JPH08217446A - Strip type (leaflet) electroconductive powder, production and use thereof - Google Patents

Strip type (leaflet) electroconductive powder, production and use thereof

Info

Publication number
JPH08217446A
JPH08217446A JP7022045A JP2204595A JPH08217446A JP H08217446 A JPH08217446 A JP H08217446A JP 7022045 A JP7022045 A JP 7022045A JP 2204595 A JP2204595 A JP 2204595A JP H08217446 A JPH08217446 A JP H08217446A
Authority
JP
Japan
Prior art keywords
powder
conductive
strip
shaped
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7022045A
Other languages
Japanese (ja)
Other versions
JP3557688B2 (en
Inventor
Akio Yanagisawa
明男 柳沢
Kuniaki Wakabayashi
邦昭 若林
Isamu Kobayashi
勇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Mitsubishi Materials Corp
Original Assignee
Kubota Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Mitsubishi Materials Corp filed Critical Kubota Corp
Priority to JP02204595A priority Critical patent/JP3557688B2/en
Publication of JPH08217446A publication Critical patent/JPH08217446A/en
Application granted granted Critical
Publication of JP3557688B2 publication Critical patent/JP3557688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: To obtain a an electroconductive leaflet powder which can form a translucent electroconductive coating layer when formulated to a coating, and can produce an electroconductive molded product when dispersed in a macromolecular material, as it give the substrates a high conductivity uniformly steadily and safely with a relatively reduced amount of application as a surface coating or filling agent. CONSTITUTION: A carrier powder made of leaflet titanium dioxide measuring 1-100μm length, 0.2-20μm width and 0.01-2μm thickness is coated with an electroconductive metal oxide (for example, tin oxide containing Sb and/or In) on its surface to give this electroconductive and translucent leaflet powder in which the amount of electroconductive layer is 1-40wt.%, preferably less than 30wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、短冊状担体粉末の表面
を金属酸化物型の導電層で被覆してなる短冊状導電性粉
末とその製造方法および用途に関する。本発明の短冊状
導電性粉末は高い透明性を示し、これを用いて透光性の
導電膜や導電性シート (紙、フィルム等) 、繊維、成形
体などを形成することができ、各種材料に導電性、帯電
防止性、または半導体性を付与するために利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strip-shaped conductive powder obtained by coating the surface of a strip-shaped carrier powder with a metal oxide type conductive layer, a method for producing the strip-shaped conductive powder and an application thereof. The strip-shaped conductive powder of the present invention exhibits high transparency, and it can be used to form a transparent conductive film or conductive sheet (paper, film, etc.), fiber, molded body, etc. Can be used for imparting electrical conductivity, antistatic property, or semiconductivity to.

【0002】[0002]

【従来の技術】電気絶縁性の有機または無機高分子に導
電性を付与する手段として、導電性粉末を混合したり、
その表面に導電性塗料を塗布もしくは含浸させて複合材
とする方法がある。この目的に使用する導電性粉末とし
て、カーボン系、金属系、金属酸化物系、有機高分子
系、有機界面活性剤系などの材料があり、その形状は微
粉末状、粒状、針状、長繊維状、偏平状等である。
2. Description of the Related Art As a means for imparting conductivity to an electrically insulating organic or inorganic polymer, a conductive powder is mixed,
There is a method in which a conductive coating material is applied or impregnated on the surface to form a composite material. As the conductive powder used for this purpose, there are materials such as carbon-based, metal-based, metal oxide-based, organic polymer-based, and organic surfactant-based materials, the shapes of which are fine powder, granular, acicular, and long. The shape is fibrous or flat.

【0003】このような導電性粉末は実際に導電性付与
の目的で工業的に利用されているが、加工性に劣る
(微粉末状および球状、導電性有機高分子系) 、混合
・分散性、充填性に劣る (針状、繊維状、偏平状) 、
導電化複合材の表面平滑性が良くない (針状、繊維状)
、白色化および有色化ができない (カーボン系、導
電性有機高分子系) 、形状有害性がある (針状、繊維
状) 、環境安定性 (湿度・温度依存性) に劣る (有機
界面活性剤系) 等の問題があるため、用途が限定されて
いるのが実情である。
Although such a conductive powder is actually used industrially for the purpose of imparting conductivity, it is inferior in processability (fine powdery and spherical, conductive organic polymer type), mixing / dispersing property. , Inferior in filling property (needle-like, fibrous, flat),
Poor surface smoothness of conductive composite (acicular, fibrous)
, Can not be whitened and colored (carbon-based, conductive organic polymer-based), has toxic properties (acicular, fibrous), is inferior in environmental stability (humidity / temperature dependence) (organic surfactant In reality, the usage is limited because of problems such as (system).

【0004】白色化、有色化が可能な導電性粉末とし
て、白色を呈する無機化合物からなる担体粉末の表面
に、酸化アンチモンを含む酸化錫からなる導電層を有す
る、表面被覆型の導電性粉末が知られている。具体的に
は、白色の担体として二酸化チタン粉末 (特開昭56−41
6035号および同56−114215号各公報) 、繊維状チタン酸
カリウム粉末 (特公昭61−26933 号公報) 、針状酸化チ
タン粉末 (特開昭63−233016号公報) 、雲母粉末 (特開
昭63−285119号公報) が使用されている。
As a conductive powder which can be whitened and colored, a surface-coated conductive powder having a conductive powder made of tin oxide containing antimony oxide on the surface of a carrier powder made of a white inorganic compound is known. Are known. Specifically, titanium dioxide powder is used as a white carrier (JP-A-56-41).
Nos. 6035 and 56-114215), fibrous potassium titanate powder (Japanese Patent Publication No. 61-26933), acicular titanium oxide powder (Japanese Patent Laid-Open No. 63-233016), and mica powder (Japanese Patent Laid-Open No. 63-233016). 63-285119).

【0005】担体として二酸化チタン粉末を用いた上記
表面被覆型の導電性粉末は、それ自体の白色度が高く、
粉体の電気抵抗値も10Ω・cm以下と優れている。しか
し、この導電性粉末は、形状が球状であるため、電気絶
縁性の有機または無機高分子に混合して導電性を発現さ
せるためには、50wt%以上の充填量を必要とし、媒体と
なる高分子の特性を著しく低下させる。
The above surface-coated conductive powder using titanium dioxide powder as a carrier has high whiteness of its own,
The electric resistance of the powder is also excellent at 10 Ω · cm or less. However, since this conductive powder has a spherical shape, it needs a filling amount of 50 wt% or more in order to express conductivity by mixing with an electrically insulating organic or inorganic polymer, and becomes a medium. It significantly deteriorates the properties of the polymer.

【0006】一方、担体粉末が繊維状または針状である
導電性粉末は、その形状効果により、球状粉末より少な
い充填量で導電性は得られるが、媒体の高分子との混合
時における折れ、均一分散の困難性の問題に加え、導電
化複合材の表面平滑性の問題もある。また、繊維または
針状という形状由来の有害性も指摘されている。
On the other hand, the conductive powder having a fibrous or needle-like carrier powder can obtain conductivity with a smaller filling amount than the spherical powder due to its shape effect, but breaks when mixed with the polymer of the medium, In addition to the problem of uniform dispersion, there is also the problem of surface smoothness of the electrically conductive composite material. In addition, it has been pointed out that the harmfulness derived from the shape of fibers or needles.

【0007】担体粉末が雲母のように偏平状であると、
導電性付与に必要な導電性粉末同士の接触が面接触 (球
状、繊維状、繊維状では点接触) となり易く、導電性能
は、繊維状、針状には及ばない。また、偏平状の担体と
して一般に使用される天然雲母は、そのへき解性を利用
して偏平状とするため、粒度分布が広く、形状が不規則
(角ばった状態) となり、導電接触性の低下を招く。ま
た、不純物 (Fe等) を含むため白色度が低く、白色の導
電性材料の担体にはあまり適さない。
When the carrier powder is flat like mica,
The contact between the conductive powders necessary for imparting conductivity is likely to be surface contact (spherical, fibrous, or point contact in the case of fibrous), and the conductive performance is lower than that of fibrous or acicular. In addition, natural mica, which is generally used as a flat carrier, has a wide particle size distribution and an irregular shape because it is made flat by utilizing its disintegration property.
(Squared state), which leads to a decrease in conductive contact. In addition, since it contains impurities (Fe etc.), it has a low whiteness and is not very suitable as a carrier of a white conductive material.

【0008】特開平6−135719号公報には、偏平状粉末
の1種である短冊状六チタン酸カリウム多結晶性粉末を
担体粉末とする表面被覆型の導電性粉末が記載されてい
る。この導電性粉末は透明性を備え、透明電極、透明な
帯電防止膜、透明発熱体、内外装材料などに利用でき
る。短冊状、即ち、細長い薄片状という担体粉末の形態
により、針状に近い形状効果 (高い導電接触性) を発揮
できる。そのため、担体が球状または雲母のような偏平
状である場合に比べて少ない充填量で、電気絶縁性の有
機または無機高分子に導電性を発現させることができ
る。しかも、この短冊状の担体粉末は、雲母に比べて粒
度分布が狭く、針状・繊維状の場合の形状由来の有害性
がない。
Japanese Unexamined Patent Publication (Kokai) No. 6-135719 describes a surface coating type conductive powder having a carrier powder of strip-shaped potassium hexatitanate polycrystalline powder which is one kind of flat powder. This conductive powder has transparency and can be used as a transparent electrode, a transparent antistatic film, a transparent heating element, an interior / exterior material, and the like. Due to the form of the carrier powder in the form of strips, that is, the shape of elongated flakes, a shape effect close to a needle shape (high conductive contact property) can be exhibited. Therefore, it is possible to make the electrically insulating organic or inorganic polymer exhibit conductivity with a smaller filling amount as compared with the case where the carrier is spherical or flat like mica. Moreover, this strip-shaped carrier powder has a narrower particle size distribution than mica, and is not harmful due to the shape in the case of needles or fibers.

【0009】しかし、担体粉末の六チタン酸カリウムが
耐酸性に劣るため、酸性の媒体に対しては適用できない
という問題がある。また、表面被覆する酸化錫と担体粉
末との密着性が低いため、表面被覆量を多くする必要が
あり、表面被覆量を多くしても、媒体との混合過程で被
覆の一部が剥がれるため、導電性を十分に高めることが
できない。
However, since potassium hexatitanate as the carrier powder has poor acid resistance, there is a problem that it cannot be applied to an acidic medium. In addition, since the adhesion between the surface-coated tin oxide and the carrier powder is low, it is necessary to increase the amount of surface coating. Even if the amount of surface coating is increased, part of the coating will peel off during the mixing process with the medium. , The conductivity cannot be sufficiently enhanced.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前述
した〜の問題点を持たず、しかも比較的少量の充填
量で材料に導電性を付与することができ、かつ透明性も
しくは白色性の高い導電性粉末とその製造方法を提供す
ることである。
SUMMARY OF THE INVENTION The object of the present invention is to eliminate the above-mentioned problems (1) to (3), to impart conductivity to a material with a relatively small filling amount, and to provide transparency or whiteness. To provide a highly conductive powder and a method for producing the same.

【0011】より具体的な本発明の目的は、二酸化チタ
ン粉末の表面に酸化錫系の導電層を形成した表面被覆型
の導電性粉末について、従来の球状粉末より少ない充填
量で、しかも酸化錫系導電性の被覆量を多くせずに十分
な導電性を付与できるように改良することである。
A more specific object of the present invention is to provide a surface coating type conductive powder having a tin oxide type conductive layer formed on the surface of titanium dioxide powder with a smaller filling amount than that of conventional spherical powder, and moreover, tin oxide. It is to improve so that sufficient conductivity can be imparted without increasing the coating amount of the system conductivity.

【0012】[0012]

【課題を解決するための手段】本発明者らは上記目的を
達成するために研究を重ねた結果、担体粉末として、短
冊状二酸化チタン粉末 (特願平5−307733号参照) を使
用し、その表面を酸化アンチモンを含む酸化錫で代表さ
れるような金属酸化物型の導電層で被覆した表面被覆型
の導電性粉末が、短冊状という形状により高い導電性付
与効果を示し、前述した短冊状六チタン酸カリウムを担
体とする場合の問題点がなく、分散性、透明性または白
色性、表面平滑性に優れていることを見出した。
Means for Solving the Problems As a result of repeated studies to achieve the above object, the present inventors have used strip-shaped titanium dioxide powder (see Japanese Patent Application No. 5-307733) as a carrier powder, The surface-coated conductive powder whose surface is coated with a metal oxide-type conductive layer typified by tin oxide containing antimony oxide exhibits a high conductivity-imparting effect due to the shape of a strip. It has been found that there is no problem when using potassium hexatitanate as a carrier, and the dispersibility, transparency or whiteness, and surface smoothness are excellent.

【0013】ここに、本発明は、平均長さ1〜100 μ
m、平均幅 0.2〜20μm、平均厚み0.01〜2μmの短冊
状二酸化チタン粉末の表面を、金属酸化物型導電層で被
覆してなる、短冊状導電性粉末であって、この導電層が
導電性粉末の1〜40wt%の量を占めることを特徴とする
短冊状導電性粉末である。
In the present invention, the average length is 1 to 100 μm.
m, an average width of 0.2 to 20 μm, and an average thickness of 0.01 to 2 μm, the surface of a strip of titanium dioxide powder is coated with a metal oxide type conductive layer, which is a strip of conductive powder. The strip-shaped conductive powder is characterized by occupying 1 to 40 wt% of the powder.

【0014】本発明の導電性粉末は、前記の短冊状二酸
化チタン粉末を懸濁させた水中で、前記導電層の金属酸
化物を構成する金属の塩化物を含有する塩酸酸性水溶液
とアルカリ水溶液とを混合することにより、この塩化物
を加水分解させ、次いでこの加水分解物で表面被覆され
た前記粉末を回収し、焼成することにより製造すること
ができる。
The conductive powder of the present invention is obtained by suspending the above-mentioned strip-shaped titanium dioxide powder in water, and adding an acidic aqueous hydrochloric acid solution and an alkaline aqueous solution containing a chloride of a metal constituting the metal oxide of the conductive layer. Can be produced by hydrolyzing this chloride, and then recovering the powder surface-coated with this hydrolyzate and calcining.

【0015】本発明の短冊状導電性粉末は、塗膜形成成
分を含有する溶液中に分散させることにより導電性塗料
化でき、それにより透光性または白色もしくは有色の導
電膜の形成に利用できる。本発明の短冊状導電性粉末は
また、有機または無機高分子中に混練して分散させるこ
とにより、導電性成形材料として、フィルム、シート、
繊維、立体成形品を含む各種形態の導電性成形体の製造
に利用することもできる。
The strip-shaped conductive powder of the present invention can be made into a conductive paint by dispersing it in a solution containing a film-forming component, and can be used for forming a light-transmitting or white or colored conductive film. . The strip-shaped conductive powder of the present invention is also kneaded and dispersed in an organic or inorganic polymer to give a conductive molding material, a film, a sheet,
It can also be used for the production of various forms of electrically conductive molded products including fibers and three-dimensional molded products.

【0016】通常の二酸化チタン粉末は球状粉末であ
る。これに対し、本発明で担体粉末として用いる二酸化
チタン粉末は、平均長さ1〜100 μm、平均幅 0.2〜20
μm、平均厚み0.01〜2μmの短冊状の二酸化チタン粉
末である。短冊状とは、長さ>幅>厚みの関係にある薄
片状の形状を意味する。
Conventional titanium dioxide powder is a spherical powder. On the other hand, the titanium dioxide powder used as the carrier powder in the present invention has an average length of 1 to 100 μm and an average width of 0.2 to 20.
It is a strip of titanium dioxide powder having a thickness of 0.01 μm and an average thickness of 0.01 to 2 μm. The strip shape means a flaky shape having a relationship of length>width> thickness.

【0017】この短冊状二酸化チタン粉末の粒子形状
が、平均長さで100 μm、平均幅で20μm、または平均
厚みで2μmを超えると、光透過率が低下し、薄膜化し
た時の透光性が低下する。また、この粉末の平均長さが
1μm未満または平均幅が0.2μm未満であると、短冊
状の形状効果を十分に発揮できず、導電性付与に多量の
充填量が必要となる。平均厚みが0.02μm未満である
と、粉末の機械的強度が弱く、塗料化または高分子との
混合時に折損し易くなる。好ましくは、平均長さ5〜50
μm、平均幅 1〜10μm、平均厚み0.05〜1μmであ
る。本発明で用いる短冊状二酸化チタン粉末は、(株)
クボタよりTXAX-ST なる商品名で市販されている。
When the particle shape of the strip-shaped titanium dioxide powder exceeds 100 μm in average length, 20 μm in average width, or 2 μm in average thickness, the light transmittance decreases and the light-transmitting property when thinned. Is reduced. If the average length of this powder is less than 1 μm or the average width is less than 0.2 μm, the effect of strip shape cannot be sufficiently exhibited, and a large amount of filling is required to impart conductivity. If the average thickness is less than 0.02 μm, the mechanical strength of the powder is weak and the powder is likely to be broken when it is made into a paint or mixed with a polymer. Preferably, the average length is 5 to 50
μm, average width 1 to 10 μm, and average thickness 0.05 to 1 μm. The strip-shaped titanium dioxide powder used in the present invention is
It is marketed by Kubota under the trade name TXAX-ST.

【0018】このような短冊状二酸化チタン粉末は、前
述した特願平5−307733号明細書に記載されているよう
に、メルト法で合成した繊維状の二チタン酸カリウム結
晶を酸水溶液に浸漬して結晶中のカリウムイオンの実質
的に全量を溶出させ、この浸漬中または浸漬後に湿式粉
砕を行い、次いで脱水・乾燥し、さらに焼成することに
より製造することができる。
Such strip-shaped titanium dioxide powder is obtained by immersing fibrous potassium dititanate crystals synthesized by the melt method in an aqueous acid solution as described in the above-mentioned Japanese Patent Application No. 5-307733. Then, substantially all of the potassium ions in the crystals are eluted, and wet pulverization is performed during or after the immersion, followed by dehydration / drying and further firing.

【0019】この短冊状二酸化チタン粉末の製造法につ
いて、次に簡単に説明する。まず、原料の繊維状二チタ
ン酸カリウム結晶は、加熱によりTiO2を生成するチタン
化合物と、K2O または加熱によりK2O を生成するカリウ
ム化合物とを、TiO2/K2O のモル比が 1.5〜2.5 となる
比率で混合し、この混合物を加熱溶融し、溶融生成物を
冷却 (好ましくは指向性冷却) して凝固させることによ
り生成させることができる。この方法を本発明ではメル
ト法という。
A method for producing the strip-shaped titanium dioxide powder will be briefly described below. First, the fibrous dititanate potassium crystals raw materials, a titanium compound to produce a TiO 2 by heating, and a potassium compound to produce a K 2 O by K 2 O or heating, the molar ratio of TiO 2 / K 2 O Can be produced by mixing at a ratio of 1.5 to 2.5, heating and melting the mixture, and cooling (preferably directional cooling) the molten product to solidify it. This method is called the melt method in the present invention.

【0020】このメルト法の生成物は、繊維状の二チタ
ン酸カリウム結晶を含む塊状物である。この塊状物を酸
水溶液に浸漬して、結晶中のカリウムイオンの実質的に
全量を溶出させると共に、浸漬中または浸漬後に湿式粉
砕を行う。浸漬に用いる酸水溶液としては、無機酸
(例、塩酸、硫酸、硝酸など) が好ましいが、有機酸
(例、スルホン酸類) も使用できる。「カリウムイオン
の実質的に全量を溶出」とは、浸漬後のカリウムイオン
含有量が2wt%以下、好ましくは1wt%以下であること
を意味する。
The product of this melt process is a lump containing fibrous potassium dititanate crystals. This lump is immersed in an aqueous acid solution to elute substantially all of the potassium ions in the crystal, and wet grinding is carried out during or after the immersion. As the acid aqueous solution used for immersion, an inorganic acid
(Eg, hydrochloric acid, sulfuric acid, nitric acid, etc.) is preferred, but organic acid
(Eg sulfonic acids) can also be used. "Elution of substantially all amount of potassium ion" means that the content of potassium ion after immersion is 2 wt% or less, preferably 1 wt% or less.

【0021】カリウムイオンの溶出により繊維状結晶に
は層状の空隙が生成するので、湿式粉砕を行うと、繊維
は容易に薄片状に解体して、短冊状形状の二酸化チタン
水和物の粒子が得られる。この粒子を回収し、脱水・乾
燥後、焼成 (好ましくは 500〜1000℃) を行うと、本発
明に用いる短冊状二酸化チタン粉末を得ることができ
る。この時のメルト法合成時のTiO2/K2O のモル比や、
溶出後の湿式粉砕の条件等によって、得られた短冊状二
酸化チタン粉末の粒子形状を制御することができる。
Since the layered voids are formed in the fibrous crystals by the elution of potassium ions, the fibers are easily disintegrated into flakes when wet pulverization is performed, and strip-shaped particles of titanium dioxide hydrate are formed. can get. When the particles are collected, dehydrated and dried, and then calcined (preferably 500 to 1000 ° C.), the strip-shaped titanium dioxide powder used in the present invention can be obtained. At this time, the molar ratio of TiO 2 / K 2 O during the synthesis by the melt method,
The particle shape of the obtained strip-shaped titanium dioxide powder can be controlled by the conditions of wet grinding after elution.

【0022】本発明の導電性粉末は、上記の短冊状二酸
化チタン粉末を担体粉末とし、これを金属酸化物型の導
電層で表面被覆したものである。導電層を構成する金属
酸化物としては、従来より導電材料として使用されてい
る各種の金属酸化物を使用することができる。このよう
な金属酸化物の例としては、酸化錫、ドープ金属と
してSbおよび/またはInを含有する酸化錫、ドープ金
属としてSnを含有する酸化インジウム、ならびにAl、
V、Cr、Mn、Co、Ga、Ge、Hfなどの1種もしくは2種以
上のドープ金属を含有する酸化亜鉛などが挙げられる。
The conductive powder of the present invention comprises the above-mentioned strip-shaped titanium dioxide powder as a carrier powder, which is surface-coated with a metal oxide type conductive layer. As the metal oxide forming the conductive layer, various metal oxides conventionally used as a conductive material can be used. Examples of such metal oxides include tin oxide, tin oxide containing Sb and / or In as a doped metal, indium oxide containing Sn as a doped metal, and Al,
Examples thereof include zinc oxide containing one or more doped metals such as V, Cr, Mn, Co, Ga, Ge and Hf.

【0023】導電層を構成する金属酸化物として好まし
いのは、Sbおよび/またはInを含有する酸化錫と、Snを
含有する酸化インジウム (一般にITOと略称される)
であり、特に好ましいのはSbを含有する酸化錫 (以下A
TOと略記する) である。ドープ金属 (例、酸化錫中の
Sbおよび/またはIn、或いは酸化インジウム中のSn)の
含有量は特に制限されないが、全金属に対するドープ金
属の原子%で、酸化錫においては30原子%以下、酸化イ
ンジウムにおいては15原子%以下、酸化亜鉛においては
30原子%以下であることが好ましい。
As the metal oxide constituting the conductive layer, tin oxide containing Sb and / or In and indium oxide containing Sn (generally abbreviated as ITO) are preferable.
And particularly preferred is tin oxide containing Sb (hereinafter referred to as A
Abbreviated as TO). Doped metal (e.g. in tin oxide)
The content of Sb and / or In, or Sn in indium oxide) is not particularly limited, but is 30 atomic% or less in tin oxide and 15 atomic% or less in indium oxide in atomic% of the doped metal with respect to all metals. In zinc oxide
It is preferably 30 atomic% or less.

【0024】金属酸化物型の導電層による担体粉末の表
面被覆は、得られた導電性粉末全体の重量の1〜40wt%
を導電層が占めるように行う。この導電層による被覆量
が1wt%未満であると導電性はほとんど付与されず、40
wt%を超えて被覆しても、それに見合う導電性の向上は
見られない。導電層の量は好ましくは5〜30wt%であ
る。
The surface coating of the carrier powder with the metal oxide type conductive layer is 1 to 40 wt% of the total weight of the obtained conductive powder.
Is performed so that the conductive layer occupies. If the coating amount of this conductive layer is less than 1 wt%, almost no conductivity is imparted, and 40
Even if the coating is performed in excess of wt%, the corresponding improvement in conductivity is not seen. The amount of conductive layer is preferably 5 to 30 wt%.

【0025】担体粉末の導電層による表面被覆は、従来
の表面被覆型導電性粉末の場合と同様に実施できる。即
ち、水中に担体粉末を懸濁させ、この懸濁した担体粉末
の存在下で、導電層を構成する金属酸化物の金属の塩化
物 (金属酸化物がATOである場合、塩化錫とドープ金
属となる塩化アンチモン) を含有する塩酸酸性水溶液と
アルカリ水溶液とを混合すると、これらの金属塩化物が
加水分解し、金属水酸化物が担体粉末の表面に析出し
て、粉末表面を被覆する。上記のATOのように2種以
上の金属塩化物を使用した場合には、2種以上の金属水
酸化物の共沈物が担体粉末の表面に析出する。従って、
原料の各金属塩化物の使用割合によって、共沈した水酸
化物中のドープ金属の割合を調整することができる。
The surface coating of the carrier powder with the conductive layer can be carried out in the same manner as in the case of the conventional surface coating type conductive powder. That is, a carrier powder is suspended in water, and in the presence of the suspended carrier powder, a metal chloride of a metal oxide constituting the conductive layer (in the case where the metal oxide is ATO, tin chloride and a doped metal). When an acidic aqueous solution of hydrochloric acid containing antimony chloride) and an alkaline aqueous solution are mixed, these metal chlorides are hydrolyzed and metal hydroxides are deposited on the surface of the carrier powder to coat the surface of the powder. When two or more kinds of metal chlorides are used as in the above ATO, coprecipitates of two or more kinds of metal hydroxides are deposited on the surface of the carrier powder. Therefore,
The proportion of the doped metal in the coprecipitated hydroxide can be adjusted by the proportion of each metal chloride used as the raw material.

【0026】金属塩化物の塩酸酸性水溶液とアルカリ水
溶液との混合は、水性媒質のpHが1.0〜7、特に 1.5
〜2.0 の範囲内となるように行うことが好ましい。この
加水分解によって得られた、金属水酸化物で表面被覆さ
れた担体粉末を回収し、所望により水洗および乾燥した
後、大気中で焼成 (好ましくは 400〜800 ℃) すると、
金属水酸化物が酸化物に変化し、短冊状二酸化チタン粉
末が導電性金属酸化物で表面被覆された本発明の短冊状
導電性粉末が得られる。
The mixing of the acidic hydrochloric acid aqueous solution of the metal chloride and the alkaline aqueous solution has a pH of the aqueous medium of 1.0 to 7, especially 1.5.
It is preferable to carry out the treatment so as to fall within the range of 2.0. Obtained by this hydrolysis, the carrier powder surface-coated with a metal hydroxide is recovered, washed with water and dried if desired, and then calcined in the air (preferably 400 to 800 ° C.),
The metal hydroxide is converted into an oxide, and the strip-shaped conductive powder of the present invention in which the strip-shaped titanium dioxide powder is surface-coated with the conductive metal oxide is obtained.

【0027】本発明の短冊状導電性粉末は、塗膜形成成
分を含有する溶液中に分散させることにより塗料化し
て、導電性塗料として導電膜の形成に使用することがで
きる。塗膜形成成分は、有機系と無機系のいずれでもよ
く、自然もしくは加熱乾燥型、熱硬化型、紫外線もしく
は電子線硬化型などのいずれの種類のものでもよい。塗
膜形成成分が透明膜を形成するものであれば、この塗料
により透光性の導電膜を形成することができ、塗膜を厚
くすれば白色の導電膜が形成される。また、着色顔料も
しくは染料を共存させて、着色導電膜を形成することも
可能である。好ましい塗膜形成成分としては、ポリエス
テル、アクリル樹脂、ポリカーボネート、アルキッド樹
脂などの有機樹脂、ならびにエチルシリケートなどのア
ルコキシシランなどが例示される。
The strip-shaped conductive powder of the present invention can be made into a paint by dispersing it in a solution containing a film-forming component and used as a conductive paint for forming a conductive film. The coating film forming component may be either an organic type or an inorganic type, and may be any type such as a natural or heat drying type, a thermosetting type, an ultraviolet ray or an electron beam curing type. As long as the coating film forming component forms a transparent film, a translucent conductive film can be formed by this coating material, and if the coating film is thickened, a white conductive film is formed. It is also possible to form a colored conductive film by allowing a color pigment or dye to coexist. Examples of preferable coating film forming components include organic resins such as polyester, acrylic resin, polycarbonate, and alkyd resin, and alkoxysilane such as ethyl silicate.

【0028】本発明の短冊状導電性粉末はまた、有機ま
たは無機高分子中に分散させて導電性の成形材料として
利用することもできる。この成形材料を成形することに
より、フィルム、シート、テープ、繊維、立体成形品な
どの任意の形状の導電性成形体を得ることができる。こ
のような成形材料に用いる有機高分子としては、ポリエ
チレン、ポリプロピレンなどのポリオレフィン類、ポリ
エステル、ポリカーボネート、シリコーン樹脂などが挙
げられる。また、無機高分子の例は各種の含水珪酸塩鉱
物である。
The strip-shaped conductive powder of the present invention can also be dispersed in an organic or inorganic polymer and used as a conductive molding material. By molding this molding material, it is possible to obtain a conductive molded body of any shape such as a film, a sheet, a tape, a fiber or a three-dimensional molded article. Examples of organic polymers used for such molding materials include polyolefins such as polyethylene and polypropylene, polyesters, polycarbonates, and silicone resins. Examples of inorganic polymers are various hydrous silicate minerals.

【0029】導電膜および導電性成形体のいずれを形成
する場合にも、本発明の導電性粉末の細長い短冊状とい
う形状により、球状粉末や偏平状粉末に比べて少ない充
填量で必要な導電性を付与することができる。導電性粉
末の充填量は、必要な導電性のレベルに応じて異なる
が、通常は10〜50wt%、好ましくは15〜40wt%の範囲内
である。導電性粉末の充填量が少ないため、粉末の充填
による材料特性の劣化が少ない。
When forming either a conductive film or a conductive compact, the conductive powder of the present invention has a long and narrow strip shape, so that the required conductivity is smaller than that of spherical powder or flat powder. Can be given. The filling amount of the conductive powder varies depending on the required level of conductivity, but is usually in the range of 10 to 50 wt%, preferably 15 to 40 wt%. Since the filling amount of the conductive powder is small, the deterioration of the material properties due to the filling of the powder is small.

【0030】また、針状もしくは繊維状粉末に見られる
ような、混合中の粉末の折損や均一分散が困難といった
問題が軽減され、形状由来の危険性もない。さらに、担
体粉末が、六チタン酸カリウムではなく、化学的により
安定な二酸化チタン粉末であるので、本発明の導電性粉
末は酸性環境下でも使用でき、また表面被覆の担体粉末
への密着性が高く、混合中の表面被覆の剥がれによる導
電性の低下が少ない。そのため、比較的少ない充填量で
確実に所定の導電性を材料に付与することができる。
Further, problems such as breakage of the powder during mixing and difficulty in uniform dispersion, which are found in needle-like or fibrous powders, are alleviated, and there is no danger of being derived from the shape. Furthermore, since the carrier powder is not chemically hexatitanate but a chemically more stable titanium dioxide powder, the conductive powder of the present invention can be used even in an acidic environment, and the adhesion of the surface coating to the carrier powder can be improved. It is high, and the decrease in conductivity due to peeling of the surface coating during mixing is small. Therefore, it is possible to reliably impart a predetermined conductivity to the material with a relatively small filling amount.

【0031】本発明の導電性粉末を含有する導電膜およ
び成形体は、帯電防止材料として有用である他、導電性
のレベルによっては導電材料または半導性材料として利
用することもできる。
The conductive film and the molded product containing the conductive powder of the present invention are useful as an antistatic material, and can also be used as a conductive material or a semiconductive material depending on the level of conductivity.

【0032】[0032]

【実施例】次に実施例により本発明をより具体的に説明
するが、本発明は実施例に制限されるものではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the examples.

【0033】[0033]

【実施例1】平均長さ37μm、平均幅4μm、平均厚み
0.2 μmの短冊状二酸化チタン粉末[(株) クボタ製、TX
AX−ST、K含有量約 0.6wt%] 100 gを0.3 L の水に加
えて攪拌下に分散状態に保持し、90℃に加熱した。この
加熱・分散状態を保持しながら、SnCl4 30gとSbCl3 4.
5 gとを含む塩酸酸性水溶液と150 g/L のNaOH水溶液と
を、水相のpHが2〜4になるように30分間かけて同時
に滴下し、水酸化錫と水酸化アンチモンとの共沈物を上
記粉末の表面に析出させた。この粉末を濾別した後、再
び水中に分散させて水洗し、濾過により回収した。その
後、回収した粉末を100 ℃で乾燥し、次に600 ℃大気中
にて1時間で焼成して、Sbを含有する酸化錫 (ATO)
で表面被覆された短冊状二酸化チタン粉末を得た。
Example 1 Average length 37 μm, average width 4 μm, average thickness
Titanium dioxide powder with a size of 0.2 μm [made by Kubota Corporation, TX
100 g of AX-ST, K content of about 0.6 wt%] was added to 0.3 L of water, kept in a dispersed state with stirring, and heated to 90 ° C. While maintaining this heated and dispersed state, SnCl 4 30 g and SbCl 3 4.
An acidic hydrochloric acid aqueous solution containing 5 g and a 150 g / L NaOH aqueous solution were simultaneously added dropwise over 30 minutes so that the pH of the aqueous phase was 2 to 4, and coprecipitation of tin hydroxide and antimony hydroxide was performed. The substance was deposited on the surface of the powder. The powder was filtered off, dispersed again in water, washed with water, and collected by filtration. Then, the recovered powder is dried at 100 ° C. and then calcined at 600 ° C. in the atmosphere for 1 hour to obtain Sb-containing tin oxide (ATO).
A strip of titanium dioxide powder surface-coated with was obtained.

【0034】この導電性粉末の収量は115 g、導電層の
表面被覆量は15wt%であり、粉末の体積電気抵抗率 (10
0 kgm2の加圧下、以下同じ) は9Ω・cmであった。この
導電性粉末30gを、メチルエチルケトン600 gとシクロ
ヘキサノン150 gとからなる混合溶媒中にポリエステル
樹脂100 gを含有する樹脂液と混合し、サンドミル (ガ
ラスビーズ径1mm) で30分間分散させて、透光性の導電
塗料を得た。これを厚さ75μmのポリエステルフィルム
上に膜厚5μmになるように塗布し、150 ℃で乾燥して
透光性の導電膜を形成した。この導電膜中の導電性粉末
の充填量は23wt%、表面抵抗値は4×106 Ω/□、全光
線透過率は86%であった。
The yield of this conductive powder was 115 g, the surface coating amount of the conductive layer was 15 wt%, and the volume resistivity of the powder (10
It was 9 Ω · cm under the pressure of 0 kgm 2 . 30 g of this conductive powder was mixed with a resin solution containing 100 g of polyester resin in a mixed solvent consisting of 600 g of methyl ethyl ketone and 150 g of cyclohexanone, and dispersed with a sand mill (glass bead diameter 1 mm) for 30 minutes to transmit light. A conductive conductive coating was obtained. This was applied onto a polyester film having a thickness of 75 μm to a film thickness of 5 μm and dried at 150 ° C. to form a translucent conductive film. The filling amount of the conductive powder in this conductive film was 23 wt%, the surface resistance value was 4 × 10 6 Ω / □, and the total light transmittance was 86%.

【0035】[0035]

【比較例1】担体粉末として、平均長さ40μm、平均幅
5μm、平均厚み0.2 μmの短冊状六チタン酸カリウム
粉末[(株) クボタ製、TXAX−SA、K含有量約13.5wt%]
100gを用いて、実施例1と同様にしてATOで表面被
覆し、導電性粉末を得た。但し、塩酸酸性水溶液中のSn
Cl4 量は34g、SbCl3 含有量は5gと、実施例1よりや
や多くした。得られた導電性粉末の収量は119 gであ
り、その導電層の表面被覆量は20wt%と実施例1より多
かったが、粉末の体積電気抵抗率13Ω・cmであって、導
電性は実施例1より低下した。
[Comparative Example 1] As a carrier powder, a strip of potassium hexatitanate powder having an average length of 40 µm, an average width of 5 µm and an average thickness of 0.2 µm [manufactured by Kubota Corporation, TXAX-SA, K content: about 13.5 wt%].
The surface of 100 g was coated with ATO in the same manner as in Example 1 to obtain a conductive powder. However, Sn in hydrochloric acid acidic aqueous solution
The amount of Cl 4 was 34 g and the content of SbCl 3 was 5 g, which were slightly larger than those in Example 1. The yield of the obtained conductive powder was 119 g, and the surface coverage of the conductive layer was 20 wt%, which was higher than that in Example 1. However, the volume electric resistivity of the powder was 13 Ω · cm, and the conductivity was It was lower than in Example 1.

【0036】この導電性粉末を用いて実施例1と同様に
してポリエステルフィルム上に透光性の導電膜を形成し
た。導電性粉末の表面被覆量が多い (膜中の導電性粉末
の充填量は同じ) にもかかわらず、得られた導電膜の表
面抵抗値は3×107 Ω/□と実施例1より低く、全光線
透過率は85%であった。
A transparent conductive film was formed on a polyester film using this conductive powder in the same manner as in Example 1. The surface resistance value of the obtained conductive film was 3 × 10 7 Ω / □, which was lower than that of Example 1, even though the surface coverage of the conductive powder was large (the amount of conductive powder filled in the film was the same). The total light transmittance was 85%.

【0037】[0037]

【比較例2】担体粉末として天然白雲母粉末 (山田雲母
工業所製、平均粒径30μm、平均厚み0.6 μm) 100 g
を用いて、実施例1と同様にしてATOで表面被覆し、
導電性粉末を得た。得られた薄片状の導電性粉末の収量
は114 gであり、粉末の体積電気抵抗率19Ω・cmであっ
た。この導電性粉末を用いて実施例1と同様にしてポリ
エステルフィルム上に透光性の導電膜 (導電性粉末の充
填量は実施例1に同じ) を形成したところ、導電膜の表
面抵抗値は9×109 Ω/□、全光線透過率は86%であっ
た。
Comparative Example 2 100 g of natural muscovite powder (manufactured by Yamada Mica Industry Co., Ltd., average particle size 30 μm, average thickness 0.6 μm) as carrier powder
In the same manner as in Example 1, surface-coated with ATO,
A conductive powder was obtained. The yield of the obtained flaky conductive powder was 114 g, and the volume electrical resistivity of the powder was 19 Ω · cm. When a transparent conductive film (the filling amount of the conductive powder is the same as in Example 1) was formed on the polyester film in the same manner as in Example 1 using this conductive powder, the surface resistance value of the conductive film was The total light transmittance was 9 × 10 9 Ω / □ and 86%.

【0038】[0038]

【比較例3】担体粉末として、球状の二酸化チタン粉末
(平均粒径6.2 μm) 100 gを用い、実施例1とほぼ同
様にしてATOで被覆し、表面被覆量17wt%、体積電気
抵抗率5Ω・cmの導電性粉末116 gを得た。この球状の
導電性粉末を用いて、実施例1と同様にしてポリエステ
ルフィルム上に透光性の導電膜 (導電性粉末の充填量は
60wt%) を形成したところ、導電膜の表面抵抗値は5×
109 Ω/□、全光線透過率は68%であった。
[Comparative Example 3] Spherical titanium dioxide powder as carrier powder
Using 100 g (average particle size: 6.2 μm), coating with ATO was carried out in the same manner as in Example 1 to obtain 116 g of a conductive powder having a surface coating amount of 17 wt% and a volume electric resistivity of 5 Ω · cm. Using this spherical conductive powder, a translucent conductive film (the filling amount of the conductive powder is
60 wt%), the surface resistance of the conductive film is 5 ×
The total light transmittance was 10 9 Ω / □ and 68%.

【0039】[0039]

【比較例4】担体粉末として、針状の酸化チタン粉末10
0 gを用い、実施例1とほぼ同様にしてATOで被覆
し、表面被覆量20wt%、体積電気抵抗率15Ω・cmの導電
性粉末118 gを得た。この針状の導電性粉末を用いて、
実施例1と同様にしてポリエステルフィルム上に透光性
の導電膜 (導電性粉末の充填量は50wt%) を形成したと
ころ、導電膜の表面抵抗値は3×107 Ω/□であった。
[Comparative Example 4] Needle-shaped titanium oxide powder 10 as carrier powder
Using 0 g, coating was carried out with ATO in substantially the same manner as in Example 1 to obtain 118 g of a conductive powder having a surface coating amount of 20 wt% and a volume electric resistivity of 15 Ω · cm. Using this needle-shaped conductive powder,
When a translucent conductive film (filling amount of the conductive powder was 50 wt%) was formed on the polyester film in the same manner as in Example 1, the surface resistance value of the conductive film was 3 × 10 7 Ω / □. .

【0040】[0040]

【実施例2】金属塩化物としてSnCl2 2gとInCl3 22g
を含有する塩酸酸性水溶液を使用した以外は実施例1に
従って、Snを含む酸化インジウム (ITO) で表面被覆
された短冊状導電性粉末115 gを得た。この粉末の表面
被覆量は15wt%、体積電気抵抗率は12Ω・cmであった。
この短冊状導電性粉末を用いて、実施例1と同様にして
ポリエステルフィルム上に透光性の導電膜 (導電性粉末
の充填量は実施例1に同じ) を形成したところ、導電膜
の表面抵抗値は1×106 Ω/□、全光線透過率は84%で
あった。
Example 2 2 g of SnCl 2 and 22 g of InCl 3 as metal chlorides
115 g of strip-shaped conductive powder surface-coated with Sn-containing indium oxide (ITO) was obtained in the same manner as in Example 1 except that the acidic aqueous hydrochloric acid solution containing was used. The surface coverage of this powder was 15 wt% and the volume resistivity was 12 Ω · cm.
Using this strip-shaped conductive powder, a transparent conductive film (the filling amount of the conductive powder is the same as in Example 1) was formed on a polyester film in the same manner as in Example 1. The resistance value was 1 × 10 6 Ω / □, and the total light transmittance was 84%.

【0041】[0041]

【発明の効果】本発明の導電性粉末は、短冊状の担体粉
末の材料が二酸化チタンであるため、短冊状の六チタン
酸カリウム粉末を担体とする場合に比べて、少ない表面
被覆量で高い導電性を発揮することができる。しかも、
短冊状という形状効果により、球状粉末に比べて少ない
充填量で材料に導電性を付与することができ、繊維状ま
たは針状粉末に比べて、均一分散性や表面平滑性に優れ
ており、形状由来に危険性もない。これらの総合的な効
果により、比較的少ない表面被覆量および粉末充填量
で、材料に均一、確実、かつ安全に高い導電性を付与す
ることができる。また、本発明の導電性粉末は透明性が
高く、透光性の導電膜およびフィルムを形成することが
でき、白色化あるいは自由に着色することも可能であ
る。
EFFECT OF THE INVENTION Since the conductive powder of the present invention is made of titanium dioxide as the material for the strip-shaped carrier powder, the amount of surface coating is high compared to the case where strip-shaped potassium hexatitanate powder is used as the carrier. It can exhibit conductivity. Moreover,
Due to the shape effect of the strip shape, it is possible to impart conductivity to the material with a smaller filling amount compared to the spherical powder, and it is superior in uniform dispersibility and surface smoothness compared to the fibrous or acicular powder. There is no danger in origin. Due to these overall effects, it is possible to impart high conductivity to the material uniformly, reliably and safely with a relatively small amount of surface coating and powder filling. Further, the conductive powder of the present invention has high transparency and can form a transparent conductive film and film, and can be whitened or colored freely.

フロントページの続き (72)発明者 小林 勇 兵庫県尼崎市浜一丁目1番1号 株式会社 クボタ技術開発研究所内Front page continuation (72) Inventor Isamu Kobayashi 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均長さ1〜100 μm、平均幅 0.2〜20
μm、平均厚み0.01〜2μmの短冊状二酸化チタン粉末
の表面を、金属酸化物型導電層で被覆してなる、短冊状
導電性粉末であって、この導電層が導電性粉末の1〜40
wt%の量を占めることを特徴とする短冊状導電性粉末。
1. An average length of 1 to 100 μm and an average width of 0.2 to 20
A strip-shaped conductive powder obtained by coating the surface of a strip-shaped titanium dioxide powder having a thickness of μm and an average thickness of 0.01 to 2 μm with a metal oxide type conductive layer, the conductive layer being 1 to 40 of the conductive powder.
A strip-shaped conductive powder characterized by occupying an amount of wt%.
【請求項2】 前記短冊状二酸化チタン粉末を懸濁させ
た水中で、前記導電層の金属酸化物を構成する金属の塩
化物を含有する塩酸酸性水溶液とアルカリ水溶液とを混
合することにより、この塩化物を加水分解させ、次いで
この加水分解物で表面被覆された前記粉末を回収し、焼
成することを特徴とする、請求項1記載の短冊状導性粉
末の製造方法。
2. In the water in which the strip-shaped titanium dioxide powder is suspended, an acidic aqueous hydrochloric acid solution containing a chloride of a metal forming the metal oxide of the conductive layer is mixed with an alkaline aqueous solution, thereby The method for producing a strip-shaped conductive powder according to claim 1, wherein the chloride is hydrolyzed, and then the powder surface-coated with the hydrolyzate is recovered and calcined.
【請求項3】 前記短冊状二酸化チタン粉末が、メルト
法で合成した繊維状の二チタン酸カリウム結晶を酸水溶
液に浸漬して結晶中のカリウムイオンの実質的に全量を
溶出させ、浸漬中または浸漬後に湿式粉砕し、脱水・乾
燥、焼成することにより製造された粉末である、請求項
2記載の方法。
3. The strip-shaped titanium dioxide powder is immersed in an aqueous acid solution by immersing fibrous potassium dititanate crystals synthesized by a melt method to elute substantially all the potassium ions in the crystals, and The method according to claim 2, which is a powder produced by wet pulverizing after immersion, dehydration / drying, and firing.
【請求項4】 塗膜形成成分と、請求項1記載の短冊状
導電性粉末とを含有することを特徴とする導電性塗料。
4. A conductive coating material comprising a coating film-forming component and the strip-shaped conductive powder according to claim 1.
【請求項5】 有機または無機高分子中に請求項1記載
の短冊状導電性粉末が分散していることを特徴とする、
導電性成形材料。
5. The strip-shaped conductive powder according to claim 1 dispersed in an organic or inorganic polymer,
Conductive molding material.
JP02204595A 1995-02-09 1995-02-09 Strip-shaped conductive powder, its production method and use Expired - Lifetime JP3557688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02204595A JP3557688B2 (en) 1995-02-09 1995-02-09 Strip-shaped conductive powder, its production method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02204595A JP3557688B2 (en) 1995-02-09 1995-02-09 Strip-shaped conductive powder, its production method and use

Publications (2)

Publication Number Publication Date
JPH08217446A true JPH08217446A (en) 1996-08-27
JP3557688B2 JP3557688B2 (en) 2004-08-25

Family

ID=12071970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02204595A Expired - Lifetime JP3557688B2 (en) 1995-02-09 1995-02-09 Strip-shaped conductive powder, its production method and use

Country Status (1)

Country Link
JP (1) JP3557688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908574B2 (en) 2001-08-13 2005-06-21 Dowa Mining Co., Ltd. Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
JP2005336485A (en) * 2004-05-17 2005-12-08 Merck Patent Gmbh Transparent electrically conductive pigment
WO2007102490A1 (en) * 2006-03-07 2007-09-13 Ishihara Sangyo Kaisha, Ltd. Titanium oxide, conductive titanium oxide, and processes for producing these

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259625A (en) * 1984-06-01 1985-12-21 Natl Inst For Res In Inorg Mater Production of titania fiber
JPS6155216A (en) * 1984-08-18 1986-03-19 Kyushu Refract Co Ltd Production of potassium titanate filament and production of titania filament
JPS6126933B2 (en) * 1982-07-01 1986-06-23 Seisan Kaihatsu Kagaku Kenkyusho
JPS61286221A (en) * 1985-06-07 1986-12-16 Ishihara Sangyo Kaisha Ltd Preparation of white electroconductive powder
JPS63233016A (en) * 1986-11-11 1988-09-28 Ishihara Sangyo Kaisha Ltd Acicular electrically conductive titanium oxide and its production
JPH01246139A (en) * 1988-03-28 1989-10-02 Kubota Ltd Production of titania fiber
JPH02164722A (en) * 1988-12-16 1990-06-25 Toho Titanium Co Ltd Potassium titanate filament and production of titania fiber using the same filament

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126933B2 (en) * 1982-07-01 1986-06-23 Seisan Kaihatsu Kagaku Kenkyusho
JPS60259625A (en) * 1984-06-01 1985-12-21 Natl Inst For Res In Inorg Mater Production of titania fiber
JPS6155216A (en) * 1984-08-18 1986-03-19 Kyushu Refract Co Ltd Production of potassium titanate filament and production of titania filament
JPS61286221A (en) * 1985-06-07 1986-12-16 Ishihara Sangyo Kaisha Ltd Preparation of white electroconductive powder
JPS63233016A (en) * 1986-11-11 1988-09-28 Ishihara Sangyo Kaisha Ltd Acicular electrically conductive titanium oxide and its production
JPH01246139A (en) * 1988-03-28 1989-10-02 Kubota Ltd Production of titania fiber
JPH02164722A (en) * 1988-12-16 1990-06-25 Toho Titanium Co Ltd Potassium titanate filament and production of titania fiber using the same filament

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908574B2 (en) 2001-08-13 2005-06-21 Dowa Mining Co., Ltd. Tin-containing indium oxides, a process for producing them, a coating solution using them and electrically conductive coatings formed of them
JP2005336485A (en) * 2004-05-17 2005-12-08 Merck Patent Gmbh Transparent electrically conductive pigment
JP2013064149A (en) * 2004-05-17 2013-04-11 Merck Patent Gmbh Transparent electrically conductive pigment
WO2007102490A1 (en) * 2006-03-07 2007-09-13 Ishihara Sangyo Kaisha, Ltd. Titanium oxide, conductive titanium oxide, and processes for producing these
US8227083B2 (en) 2006-03-07 2012-07-24 Ishihara Sangyo Kaisha, Ltd. Conductive titanium oxide comprising titanium oxide of columnar shape and specific dimensions, and processes for producing thereof
US8926713B2 (en) 2006-03-07 2015-01-06 Ishihara Sangyo Kaisha, Ltd. Method of making titanium dioxide in the shape of columnar particles
US9428400B2 (en) 2006-03-07 2016-08-30 Ishihara Sangyo Kaisha, Ltd. Processes for producing columnar titanium dioxide particles
US9809461B2 (en) 2006-03-07 2017-11-07 Ishihara Sangyo Kaisha, Ltd. Titanium oxide, conductive titanium oxide, and processes for producing these

Also Published As

Publication number Publication date
JP3557688B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP3444919B2 (en) Conductive pigment
KR0136789B1 (en) Electrically conductive pigment platelets
AU636116B2 (en) Improved electroconductive composition and process of preparation
KR100394889B1 (en) Needle-shaped electrically conductive tin oxide fine particles and preparation method thereof
CA2055853A1 (en) Fibrous electrically-conductive filler and process for producing the same
US5322561A (en) Conductive flaky pigments
JP3305405B2 (en) Rod-shaped fine particle conductive titanium oxide and method for producing the same
JPH0617231B2 (en) Needle-shaped conductive titanium oxide and method for producing the same
JP3422832B2 (en) Dendritic or starfish-shaped fine titanium dioxide and method for producing the same
US20020053661A1 (en) Process for preparing electrically conductive pigments
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JP3557688B2 (en) Strip-shaped conductive powder, its production method and use
JPS61141616A (en) Electrically conductive titanium dioxide fine powder, and production thereof
JP3365883B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP3875282B2 (en) Conductive thin plate barium sulfate filler and method for producing the same
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP5674354B2 (en) Conductive acicular antimony tin oxide fine powder and method for producing the same
JP3647929B2 (en) Method for producing conductive antimony-containing tin oxide fine powder
JP2004143022A (en) Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JP2010168260A (en) Needle-like tin oxide fine powder and method for producing the same
JPH06192592A (en) Conductive filler and its preparation
JPH06135719A (en) Transparent conductive powder and its production
JPH0832561B2 (en) Composite conductive powder and method for producing the same
JP3394556B2 (en) Conductive barium sulfate filler and method for producing the same
JPH0292824A (en) Acicular low oxidized titanium and production thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term