊維として回収される。The amorphous solidified product obtained by the above quenching treatment is mixed with titanium dioxide (e.g. rutile sand, highly purified titanium oxide powder, etc.), and the molar ratio of TiO,/20 is 3 to 4 (potassium tetratitanate). This is ground into a homogeneous powder mixture using a disk mill or the like, and then subjected to a firing process. Although the particle size of the powder is not particularly limited, the finer the particle, the better in order to increase the yield of fibers and grow thin and long fibers. The preferred particle size is 10 μm or less. The calcination treatment is achieved by maintaining the temperature at 800 to 1200°C for an appropriate period of time (for example, 30 minutes). In this firing process, titanium dioxide is solid-dissolved in the amorphous solidified particles, and potassium tetratitanate fibers (K2O.4TiOz) are produced from the solid solution as primary silk fibers. The fibers are thin and have a uniform fiber morphology. The potassium tetratitanate fiber obtained in this way is
As it is, it appears in a bundle-like aggregated state with some fibers attached to each other, but if this is defibrated, for example by suspending it in water and stirring it with a mixer, the fibers are separated into individual fibers. will be collected as.
なお、出発原料のTiO2/K2Oのモル比を3〜4と
、高めに調整し、その溶融物を象、冷しで非晶fK固化
物(四チタン酸カリウム相当組成)となし、これを熱処
理して四チタン酸カリウム繊維を生成させることも可能
ではあるけれども、その出発原料の融点が約1250’
Cと極めて高いため、溶解炉の炉材溶損・耐久性低下、
および溶損炉材の混入によるチタニア繊維の品質低下を
逸れず、また溶融物の非晶質化率の低下(結晶相の生成
)により、得られるチタニア繊維の形態のバラツキが増
大することとなるので採用できない。In addition, the molar ratio of TiO2/K2O of the starting material was adjusted to a high value of 3 to 4, and the melt was cooled to form an amorphous fK solidified product (composition equivalent to potassium tetratitanate), which was heat-treated. Although it is possible to produce potassium tetratitanate fibers by
Due to the extremely high carbon content, the melting furnace material may be eroded and its durability may be reduced.
In addition, the quality of titania fibers deteriorates due to the contamination of melted furnace materials, and the variation in the morphology of the obtained titania fibers increases due to a decrease in the amorphization rate of the melt (formation of crystalline phase). Therefore, it cannot be adopted.
上記焼成処理を経て得られた四チタン酸カリウム繊維を
脱カリウム処理に付してカリウム分の全量を抽出するこ
とにより、その繊維組成をチタニア相当組成に変換する
。その脱カリウム処理は、水または酸水溶液、好ましく
は酸水溶液(例えば、2〜lO%の硫酸水溶液)を洗液
として行うことができる。The potassium tetratitanate fiber obtained through the above firing treatment is subjected to a potassium removal treatment to extract the entire potassium content, thereby converting the fiber composition to a titania-equivalent composition. The depotassium treatment can be carried out using water or an acid aqueous solution, preferably an acid aqueous solution (for example, a 2-10% sulfuric acid aqueous solution) as a washing liquid.
なお、上記工程中、非晶質同化物に二酸化チタンを加え
、その混合物を焼成して四チタン酸カリウム繊維を生成
させる工程を省略し、例えば非晶質固化物をそのまま脱
アルカリ処理に付してチタニア相当の組成に変換したの
ち、熱処理を加えてチタニアの結晶構造に変換するか、
またはその脱カリウム処理と熱処理の順序を逆にし、非
晶質固化物にチタン酸カリウム相当組成)を結晶質の二
チタン酸カリウム繊維に変換したのち、そのカリウム分
の全量を抽出してチタニア相当組成に変換することとす
れば、工程が簡略化されるけれども、前者の場合、非晶
質固化物にはニチタン酸カリウムや四チタン酸カリウム
等のもつ層状構造が存在しないので、水洗・酸処理等に
よる脱カリウム処理が不可能であり、後者の場合は非晶
質同化物からの繊維化率が著しく低いため、チタニア繊
維の収率も著しく低く、しかもその繊維は粗大で均質性
に欠けたものとなり、いずれも採用できない。In addition, in the above process, the step of adding titanium dioxide to the amorphous assimilate and firing the mixture to generate potassium tetratitanate fibers is omitted, and for example, the amorphous solidified product is directly subjected to dealkalization treatment. After converting it to a composition equivalent to titania, heat treatment is applied to convert it to the crystal structure of titania, or
Alternatively, by reversing the order of the depotassium treatment and heat treatment, the amorphous solidified material (composition equivalent to potassium titanate) is converted into crystalline potassium dititanate fiber, and then the entire potassium content is extracted and the composition is equivalent to titania. If the composition is converted, the process will be simplified, but in the former case, the amorphous solidified material does not have the layered structure of potassium nititanate or potassium tetratitanate, so water washing and acid treatment are necessary. In the latter case, the rate of fiberization from amorphous assimilates was extremely low, so the yield of titania fibers was also extremely low, and the fibers were coarse and lacked homogeneity. Therefore, neither of them can be adopted.
前記のように四チタン酸カリウム繊維を、脱カリウム処
理して得られる繊維の化学組成はチタニア組成に相当し
ているが、結晶構造的には、もとの四チタン酸カリウム
の層状構造のなごりをとどめているので、これを脱水・
乾燥したのち、焼成処理に付して四チタン酸カリウムの
結晶構造から、チタニアの結晶構造に変換させる。その
焼成処理は、好ましくは、400〜1100℃に適当時
間(例えば、30分間)加熱保持することにより達成さ
れる。この場合に、焼成処理を800’C以下で行えば
、アナターゼ相のチタニア繊維が、また800℃をこえ
る温度で行えばルチル相を有するチクニア繊維が、それ
ぞれ得られる。As mentioned above, the chemical composition of the fiber obtained by depotassium treatment of potassium tetratitanate fiber corresponds to the titania composition, but the crystal structure is a trace of the original layered structure of potassium tetratitanate. This is dehydrated and
After drying, it is subjected to a firing treatment to convert the crystal structure of potassium tetratitanate to that of titania. The firing treatment is preferably achieved by heating and holding at 400 to 1100°C for an appropriate time (for example, 30 minutes). In this case, if the firing process is performed at a temperature of 800'C or less, titania fibers having an anatase phase can be obtained, and if the firing process is performed at a temperature exceeding 800°C, chiknia fibers having a rutile phase can be obtained.
本発明は、出発原料を加熱溶融した溶融物から直ちに初
生絹繊維としてニチタン酸カリウム繊維を生成させてい
る従来法と異なって、溶融物を急冷して一旦非晶質化し
、その非晶質固化物と二酸化チタンの混合粉末から四チ
タン酸カリウム繊維を初生絹繊維として生成させたうえ
、脱アルカリによる組成変換と焼成による結晶構造変換
を行うこととしたので、得られるチタニア繊維は、直径
が約0.1〜1μmと従来のもの(10〜30μm)に
比し、著しく細径・長寸であり、かつそのバラツキも少
なく、またその収率も約60%以上とすくれている。Unlike the conventional method in which potassium nititanate fibers are immediately produced as primary silk fibers from a molten material obtained by heating and melting a starting material, the present invention rapidly cools the molten material to once amorphize it, and then solidifies the amorphous material. In addition to producing potassium tetratitanate fibers as primary silk fibers from a mixed powder of titanium dioxide and titanium dioxide, the composition was changed by dealkalization and the crystal structure was changed by firing.The resulting titania fibers had a diameter of approximately The diameter is significantly smaller and longer at 0.1 to 1 μm compared to conventional ones (10 to 30 μm), and the variation is small, and the yield is about 60% or more.
夫差」ロー
(1)原料調製
(1)チタン化合物:天然ルチルサンド(オーストラリ
ア産) T t Oz : 95.6%、FezOz
:0.6%、p:o、ox%、S:0.02%、Zr0
z:0.1%。"Fuzashi" Raw (1) Raw material preparation (1) Titanium compound: Natural rutile sand (produced in Australia) T t Oz: 95.6%, FezOz
: 0.6%, p: o, ox%, S: 0.02%, Zr0
z: 0.1%.
cr、o、:0.3%、5io2:o、6%、VzQ5
:0.7%、 Nb2O5:0.3%、 Affi20
.:0.4%。cr, o,: 0.3%, 5io2: o, 6%, VzQ5
:0.7%, Nb2O5:0.3%, Affi20
.. :0.4%.
MnO:0.01%、CaO:0.03%、MgO:0
.03%、残部は微量のCo、Ga等。MnO: 0.01%, CaO: 0.03%, MgO: 0
.. 03%, the remainder being trace amounts of Co, Ga, etc.
(2)カリウム化合物:K2CO2(純度99.5%)
(3)TiO2/K2O(モル比) : 2.0[11
)加熱溶融
原料混合粉末を白金るつぼに入れ、l100’CX40
分間加熱。(2) Potassium compound: K2CO2 (purity 99.5%)
(3) TiO2/K2O (molar ratio): 2.0[11
)Put the heated molten raw material mixed powder into a platinum crucible,
Heat for a minute.
(III)急冷処理
溶融物を高速回転している金属双ロールに流下し、箔片
状の固化物を得る。(III) Quenching process The melt is allowed to flow down onto twin metal rolls rotating at high speed to obtain a solidified product in the form of flakes.
その固化物はX線回折により非晶質であることを確認し
た。The solidified product was confirmed to be amorphous by X-ray diffraction.
〔■〕焼成処理
上記非晶質固化物に、二酸化チタン粉末としてルチルサ
ンド(原料調製に使用したものと同し)を、Ti0z/
KzOのモル比が3.0となるように混合し、ディスク
ミルで粉砕して均一な粉末混合物(平均粒径:5μm)
となし、ついでその粉末混合物を、アルミするつぼに装
入し、1000℃に0.5時間加熱保持した。[■] Firing treatment Rutile sand (same as that used for raw material preparation) was added to the above amorphous solidified material as titanium dioxide powder, and Ti0z/
Mix so that the molar ratio of KzO is 3.0, and grind with a disk mill to obtain a uniform powder mixture (average particle size: 5 μm)
Then, the powder mixture was placed in an aluminum crucible and heated and held at 1000° C. for 0.5 hour.
上記焼成処理物を、10(@量(重量比)の水に投入し
、ミキサーにて15分間を要して解繊したのち、脱水・
乾燥し、四チタン酸カリウム繊維を得た。The above fired product was poured into 10 (amount (weight ratio)) of water, defibrated in a mixer for 15 minutes, dehydrated and
It was dried to obtain potassium tetratitanate fibers.
その直径は0.2〜1μm1長さは5〜20μrnであ
る。Its diameter is 0.2-1 μm and length is 5-20 μrn.
(V)脱カリウム処理
硫酸水溶液(5%)を洗液とし、これに上記で得た四チ
タン酸カリウム繊維を浸漬しく繊維1g/洗液10cc
)、約60分を要してに°イオンを溶出させ、ついで水
洗・乾燥した。(V) Depotassium treatment A sulfuric acid aqueous solution (5%) is used as a washing liquid, and the potassium tetratitanate fibers obtained above are immersed in this, 1 g of fiber/10 cc of washing liquid.
), it took about 60 minutes to elute the ° ions, and then it was washed with water and dried.
(Vl)焼成処理
脱カリウム処理した繊維をアルミするつぼに入れ、40
0℃に設定された炉中に装入し、約0.5時゛間を要し
て焼成処理を完了した。(Vl) Put the depotassium-treated fibers into an aluminum crucible,
It was charged into a furnace set at 0°C, and the firing process was completed in about 0.5 hours.
X線回折は、得られた繊維がチタニア繊維(アナターゼ
相)であることを示す。出発原料からの収率(得られた
繊維の重量/原料重量 X 100)は61%である。X-ray diffraction shows that the obtained fibers are titania fibers (anatase phase). The yield from the starting material (weight of fiber obtained/weight of raw material x 100) is 61%.
繊維形態:直径0.1〜1μm、長さ=5〜20μm0
九計り一
前記実施例1中、〔VI)の焼成処理を、1000℃×
0,5時間で行った点を除いて実施例1と同じ工程およ
び条件に従ってチタニア繊維(ルチル相)を得た。Fiber form: diameter 0.1-1 μm, length = 5-20 μm
Titania fibers (rutile phase) were obtained according to the same steps and conditions as in Example 1, except that the test was carried out for 0.5 hours.
繊維形態:直径0.1〜1μm、長さ5〜20μm、収
率:60%。Fiber morphology: diameter 0.1-1 μm, length 5-20 μm, yield: 60%.
本発明方法により製造されるチタニア繊維は、従来のも
のに比し、細径・長寸で、均質性に冨むので、多方面の
用途に供することができ、例えば耐熱材、断熱材、摩擦
材、濾過材、補強材等として、とりわけプラスチックの
充填補強材等として好適である。Compared to conventional titania fibers, titania fibers produced by the method of the present invention have smaller diameters, longer dimensions, and greater homogeneity, so they can be used in a variety of applications, such as heat-resistant materials, insulation materials, friction materials, etc. It is suitable as a filling material, a filter material, a reinforcing material, etc., especially as a filling reinforcing material for plastics.
Claims (1)
ン化合物と加熱により酸化カリウム(K_2O)となる
カリウム化合物とを、TiO_2/K_2Oのモル比が
1.5〜2.5となるように配合した混合物を加熱溶融
し、その溶融物を急冷して非晶質固化物を得、該非晶質
固化物に、二酸化チタンを、TiO_2/K_2Oのモ
ル比が3〜4となるように加えて均一な粉末混合物とな
し、これを焼成処理して四チタン酸カリウム繊維を生成
させたのち、脱カリウム処理に付してカリウム分の全量
を抽出し、ついで400〜1100℃で焼成処理するこ
とを特徴とするチタニア繊維の製造方法。1. A mixture of a titanium compound that becomes titanium dioxide (TiO_2) when heated and a potassium compound that becomes potassium oxide (K_2O) when heated so that the molar ratio of TiO_2/K_2O is 1.5 to 2.5. Melt by heating, rapidly cool the melt to obtain an amorphous solidified product, and add titanium dioxide to the amorphous solidified product so that the molar ratio of TiO_2/K_2O is 3 to 4 to form a uniform powder mixture. titania, which is fired to produce potassium tetratitanate fibers, subjected to depotassium treatment to extract the entire potassium content, and then fired at 400 to 1100°C. Fiber manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7409188A JP2631859B2 (en) | 1988-03-28 | 1988-03-28 | Method for producing titania fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7409188A JP2631859B2 (en) | 1988-03-28 | 1988-03-28 | Method for producing titania fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01246139A true JPH01246139A (en) | 1989-10-02 |
JP2631859B2 JP2631859B2 (en) | 1997-07-16 |
Family
ID=13537164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7409188A Expired - Lifetime JP2631859B2 (en) | 1988-03-28 | 1988-03-28 | Method for producing titania fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631859B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08217446A (en) * | 1995-02-09 | 1996-08-27 | Mitsubishi Materials Corp | Strip type (leaflet) electroconductive powder, production and use thereof |
US6086844A (en) * | 1996-12-26 | 2000-07-11 | Sumitomo Chemical Company, Ltd. | Titania fiber, method for producing the fiber and method for using the fiber |
-
1988
- 1988-03-28 JP JP7409188A patent/JP2631859B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08217446A (en) * | 1995-02-09 | 1996-08-27 | Mitsubishi Materials Corp | Strip type (leaflet) electroconductive powder, production and use thereof |
US6086844A (en) * | 1996-12-26 | 2000-07-11 | Sumitomo Chemical Company, Ltd. | Titania fiber, method for producing the fiber and method for using the fiber |
US6191067B1 (en) | 1996-12-26 | 2001-02-20 | Sumitomo Chemical, Ltd. | Titania fiber, method for producing the fiber and method for using the fiber |
US6409961B1 (en) | 1996-12-26 | 2002-06-25 | Sumitomo Chemical Co., Ltd. | Titania fiber, method for producing the fiber and method for using the fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2631859B2 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7300806B2 (en) | Process for producing fine particles of bismuth titanate | |
US4009015A (en) | Method of making glass-ceramics from modified basalts | |
JPH0512842B2 (en) | ||
JPH01246139A (en) | Production of titania fiber | |
JPS63260821A (en) | Production of potassium titanate fiber | |
JPH0522650B2 (en) | ||
JPS6379799A (en) | Production of potassium titanate fiber | |
JP2816908B2 (en) | Method for producing potassium hexatitanate fiber | |
JPH0223482B2 (en) | ||
JPH0457922A (en) | Production of polycrystalline fiber of potassium hexatitanate | |
JPS6163529A (en) | Production of titanium compound fiber | |
JP3643915B2 (en) | Novel calcium silicate whisker and method for producing the same | |
JPS6379800A (en) | Production of potassium titanate fiber | |
JPH07157312A (en) | Production of flaky titanium dioxide | |
JPH0159214B2 (en) | ||
JPS6364997A (en) | Production of potassium titanate fiber | |
JPH0338239B2 (en) | ||
JPS6364998A (en) | Production of potassium titanate fiber | |
JPS60210802A (en) | Manufacture of magnetic fine particle | |
JPS62260796A (en) | Production of potassium titanate fiber | |
JPH0346405B2 (en) | ||
Ram et al. | Catalytic effects of Ag2O additives on microstructure and recrystallization in borate glasses | |
JPH0159215B2 (en) | ||
JPS6121914A (en) | Manufacture of titanium compound fiber | |
JPS6121921A (en) | Preparation of magnetic powder |