JPH0124564B2 - - Google Patents

Info

Publication number
JPH0124564B2
JPH0124564B2 JP58020753A JP2075383A JPH0124564B2 JP H0124564 B2 JPH0124564 B2 JP H0124564B2 JP 58020753 A JP58020753 A JP 58020753A JP 2075383 A JP2075383 A JP 2075383A JP H0124564 B2 JPH0124564 B2 JP H0124564B2
Authority
JP
Japan
Prior art keywords
roll
rolling
rolled
rolls
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58020753A
Other languages
Japanese (ja)
Other versions
JPS59147702A (en
Inventor
Kazuyuki Nakasuji
Chihiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2075383A priority Critical patent/JPS59147702A/en
Priority to AU16285/83A priority patent/AU562483B2/en
Priority to US06/508,720 priority patent/US4512177A/en
Priority to DE19833323232 priority patent/DE3323232A1/en
Priority to AT0236583A priority patent/AT391640B/en
Priority to FR8310745A priority patent/FR2529481B1/en
Priority to SE8303709A priority patent/SE464617B/en
Priority to CA000431444A priority patent/CA1217363A/en
Priority to IT67719/83A priority patent/IT1203830B/en
Priority to GB08317789A priority patent/GB2123732B/en
Publication of JPS59147702A publication Critical patent/JPS59147702A/en
Publication of JPH0124564B2 publication Critical patent/JPH0124564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造設備にて鋳造抽出されてくる
鋼材、或いは圧延機にて圧延される鋼材に圧延を
施して円形断面の金属材を製造する方法に関する
ものである。 丸鋼片、或いは丸棒鋼を製造する場合、素鋼材
をカリバーロールを用いた圧延機により圧延する
ことが一般に行なわれているが、近年設備コスト
の低減を目的としてカリバーロールを用いた圧延
機に替えて傾斜ロール型圧延機の使用が試みられ
ており、従来難点とされていた傾斜ロール型圧延
機を用いることにより生ずる内部割れ、所謂マン
ネスマン破壊を抑制し得るようにした円形断面金
属材の製造方法については既に本出願人によつて
出願されている(特願昭57−114362号)。しかし
反面において、この方法は素材たる鋼片をその軸
回りに回転させつつ圧延することとなるため、圧
延中鋼材の回転を止めることが出来ない、例えば
連続鋳造機に直結設置して鋼材を製造する場合、
或いはカリバーロールを用いた圧延機の前段に粗
列圧延機として設置して鋼材を製造する場合など
には、この方法の圧延機は適用出来ないという難
点があつた。 この対策として素材たる鋼材を回転させないで
傾斜ロール圧延機自体を自転させつつ鋼材の軸回
りに公転させるようにした第1〜3図に示す如き
傾斜ロール型圧延装置が提案されている(特開昭
57−91806号)。第1図は従来装置における傾斜ロ
ールの配置態様を示す正面図、第2図は同じく第
1図の―線による断面図、第3図は第1図の
―線による側面図であり、図中10は被圧延
材、11,12,13は片端支持の3個のコーン
型ロールを示している。被圧延材10は白板矢符
方向からパスラインX―Xに沿つて移送されるよ
うになつており、また各コーン型ロール11,1
2,13はいずれも小径のロール端を被圧延材1
0の移動方向下流側に向けた状態で、その軸心線
Y―YをパスラインX―X側に向けてγ(交叉角)
だけ傾け、且つパスラインX―X回りにその周方
向に向けてβ(傾斜角という)だけ傾けてパスラ
インX―X回りに回転駆動されるロールハウジン
グ(図示せず)に軸支されており、各コーン型ロ
ール11,12,13は夫々軸回りに自転し、且
つパスラインX―X回りに公転しつつ被圧延材1
0を圧延するようになつている。そして交叉角
γ、傾斜角βは通常交叉角γが−50〜−60゜(ロー
ル軸端部が被圧延材10に対し、その入口側で接
近している状態を正、出口側で接近している状態
を負として表わす)、同じく傾斜角βが3゜〜6゜の
範囲の値に設定されている。 しかしこの方法は本発明者等の実験によればこ
の方法によつて圧延した材料には確かに表面ねじ
れが小さいという利点は認められるが、ポロシテ
イ等の内部欠陥の改善には疑問があり、更に圧延
能率、製品の外径寸法精度が低いという問題があ
ることが解つた。 本発明者等は上述した如き問題点解消のための
実験研究を行つた結果、傾斜ロールをその交叉角
を正に、また交叉角、傾斜角を所定範囲内の値に
設定することによつて、ポロシテイの圧着、圧延
能率の向上等を効果的に改善し得ることを知見し
た。 本発明はかかる知見に基づきなされたものであ
つて、その目的とするところは、交叉角γ、傾斜
角βに適正な範囲を定めて、被圧延材に回転を生
じさせない状態で傾斜ロールを被圧延材回りに自
転並びに公転させつつ圧延することにより、難加
工材に対する高加工度圧延を可能ならしめ、連続
鋳造機、或いは他の圧延機に直結して効率よく、
しかも高品質な円形断面金属材の製造が可能な方
法を提供するにある。 本発明に係る円形断面金属材の製造方法は被圧
延材のパスライン周りに回転するハウジングに、
夫々軸回りに回転駆動される3又は4個のロール
を、その軸心線がパスラインと非平行になるよう
にパスライン回りの同方向に傾斜角βだけ傾斜
し、またその軸心線が被圧延材のパスライン軸心
に対して交叉角γだけ傾斜(交叉)するよう軸支
した傾斜圧延機を用い、前記傾斜角β、交叉角γ
が 3゜<β<45゜ 0゜<γ<60゜ を満足するよう設定して被圧延材をその軸回りに
回転させることなく延伸圧延する工程を含むこと
を特徴とする。 以下本発明をその実施状態を示す図面に基づい
て具体的に説明する。第4図は本発明方法の実施
に使用する圧延機のロールの配置状態を示す模式
的正面図、第5図は第4図の―線による断面
図、第6図は第4図の―線による側面図であ
り、図中30は被圧延材、31,32,33はロ
ールを示している。被圧延材30は例えば連続鋳
造機にて鋳造され、白板矢符方向から圧延機に向
けてその鋳造速度で給送されるようになつてい
る。圧延機の各ロール31,32,33は被圧延
材30の出側端部にコージ部31a,32a,3
3aを備え、ゴージ部を境にして被圧延材30の
入側は軸端に向けて漸次直径を縮小され、また出
側は拡大されて円錐台形をなす入口面31b,3
2b,33b及び出口面31c,32c,33c
を備えている。そして各ロール31,32,33
はいずれもその入口面31b,32b,33bを
被圧延材30の移動方向上流側に位置させ、また
軸心線Y―Yと、ゴージ部31a,32a,33
aを含む平面との交点0(以下ロール設定中心と
いう)を、被圧延材30のパスラインX―Xと直
交する同一平面上にてパスラインX―X周りに略
等間隔に位置せしめ、且つ、各ロール31,3
2,33の軸心線Y―Yはロール設定中心回りに
被圧延材30のパスラインX―Xとの関係におい
て第5図に示すように前方の軸端がパスラインX
―Xに向けて接近するよう交叉角γだけ交叉(傾
斜)せしめられ、且つ第5図、第6図に示すよう
に前方の軸端が被圧延材30の周方向の同じ側に
向けて傾斜角βだけ傾斜せしめられて、夫々被圧
延材30周りに回転可能に構成されたハウジング
(図示せず)に両軸端が軸支されている。ハウジ
ング及び各ロール31,32,33は夫々駆動源
(図示せず)に連係されており、各ロール31,
32,33は第4図に矢符で示す如く軸回りに回
転駆動(自転)されつつハウジングによつて被圧
延材30周りに矢符で示す如く回転駆動(公転)
されて被圧延材30を圧延するようにしてある。 なお上記において各ロールの両軸端をハウジン
グに軸支した構成につき説明したが、出側ロール
軸端のみをハウジングに軸支させた片端支持型と
してもよいことは勿論である。 熱間の被圧延材30の断面形状は円形が望まし
いが6角形以上の多角形でもよい。これはハウジ
ングを回転させながら圧延する都合上、角が少い
ものでは圧延機への衝撃が大となつて好ましくな
く、4角形断面では不適当である。 上記した交叉角γ、傾斜角βとしては下記(1)、
(2)式の条件を満足するように、設定される。 0゜<γ<60゜ ……(1) 3゜<β<45゜ ……(2) なお交叉角γの上限値を60゜としたのはこれ以
上ではロールが互いに干渉し目標の製品径が得ら
れないからである。また下限値を0゜としたのは、
それ以下、つまりγ=0又は負では被圧延材の中
央部付近での円周方向の剪断変形を解消して長手
方向の寸法精度を確保することが不可能になるか
らである。 なおまた傾斜角βの上限値を45゜としたのは、
これ以上になるとミル剛性を確保するための軸保
持機構が飛躍的に大きなものとなり、これを回転
させながら圧延する場合には十分な速度が得られ
なくなるからである。更に下限値を3゜としたのは
それ以下では被圧延材中央部付近での円周方向の
剪断変形を小さくし、連続鋳造された被圧延材に
おけるポロシテイ圧着効果を十分に得ることが不
可能だからである。 γ、βの条件を前述した従来技術のγ、βの値
と比較するとγの値が正であり、且つβの値が大
きいことが顕著に相違しており、これがポロシテ
イの圧着性向上、円周方向剪断応力場の除去の抑
制に効果を発揮する。 以下交叉角γ、傾斜角βの数値限定理由につい
て更に詳しく説明する。まず、3個のロールの場
合についてγの上限値を説明する。第17図はロ
ール交叉角γが300゜の場合における被圧延材料3
0入側正面図、第18図はγ=30゜とした場合の
第17図の―線による断面図、第19図はγ
が55゜の場合における被圧延材料入側正面図、第
20図は第19図の―線による断面図であ
る。ロール交叉角γが大きくなると、ロール軸を
保持する方法はロールの両軸端を軸支する両持型
の採用が困難となり、出側ロール軸端を軸支する
片持型となるので、片持型の軸支方法を用いる。
圧延機の各ロール31,32,33は被圧延材料
30の出口端部近くにゴージ部31a,32a,
33aを備え、ゴージ部を境にして被圧延材料3
0の入側に向けて漸次直径を縮小され、また出側
は拡大されて円錐台形をなす入口面31b,32
b,33b、出口面31c,32c,33c、及
び出口端31d,32d,33dを備えている。
被圧延材料30の圧延後の外径をd、ゴージ部3
1a,32a,33aの外径をD、出口面31
c,32c,33cのパスライン軸方向長さをl
とする。ここでは、ゴージ部直径D、被圧延材料
の減面率を75%、出口面長さlを一定にして、交
叉角γを30゜と55゜とに変化させたときのロールと
被圧延材料30との相対的位置関係の変化を示し
ている。ところで、ゴージ部直径Dは、3d≦D
≦6.4dで設定される。この上限は、3個のロール
をパスラインに近づけてゴージ部を接触させたと
きの幾何学で決定され、下限は減面率を70%以上
80〜90%の高減面率を達成するために必要なロー
ル径で決定される。ここではD=3dとした。さ
らに出口面長さlはl≧d/2で設定される。l
<d/2であれば被圧延材料の圧延後表面に凹凸
(スパイラルマーク)が発生し、圧延後の寸法精
度が悪化するので、l≧d/2は必要である。こ
こでは、l=d/2とした。 第17図と第19図とを比較すれば、交叉角γ
が大きくなれば隣り合うロールの隙間が小さくな
ることが理解できる。そして、ロール出口端31
d,32d,33dでの間隔が極端に小さくなつ
ており、γ≧60゜とすると、この部分で干渉が生
じることになる。出口端31d,32d,33d
で交叉角が大きくなれば干渉しやすくなるのは、
出口端直径は幾何学的に決定されて「D+
2lsinγ」となるので交叉角γが大きくなればなる
ほど、出口端直径が大きくなるからである。 従つて、交叉角はγ<60゜の範囲とするのであ
る。 以上3個のロールの場合について説明したが、
次に4個のロールの場合について考えてみる。パ
スライン周りに120゜間隔でロールを配置したのが
3個のロールの場合で、90゜の間隔でロールを配
置すれば4個のロールの場合となる。幾何学的に
は、ゴージ部の直径が同一であれば、4個のロー
ルの場合は3個のロールの場合と比べ被圧延材料
の外径が大きくなる。被圧延材料の外径の圧下量
を同じとして、交叉角γが55゜の場合のロールと
被圧延材料との相対的位置関係の模式図を第21
図、第22図に示す。 第21図は被圧延材料入側正面図、第22図は
第21図の―線による断面図である。第21
図からわかるように4個のロールの場合も3個の
ロールの場合と同様にロール出口端で隣り合うロ
ールの隙間が小さくなり、ロール交叉角の制限は
3個のロールの場合と同じく<60゜になると干渉
するのである。 次にβの上限値について説明する。βは軸保持
機構上の制約に関して上限値が定められるのでロ
ール軸1本に着目して考えればよく、ロールの個
数とは無関係である。 以下γ=30゜として図面に基づいて説明する。
第23図には破線で示すようにパスライン回りに
回転するハウジングを有する傾斜圧延機の構造を
示す。被圧延材料30は円錐台形ロール1で外径
を絞られた後、太陽ギヤ3を外周に設けた中空パ
イプ90内を通過して延伸圧延を施される。基礎
に強固に支持されたハウジング内で回転自在に支
持されたロータ8に駆動モータにより駆動される
輪歯車9が装設されており、円錐台形ロール1を
先端に装着したロールシヤフト6及び前記太陽ギ
ヤ3に噛合する前記ロータ8内の遊星ギヤ4を介
して駆動される傘歯車組5を内装したヘツド7が
前記ロータ8に装設されている。ロールシヤフト
6はパスラインX―Xに対して30゜で交叉(傾斜)
しており、チヨツク91,92によつて軸支され
ている。 ロール、シヤフト及びチヨツクの位置関係をさ
らに詳しく説明する。第24図はパスラインX―
Xとロールシヤフト6との交叉角γを示す図であ
り、第25〜27図はパスラインX―Xとロール
シヤフト6との傾斜角βを示す図である。そして
第25〜27図では傾斜角βが夫々5゜、20゜、45゜
の場合について示している。ロールシヤフト6は
ベアリングケース13,14を介してチヨツク9
1,92に保持されている。ヘツド7はパスライ
ンX―X回りに回転し、回転軌道は第23図中の
破線の半径cの軌道を示し、この半径cの大きさ
は幾何学的に√22(但しチヨツク91側では
a=a1、b=b1、チヨツク92側ではa=a2、b
=b2)で求めることができる。第24〜27図か
らわかるように傾斜角βが大きくなれば、ヘツド
7の回転軌道半径は大きくなることが理解でき
る。そして、このヘツド7の大きさを比較する場
合には、体積比率で比較する必要があり軸対称装
置なので回転軌道半径cの2乗の比較で考える。
すると、β=5゜の場合を1.0(基準)とすればβ=
20゜の場合は1.25倍、β=45゜の場合は2.5倍とな
る。これより、被圧延材料を同じように外径を絞
つて延伸圧延を行うのにβ=45゜の場合にはβ=
5゜と比べると2.5倍の大きさの装置が必要となる
ことになる。これより、β≧45゜とするのは軸保
持機構が実用的でなくなると考えられる。従つ
て、本願発明ではロール傾斜角をβ<45゜の範囲
とするのである。 次にγ、β、γ+βの下限値について説明す
る。円形断面金属材に対して2ロールで圧延を行
うと第28図に斜線を付して示すように中央部の
領域にSecondary Tensionと呼ばれる引張応力
が発生する。この引張応力が剪断変形を惹起す
る。 3ロールによる場合は第29図に示すように中
心部を除いた中央部の環状領域に上記引張応力が
発生する。この領域は2ロールの場合に比して小
さいがやはり剪断変形を惹起する。 然るところ本願発明のγ>0゜、β>3゜、γ+β
>5゜の条件を満たす場合は上記引張応力が抑制さ
れ、剪断変形を解消することが可能となるのであ
る。 4ロールによる場合は上記引張応力の発生領域
は一層小さくなりγ、β、γ+βの下限値は各々
0゜、3゜、5゜よりも大きくともよいこととなる。 次に本発明方法による効果を明らかにするため
に行つた種々の実施結果について説明する。被圧
延材はいずれもS45C炭素鋼であつて、1200℃に
加熱し、また圧延機はハウジング回転数150r.p.
m.、ロール回転数50r.p.m.に設定して行つた。 実施例 1 円周方向の剪断歪 直径70mm、長さ300mmの素材に対し、第7図に
示す如く軸心方向に平行に5本のピン40(2.5
mmφ)を同一半径上に位置するように埋め込み、
第8図に示すような圧延後におけるピン40の流
れ(メタルフローを表す)により被圧延材の横断
面における円周方向の剪断歪を調査した。なお傾
斜角β=7゜に固定し、交叉角γは本発明の範囲で
ある9゜及び本願発明の範囲外である−9゜の2通り
にし、各交叉角につき面積リダクシヨンを60%、
70%、75%、80%の4通りに変化させた。その結
果をピンの流れを実線で結んだ図にて第9図に示
す。この結果から面積リダクシヨンが小さい場合
には交叉角γの影響に大差はないが面積リダクシ
ヨンが大となるにつれ円周方向の剪断歪に差異が
生じ、γ=9゜の場合が小さいことが明らかであ
る。そしてγ=9゜の場合には被圧延材の横断面中
央部に円周方向の剪断歪は現れない(メタルフロ
ーは直線状を呈する)がγ=−9゜の場合には横断
面中央部を含む断面内全域に明瞭な円周方向剪断
変形が現れる。つまりγ>0゜、しかもγの値を大
とすることにより被圧延材の横断面中央部での剪
断歪を防止することができる。円周方向剪断歪が
存在しないということは円周方向の剪断応力場が
存在しないことを意味し、従つて本願発明による
場合はセンターポロシテイからの亀裂は発生せ
ず、所謂マンネスマン破壊は生じない。 実施例 2 センターポロシテイの圧着性能 直経70mm、長さ300mmの素材中心に2mmφ、4
mmφ、6mmφの孔(センターポロシテイを模擬)
を人工的に穿孔したものを素材として傾斜角β=
3゜〜13゜の間で6通りに変化させて圧延による圧
着程度を調べた。交叉角γは実施例1同様本願発
明の範囲であるγ=9゜と本願発明の範囲外である
γ=−9゜との2通りとした。なお外径リダクシヨ
ンは53%(70mmφ→33mmφ)とした。第10図
a,bはその結果を示している。 この結果から次の点が明らかである。即ちγ=
9゜の場合は4mmφまでの人工孔がβ=13゜で圧着
するが、γ=−9゜の場合はβ=13゜としても最小
の2mmφの人工孔さえ圧着しない。また交叉角γ
の如何を問わず傾斜角βは人工孔の縮径機能に影
響を及ぼし、βが大である程縮径効果が大きい。 これによりγ>0゜、しかも高交叉角、高傾斜角
に設定する程センターポロシテイの圧着性能が高
くなるということができる。 実施例 3 センターポロシテイの圧着性能 次に連続鋳造によつて得た素材を用いて実際の
センターポロシテイの圧着性能を調べた。 被圧延材は380mmφの大断面連続鋳造鋳片の中
心部を用いて直径70mmφ、長さ300mmに割り出し
た丸鋼であつてこれを面積リダクシヨン78%(70
mmφ→33mmφ)で圧延した。圧延条件は傾斜角β
=4゜、8゜、12゜の3通り、交叉角γ=9゜、−9゜の2

り、合計6通りとした。そして圧延中に圧延機を
停止して途中止め材を作り、半割にしてポロシテ
イの圧延状況を調査した。第11図の写真はその
状態を示している。この結果から以下の事が明ら
かになつた。 ) 交叉角γ=−9゜の場合は母材のポロシテイ
が起点となつて円周方向の剪断応力により欠陥
が拡大する、所謂マンネスマン破壊の現象が現
われ傾斜角βが大きいほどこの傾向は改善され
るが健全な内部性状を得ることは困難である。 ) 交叉角γ=9゜の場合は、傾斜角βが低い場
合でもポロシテイが完全に圧着する。 このような結果から連続鋳造鋳片を被圧延材と
する場合にはそのポロシテイを圧着してしまう上
でγ>0゜の高交叉角、且つ高傾斜角が望ましい。 実施例 4 表面ねじれ 前述した公知例の技術に比較して本願発明が劣
る点は表面ねじれである。第12図a,bに示す
ように直径70mm、長さ300mmの素材表面の軸長方
向に深さ1mm、幅1mmの溝41を形成したものを
面積リダクシヨン78%(70mmφ→33mmφ)にて圧
延した。この場合の圧延後の溝41のねじれ角
(第13図に示す如く軸心線に平行な表面上の直
線と溝痕跡とのなす角)を測定した結果を第14
図に示す。なお圧延条件は傾斜角βが3゜〜13゜の
6通り、交叉角γが9゜、−9゜の2通り合計12通り
である。この結果から次の点が明らかである。 )γ=−9゜の場合には表面ねじれが小さい。 ) γ=9゜の場合には表面ねじれが大きい。但
し、傾斜角βを大きくすることによりこの欠点
を補うことができる。 従つて本願発明の実施に際しては表面ねじれを
小さくする上で傾斜角βを高目に設定する方が望
ましい。 実施例 5 軸長方向寸法精度 直径70mm、長さ300mmの素材を面積リダクシヨ
ン67%(70mmφ→40mmφ)にて圧延して長手方向
の寸法変化を調べた。圧延条件は傾斜角βが4゜、
交叉角γが9゜、−9゜の2通りである。第15図a,
bはその結果を示している。これによればγ=9゜
では±0.05%、γ=−9゜では±0.4%を示し、γ>
0゜が寸法精度を確保する上で有効であることが明
らかである。 実施例 6 圧延速度 直径70mmの素材を面積リダクシヨン78%(70mm
φ→33mmφ)に圧延する場合における圧延速度を
調べた。 ロールのゴージ部直径:190mmφであり、傾斜
角βが3゜〜13゜の6通り、交叉角γが9゜、−9゜の2
通りの合計12通りとした。第16図はその結果を
示しており、γ=9゜の場合の圧延速度が最も高速
であり、また傾斜角βが大きくなる程圧延速度が
大となる傾向を示す。従つて圧延能率の向上を図
る上でもγ>0゜、望ましくは高交叉角とし、また
高傾斜角とするのがよい。 実施例 7 ハウジング回転数とロール回転数との比 直径70mmの素材を圧延する場合におけるハウジ
ング回転数NHとロール回転数NRとの比NH/NR
を調べた。圧延条件は延伸度を2〜10の5通り、
NH/NRを1.5〜6.5の6通りの合計30通りである。
結果を表1に示す通りである。表1中+記号は素
材がロールの回転方向と逆向きに回転する場合
を、−記号はロールの回転方向に素材が回転する
場合を示している。
The present invention relates to a method for manufacturing a metal material having a circular cross section by rolling a steel material cast in a continuous casting facility or a steel material rolled in a rolling mill. When manufacturing round billets or round steel bars, it is common practice to roll the raw steel material using a rolling mill that uses caliber rolls. Instead, attempts have been made to use an inclined roll type rolling mill, and manufacturing of circular cross-section metal materials that can suppress internal cracks, so-called Mannesmann fractures, that occur due to the use of an inclined roll type rolling mill, which has traditionally been considered a difficult point. The method has already been filed by the present applicant (Japanese Patent Application No. 114362/1982). However, on the other hand, this method involves rolling the raw steel billet while rotating it around its axis, so it is impossible to stop the rotation of the steel material during rolling, for example, when manufacturing steel products by directly connecting it to a continuous casting machine. If you do,
Alternatively, the rolling mill of this method cannot be applied when manufacturing steel products by installing it as a rough row rolling mill before a rolling mill using caliber rolls. As a countermeasure to this problem, an inclined roll rolling machine as shown in Figs. 1 to 3 has been proposed, in which the steel material used as the raw material does not rotate, but the inclined roll rolling mill itself rotates on its own axis and revolves around the axis of the steel material. Akira
No. 57-91806). FIG. 1 is a front view showing the arrangement of inclined rolls in a conventional device, FIG. 2 is a cross-sectional view taken along the line - in FIG. 1, and FIG. 3 is a side view taken along the line - in FIG. Reference numeral 10 indicates a material to be rolled, and reference numerals 11, 12, and 13 indicate three cone-shaped rolls supported at one end. The material to be rolled 10 is transported along the pass line XX from the direction of the arrow on the white plate, and each cone-shaped roll 11, 1
2 and 13 both have small diameter roll ends as the rolled material 1.
0 facing downstream in the moving direction, turn its axis Y-Y toward the pass line X-X side to make γ (intersection angle).
It is pivoted by a roll housing (not shown) that is rotated around the pass line XX while tilting by β (referred to as an inclination angle) in the circumferential direction around the pass line XX. , each of the cone-shaped rolls 11, 12, and 13 rotates around its own axis and rotates around the pass line XX while rolling the rolled material 1.
It is designed to roll 0. The crossing angle γ and the inclination angle β are usually -50 to -60° (the state in which the end of the roll shaft approaches the rolled material 10 on the inlet side is positive, and the state in which it approaches the rolled material 10 on the exit side is normal). Similarly, the inclination angle β is set to a value in the range of 3° to 6°. However, according to experiments conducted by the present inventors, this method does have the advantage that the material rolled by this method has a small surface twist, but there are doubts about its ability to improve internal defects such as porosity. It was found that there were problems with low rolling efficiency and low dimensional accuracy of the product's outer diameter. The inventors of the present invention conducted experimental research to solve the above-mentioned problems, and found that by setting the inclined rolls to have a positive crossing angle, and setting the crossing angle and inclination angle to values within a predetermined range. It has been found that crimping of porosities, improvement of rolling efficiency, etc. can be effectively improved. The present invention has been made based on this knowledge, and its purpose is to set appropriate ranges for the crossing angle γ and the inclination angle β, and to roll the inclined rolls without causing any rotation in the rolled material. By rolling the rolled material while rotating and revolving around it, it is possible to roll difficult-to-work materials with high workability, and it can be connected directly to a continuous casting machine or other rolling mills to efficiently
Furthermore, it is an object of the present invention to provide a method capable of manufacturing high-quality circular cross-section metal materials. The method for manufacturing a circular cross-section metal material according to the present invention includes a housing that rotates around a pass line of a rolled material.
Three or four rolls driven to rotate around their respective axes are tilted in the same direction around the pass line by an inclination angle β so that their axes are not parallel to the pass line, and their axes are Using an inclined rolling mill that is pivotally supported so that it is inclined (intersected) by an intersection angle γ with respect to the pass line axis of the material to be rolled, the inclination angle β and the intersection angle γ are
The method is characterized in that it includes a step of stretching and rolling the material to be rolled without rotating the material to be rolled around its axis, with the following conditions being satisfied: 3°<β<45°, 0°<γ<60°. The present invention will be specifically described below based on drawings showing its implementation state. FIG. 4 is a schematic front view showing the arrangement of rolls of a rolling mill used to carry out the method of the present invention, FIG. 5 is a cross-sectional view taken along the line --- in FIG. 4, and FIG. 30 is a side view of a rolled material, and 31, 32, and 33 are rolls. The material to be rolled 30 is cast, for example, in a continuous casting machine, and is fed from the direction of the white arrow toward the rolling machine at the casting speed. Each roll 31, 32, 33 of the rolling mill has a corrugated portion 31a, 32a, 3 at the exit end of the material 30 to be rolled.
3a, the diameter of the inlet side of the rolled material 30 is gradually reduced toward the shaft end with the gorge part as a boundary, and the outlet side is enlarged to form a truncated conical inlet face 31b, 3.
2b, 33b and exit surfaces 31c, 32c, 33c
It is equipped with And each roll 31, 32, 33
The inlet faces 31b, 32b, 33b are located on the upstream side in the moving direction of the rolled material 30, and the axial center line YY and the gorge portions 31a, 32a, 33
The intersection point 0 with the plane containing a (hereinafter referred to as the roll setting center) is located at approximately equal intervals around the pass line XX on the same plane orthogonal to the pass line XX of the material to be rolled 30, and , each roll 31,3
The axial center line Y-Y of 2 and 33 is located around the roll setting center in relation to the pass line XX of the material to be rolled 30, as shown in FIG.
- The shafts are crossed (inclined) by the intersection angle γ so as to approach toward Both shaft ends are pivotally supported by housings (not shown) that are inclined by an angle β and are configured to be rotatable around the rolled material 30, respectively. The housing and each roll 31, 32, 33 are linked to a driving source (not shown), and each roll 31, 32, 33 is connected to a driving source (not shown).
32 and 33 are rotatably driven (rotated) around the axis as shown by the arrow in FIG. 4, and rotated (revolution) around the rolled material 30 by the housing as shown by the arrow.
The material to be rolled 30 is then rolled. In addition, although the structure in which both shaft ends of each roll are pivotally supported by the housing has been described above, it goes without saying that a one-end support type in which only the exit roll shaft end is pivotally supported by the housing may be used. The cross-sectional shape of the hot-rolled material 30 is preferably circular, but may be a hexagonal or more polygonal shape. This is because the housing is rolled while rotating, so if the housing has few corners, the impact on the rolling machine will be large, which is undesirable, and a rectangular cross section is not suitable. The above-mentioned crossing angle γ and inclination angle β are as follows (1):
It is set so that the condition of equation (2) is satisfied. 0゜<γ<60゜ ……(1) 3゜<β<45゜ ……(2) The upper limit of the intersection angle γ was set to 60゜ because if it exceeds this, the rolls will interfere with each other and the target product diameter will be exceeded. This is because it cannot be obtained. Also, the lower limit value was set to 0° because
This is because if γ is less than 0 or negative, it becomes impossible to eliminate shear deformation in the circumferential direction near the center of the rolled material and ensure dimensional accuracy in the longitudinal direction. Furthermore, the upper limit of the inclination angle β was set to 45° because
If it exceeds this, the shaft holding mechanism for ensuring mill rigidity will become dramatically larger, and if rolling is carried out while rotating the shaft holding mechanism, sufficient speed will not be obtained. Furthermore, the lower limit was set at 3° because if it is less than that, it is impossible to reduce the shear deformation in the circumferential direction near the center of the rolled material and to obtain a sufficient porosity crimping effect in the continuously cast rolled material. That's why. Comparing the conditions of γ and β with the values of γ and β of the conventional technology described above, there is a noticeable difference in that the value of γ is positive and the value of β is large. Effective in suppressing the removal of circumferential shear stress fields. The reason for limiting the numerical values of the crossing angle γ and the inclination angle β will be explained in more detail below. First, the upper limit value of γ will be explained in the case of three rolls. Figure 17 shows the rolled material 3 when the roll intersection angle γ is 300°.
0 entry side front view, Fig. 18 is a sectional view taken along the - line in Fig. 17 when γ = 30°, Fig. 19 is γ
FIG. 20 is a front view of the entrance side of the material to be rolled when the angle is 55 degrees, and FIG. 20 is a sectional view taken along the line --- in FIG. 19. As the roll crossing angle γ increases, it becomes difficult to adopt a double-supported method of holding the roll shaft in which both shaft ends of the roll are pivotally supported, and a cantilever-supported method that pivotally supports the output roll shaft end becomes difficult. Uses a holding type pivoting method.
Each roll 31, 32, 33 of the rolling mill has a gorge 31a, 32a,
33a, and the material 3 to be rolled is provided with the gorge section as a border.
The diameter of the inlet surfaces 31b and 32 is gradually reduced toward the inlet side of 0, and enlarged on the outlet side to form a truncated conical shape.
b, 33b, outlet surfaces 31c, 32c, 33c, and outlet ends 31d, 32d, 33d.
The outer diameter of the rolled material 30 after rolling is d, and the gorge portion 3
The outer diameter of 1a, 32a, 33a is D, the exit surface 31
The path line axial length of c, 32c, 33c is l
shall be. Here, the rolls and the rolled material are shown when the gorge diameter D, the area reduction rate of the rolled material is 75%, the exit surface length l is constant, and the intersection angle γ is varied between 30° and 55°. It shows a change in the relative positional relationship with 30. By the way, the diameter D of the gorge part is 3d≦D
Set at ≦6.4d. This upper limit is determined by the geometry when the three rolls are brought close to the pass line and their gorge parts touch, and the lower limit is determined by the area reduction rate of 70% or more.
It is determined by the roll diameter required to achieve a high area reduction rate of 80 to 90%. Here, D=3d. Further, the exit surface length l is set to satisfy l≧d/2. l
If <d/2, unevenness (spiral marks) will occur on the surface of the material to be rolled after rolling, and the dimensional accuracy after rolling will deteriorate, so l≧d/2 is necessary. Here, l=d/2. Comparing Figures 17 and 19, we can see that the crossing angle γ
It can be understood that the larger the gap between adjacent rolls, the smaller the gap between adjacent rolls. And the roll exit end 31
The spacing at d, 32d, and 33d is extremely small, and if γ≧60°, interference will occur at this portion. Outlet ends 31d, 32d, 33d
As the intersection angle increases, interference becomes easier.
The exit end diameter is determined geometrically and is “D+
2lsinγ'', so the larger the crossing angle γ, the larger the exit end diameter. Therefore, the intersection angle should be in the range γ<60°. I explained the case of three roles above,
Next, consider the case of four rolls. Three rolls are arranged at 120° intervals around the pass line, and four rolls are arranged at 90° intervals. Geometrically, if the diameter of the gorge is the same, the outer diameter of the material to be rolled will be larger in the case of four rolls than in the case of three rolls. The schematic diagram of the relative positional relationship between the rolls and the rolled material when the intersection angle γ is 55° is shown in Fig. 21, assuming that the reduction amount of the outer diameter of the rolled material is the same.
22. FIG. 21 is a front view from the entrance side of the material to be rolled, and FIG. 22 is a sectional view taken along the line - - in FIG. 21. 21st
As can be seen from the figure, in the case of 4 rolls, the gap between adjacent rolls at the roll exit end is small, as in the case of 3 rolls, and the limit on the roll intersection angle is <60, the same as in the case of 3 rolls. If it reaches ゜, there will be interference. Next, the upper limit value of β will be explained. Since the upper limit value of β is determined due to constraints on the shaft holding mechanism, it is sufficient to consider one roll shaft, and it is unrelated to the number of rolls. The following description will be made based on the drawings with γ=30°.
FIG. 23 shows the structure of an inclined rolling mill having a housing that rotates around a pass line as indicated by broken lines. After the outer diameter of the material 30 to be rolled is reduced by the truncated conical roll 1, the material 30 is passed through a hollow pipe 90 having a sun gear 3 on its outer periphery and subjected to elongation rolling. A ring gear 9 driven by a drive motor is mounted on a rotor 8 rotatably supported within a housing firmly supported by a foundation, and a roll shaft 6 having a truncated conical roll 1 attached to its tip and the sun A head 7 is mounted on the rotor 8 and includes a bevel gear set 5 driven via a planetary gear 4 in the rotor 8 that meshes with the gear 3. Roll shaft 6 intersects (inclines) at 30° with respect to pass line XX
and is pivotally supported by jocks 91 and 92. The positional relationship among the roll, shaft, and chock will be explained in more detail. Figure 24 shows the pass line
25 to 27 are diagrams showing the inclination angle β between the pass line XX and the roll shaft 6. FIG. 25 to 27 show cases where the inclination angle β is 5°, 20°, and 45°, respectively. The roll shaft 6 is connected to the chock 9 via bearing cases 13 and 14.
It is held at 1.92. The head 7 rotates around the pass line XX, and the rotational trajectory shows a trajectory with a radius c indicated by the broken line in FIG . Then a=a 1 , b=b 1 , and on the chock 92 side a=a 2 , b
= b 2 ). As can be seen from FIGS. 24 to 27, it can be seen that as the inclination angle β increases, the radius of the orbit of rotation of the head 7 increases. When comparing the sizes of the heads 7, it is necessary to compare the volume ratios, and since the devices are axially symmetrical, the squares of the rotational orbit radii c should be compared.
Then, if β = 5° is 1.0 (standard), β =
If it is 20 degrees, it will be 1.25 times, and if β = 45 degrees, it will be 2.5 times. From this, if β = 45°, then β =
Compared to 5°, a device 2.5 times the size will be required. From this, it is considered that setting β≧45° would make the shaft holding mechanism impractical. Therefore, in the present invention, the roll inclination angle is set in the range β<45°. Next, the lower limit values of γ, β, and γ+β will be explained. When a metal material with a circular cross section is rolled with two rolls, a tensile stress called secondary tension is generated in the central region as shown by hatching in FIG. This tensile stress causes shear deformation. In the case of using three rolls, the above tensile stress is generated in the annular region of the central part excluding the central part as shown in FIG. Although this area is smaller than in the case of two rolls, it still causes shear deformation. However, in the present invention, γ>0°, β>3°, γ+β
When the condition of >5° is satisfied, the above-mentioned tensile stress is suppressed and it becomes possible to eliminate shear deformation. When using four rolls, the area where the above tensile stress occurs is even smaller, and the lower limit values of γ, β, and γ+β are each
It is also good if it is larger than 0°, 3°, or 5°. Next, the results of various experiments carried out to clarify the effects of the method of the present invention will be explained. All materials to be rolled are S45C carbon steel, heated to 1200℃, and the rolling mill has a housing rotation speed of 150r.p.
m., and the roll rotation speed was set to 50 r.pm. Example 1 Shear strain in the circumferential direction Five pins 40 (2.5
mmφ) are embedded so that they are located on the same radius,
The shear strain in the circumferential direction in the cross section of the rolled material was investigated by the flow of the pin 40 (representing metal flow) after rolling as shown in FIG. Note that the inclination angle β is fixed at 7°, the intersection angle γ is set in two ways: 9°, which is within the scope of the present invention, and -9°, which is outside the scope of the present invention, and the area reduction is 60% for each intersection angle.
It was changed in four ways: 70%, 75%, and 80%. The results are shown in FIG. 9, where the flow of pins is connected with solid lines. From this result, it is clear that when the area reduction is small, there is no big difference in the effect of the intersection angle γ, but as the area reduction becomes larger, there is a difference in the shear strain in the circumferential direction, and it is clear that it is small when γ = 9°. be. When γ = 9°, no shear strain in the circumferential direction appears at the center of the cross section of the rolled material (metal flow exhibits a straight shape), but when γ = -9°, no shear strain appears at the center of the cross section of the rolled material. Clear circumferential shear deformation appears throughout the cross section, including the area. In other words, by setting γ>0° and increasing the value of γ, shear strain at the center of the cross section of the rolled material can be prevented. The absence of shear strain in the circumferential direction means that there is no shear stress field in the circumferential direction, and therefore, in the case of the present invention, cracks from the center porosity do not occur, and so-called Mannesmann fracture does not occur. . Example 2 Crimping performance of center porosity 2mmφ, 4 at the center of material with direct diameter 70mm and length 300mm
mmφ, 6mmφ hole (simulating center porosity)
The inclination angle β=
The degree of crimping due to rolling was examined by changing the angle in six ways between 3° and 13°. As in Example 1, the intersection angle γ was set to two types: γ = 9°, which was within the range of the present invention, and γ = -9°, which was outside the range of the present invention. The outer diameter reduction was 53% (70mmφ→33mmφ). Figures 10a and 10b show the results. The following points are clear from this result. That is, γ=
In the case of 9 degrees, artificial holes up to 4 mmφ are crimped at β = 13 degrees, but in the case of γ = -9 degrees, even the smallest artificial holes of 2 mmφ are not crimped even if β = 13 degrees. Also, the intersection angle γ
Regardless of the angle of inclination β, it affects the diameter reduction function of the artificial pore, and the larger β is, the greater the diameter reduction effect. From this, it can be said that the crimp performance of the center porosity becomes higher as γ>0°, and the higher the crossing angle and the higher the inclination angle are set. Example 3 Crimping performance of center porosity Next, the crimp performance of actual center porosity was investigated using a material obtained by continuous casting. The material to be rolled is a round steel that is 70 mm in diameter and 300 mm in length using the center of a 380 mm φ large cross-section continuously cast slab.
mmφ→33mmφ). The rolling condition is the inclination angle β
= 4 degrees, 8 degrees, 12 degrees, 2 intersection angles γ = 9 degrees, -9 degrees
There were a total of 6 streets. Then, the rolling mill was stopped during rolling, a stopper was made, and the rolling condition of the porosity was investigated by cutting it in half. The photograph in FIG. 11 shows this condition. The results revealed the following. ) When the intersection angle γ = -9°, a so-called Mannesmann fracture phenomenon occurs in which defects start from the porosity of the base material and expand due to shear stress in the circumferential direction, and this tendency improves as the inclination angle β increases. However, it is difficult to obtain healthy internal properties. ) When the crossing angle γ = 9°, the porosity is completely crimped even if the inclination angle β is low. From these results, when a continuous cast slab is used as a material to be rolled, a high intersecting angle of γ>0° and a high inclination angle are desirable in order to compress the porosities. Example 4 Surface Twist The present invention is inferior to the above-mentioned known techniques in terms of surface twist. As shown in Fig. 12 a and b, a material with a diameter of 70 mm and a length of 300 mm has a groove 41 of 1 mm depth and 1 mm width formed in the axial direction on the surface and is rolled with an area reduction of 78% (70 mmφ → 33 mmφ). did. The results of measuring the torsion angle of the groove 41 after rolling in this case (the angle between the groove trace and a straight line on the surface parallel to the axis line as shown in FIG. 13) are shown in the 14th table.
As shown in the figure. The rolling conditions were 6 inclination angles β of 3° to 13° and 2 crossing angles γ of 9° and −9°, 12 in total. The following points are clear from this result. ) When γ = -9°, the surface twist is small. ) When γ=9°, the surface twist is large. However, this drawback can be compensated for by increasing the inclination angle β. Therefore, when implementing the present invention, it is preferable to set the inclination angle β to a large value in order to reduce the surface twist. Example 5 Dimensional accuracy in the longitudinal direction A material with a diameter of 70 mm and a length of 300 mm was rolled at an area reduction of 67% (70 mmφ→40 mmφ), and dimensional changes in the longitudinal direction were investigated. The rolling conditions are an inclination angle β of 4°,
There are two crossing angles γ: 9° and -9°. Figure 15a,
b shows the results. According to this, it shows ±0.05% at γ=9°, ±0.4% at γ=-9°, and γ>
It is clear that 0° is effective in ensuring dimensional accuracy. Example 6 Rolling speed A material with a diameter of 70 mm was subjected to an area reduction of 78% (70 mm
The rolling speed when rolling from φ to 33 mmφ was investigated. The diameter of the gorge part of the roll is 190 mmφ, and there are 6 inclination angles β from 3° to 13°, and 2 crossing angles γ of 9° and -9°.
There were a total of 12 streets. FIG. 16 shows the results, showing that the rolling speed is the highest when γ=9°, and that the rolling speed tends to increase as the inclination angle β increases. Therefore, in order to improve rolling efficiency, it is preferable that γ>0°, preferably a high crossing angle, and a high inclination angle. Example 7 Ratio between housing rotation speed and roll rotation speed Ratio between housing rotation speed N H and roll rotation speed N R when rolling a material with a diameter of 70 mm N H /N R
I looked into it. The rolling conditions are 5 types of stretching degree from 2 to 10.
There are 6 types of N H /N R from 1.5 to 6.5, a total of 30 types.
The results are shown in Table 1. In Table 1, the + symbol indicates the case where the material rotates in the opposite direction to the rotational direction of the roll, and the - symbol indicates the case where the material rotates in the rotational direction of the roll.

【表】 表1から明らかなとおり、NH/NRが下記(3)式
に示す範囲では延伸度(2〜10の範囲)に対応し
て夫々素材が回転しない値を設定し得ることが解
る。 2<NH/NR<6 ……(3) 以上の如く本発明方法にあつては従来方法と比
較して被圧延材料に生じる表面ねじれが大きい難
点は認められるものの、周方向の剪断歪が著しく
小さくまた圧延速度を格段に向上し得、更にポロ
シテイの圧着性能にも優れているなど、生産能率
が高く、特にセンタポロシテイのある連続鋳造材
を素材とする場合もそのポロシテイを圧着し得て
亀裂を生じることがなく、更に円周方向の剪断歪
が小さいので介在物を起点に内部割れを生じ易い
難加工材への適用も可能であるなど、本発明は優
れた効果を奏するものである。
[Table] As is clear from Table 1, in the range of N H /N R shown in equation (3) below, it is possible to set a value that does not cause the material to rotate, depending on the degree of stretching (range 2 to 10). I understand. 2<N H /N R <6 ... (3) As described above, although it is recognized that the method of the present invention has the disadvantage that the surface twist occurring in the rolled material is large compared to the conventional method, shear strain in the circumferential direction It has a high production efficiency, such as extremely small porosity, can significantly improve the rolling speed, and has excellent porosity crimping performance, and is particularly capable of crimping the porosity even when the material is a continuous cast material with center porosity. The present invention has excellent effects, such as not causing any cracks, and furthermore, since the shear strain in the circumferential direction is small, it can be applied to difficult-to-process materials that are prone to internal cracks starting from inclusions. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の傾斜ロール圧延機のロール配置
を示す正面図、第2図は第1図の―線による
断面図、第3図は第1図の―線による側面
図、第4図は本発明方法に用いる傾斜圧延機のロ
ール配置を示す正面図、第5図は第4図の―
線による断面図、第6図は第4図の―線によ
る側面図、第7図は剪断歪測定のための試料の断
面図、第8図はその圧延後の形状の1例を示す断
面図、第9図は剪断歪の測定結果表示図、第10
図イ,ロは人工孔の圧延後の内径を示すグラフ、
第11図は被圧延材の圧延後における縦断面構造
写真、第12図イ,ロは表面ねじれ測定のための
試料を示す正面図及び側面図、第13図はその圧
延後の溝形態を示す側面図、第14図は表面ねじ
れ測定結果を示すグラフ、第15図イ,ロは軸長
方向寸法精度の測定結果を示すチヤート、第16
図は圧延速度測定結果を示すグラフである。第1
7図はγ=30゜の場合のロールの入側正面図、第
18図は同側面図、第19図はγ=55゜の場合の
ロールの入側の正面図、第20図は同側面図、第
21図は4ロールの場合においてγ=55゜とした
ときのロールの入側正面図、第22図は同側面
図、第23図は傾斜圧延機の側面構造図、第24
〜27図は傾斜角の限界の説明図、第28,29
図は剪断変形の説明図である。 30…被圧延材、31,32,33…ロール、
31a,32a,33a…ゴージ部、31b,3
2b,33b…入口面、31c,32c,33c
…出口面。
Fig. 1 is a front view showing the roll arrangement of a conventional inclined roll rolling mill, Fig. 2 is a sectional view taken along the - line in Fig. 1, Fig. 3 is a side view taken along the - line in Fig. 1, and Fig. 4 is a side view taken along the - line in Fig. 1. A front view showing the roll arrangement of the inclined rolling mill used in the method of the present invention, FIG. 5 is the same as in FIG. 4.
6 is a side view taken along the - line in FIG. 4, FIG. 7 is a sectional view of a sample for shear strain measurement, and FIG. 8 is a sectional view showing an example of its shape after rolling. , Fig. 9 is a display diagram of the measurement results of shear strain, Fig. 10
Figures A and B are graphs showing the inner diameter of the artificial hole after rolling.
Fig. 11 is a photograph of the longitudinal cross-sectional structure of the rolled material after rolling, Fig. 12 A and B are front and side views showing the sample for surface twist measurement, and Fig. 13 shows the groove form after rolling. Side view, Figure 14 is a graph showing the surface twist measurement results, Figure 15 A and B are charts showing the measurement results of dimensional accuracy in the axial direction, and Figure 16
The figure is a graph showing the results of rolling speed measurements. 1st
Figure 7 is a front view of the entrance side of the roll when γ = 30°, Figure 18 is a side view of the same, Figure 19 is a front view of the entrance side of the roll when γ = 55°, and Figure 20 is the same side view. Figure 21 is a front view of the entrance side of the rolls when γ = 55° in the case of 4 rolls, Figure 22 is a side view of the same, Figure 23 is a side structural view of the inclined rolling mill, and Figure 24 is a side view of the inclined rolling mill.
Figures 28 and 29 are explanatory diagrams of the limits of the inclination angle.
The figure is an explanatory diagram of shear deformation. 30... Rolled material, 31, 32, 33... Roll,
31a, 32a, 33a...gorge part, 31b, 3
2b, 33b...Entrance surface, 31c, 32c, 33c
...Exit surface.

【特許請求の範囲】[Claims]

1 上下ワークロールの軸を水平面内でわずかに
交叉させて板材を圧延する方法において、板材を
圧延していない空転状態においては、上下ロール
の押し付け力が零かあるいは十分小さくなる程度
にロール開度を設定しておき、板材を噛み込んだ
後に所定のロール開度にまで設定を変更して板材
を圧延し、さらに板材が抜けて空転状態になる前
に、空転状態における上下ロールの押し付け力が
零かあるいは十分小さくなる程度にロール開度を
再設定して板材の尾端まで圧延する事を特徴とす
るロールクロス圧延方法。 2 上下ワークロールの軸を水平面内でわずかに
交叉させて板材を圧延するロールクロスパスを少
なくとも1パス含む複数パスで板材を圧延する方
法において、板材を圧延していない空転状態にお
いては、上下ロールの押し付け力が零かあるいは
十分小さくなる程度にロール開度を設定してお
き、板材を噛み込んだ後に所定のロール開度にま
で設定を変更して板材を圧延し、さらに板材が抜
1 In a method of rolling a plate by slightly intersecting the axes of the upper and lower work rolls in a horizontal plane, when the plate is idling and not being rolled, the roll opening is adjusted to such an extent that the pressing force of the upper and lower rolls is zero or sufficiently small. is set, and after the plate material has been bitten, the setting is changed to a predetermined roll opening degree to roll the plate material, and before the plate material comes out and becomes idling, the pressing force of the upper and lower rolls in the idling state is A roll cross rolling method characterized by resetting the roll opening to zero or a sufficiently small degree and rolling to the tail end of the plate. 2. In a method of rolling a plate material in multiple passes including at least one roll cross pass in which the axes of the upper and lower work rolls slightly intersect in a horizontal plane to roll the plate material, when the plate material is not being rolled and is idling, the upper and lower rolls The roll opening degree is set so that the pressing force is zero or sufficiently small, and after the plate material is bitten, the setting is changed to the specified roll opening degree and the plate material is rolled, and then the plate material is pulled out.

JP2075383A 1982-06-30 1983-02-10 Manufacture of metallic material with circular cross section Granted JPS59147702A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2075383A JPS59147702A (en) 1983-02-10 1983-02-10 Manufacture of metallic material with circular cross section
AU16285/83A AU562483B2 (en) 1982-06-30 1983-06-27 Reduction rolling to produce circular bar material
US06/508,720 US4512177A (en) 1982-06-30 1983-06-28 Method of manufacturing metallic materials having a circular cross section
DE19833323232 DE3323232A1 (en) 1982-06-30 1983-06-28 METHOD FOR PRODUCING METALLIC MATERIALS WITH CIRCULAR CROSS-SECTION
AT0236583A AT391640B (en) 1982-06-30 1983-06-28 PULLING ROLLING MILL FOR THE PRODUCTION OF ROUND PROFILES
FR8310745A FR2529481B1 (en) 1982-06-30 1983-06-29 PROCESS FOR THE MANUFACTURE OF METAL PRODUCTS WITH A CIRCULAR CROSS SECTION
SE8303709A SE464617B (en) 1982-06-30 1983-06-29 SET TO MANUFACTURE METAL FORMS WITH CIRCULAR CROSS SECTION
CA000431444A CA1217363A (en) 1982-06-30 1983-06-29 Method of manufacturing metallic materials having a circular cross section
IT67719/83A IT1203830B (en) 1982-06-30 1983-06-30 PROCEDURE FOR THE MANUFACTURE OF METAL PIECES WITH A CIRCULAR SECTION, PARTICULARLY STEEL BARS
GB08317789A GB2123732B (en) 1982-06-30 1983-06-30 Method of manufacturing metallic materials having a circular cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075383A JPS59147702A (en) 1983-02-10 1983-02-10 Manufacture of metallic material with circular cross section

Publications (2)

Publication Number Publication Date
JPS59147702A JPS59147702A (en) 1984-08-24
JPH0124564B2 true JPH0124564B2 (en) 1989-05-12

Family

ID=12035944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075383A Granted JPS59147702A (en) 1982-06-30 1983-02-10 Manufacture of metallic material with circular cross section

Country Status (1)

Country Link
JP (1) JPS59147702A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253102A (en) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd Cross helical rolling mill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291766A (en) * 1976-01-30 1977-08-02 Nippon Steel Corp Method of rolling seamless metal pipe
DE2910445A1 (en) * 1979-03-16 1980-09-18 Schloemann Siemag Ag Planetary skew rolling mill for mfg. tube from hollow ingots - where ingot is driven over stationary conical mandrel so tube has larger external dia than ingot

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424563A (en) * 1987-07-20 1989-01-26 Fuji Photo Film Co Ltd A/d converter sharing type color image input device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291766A (en) * 1976-01-30 1977-08-02 Nippon Steel Corp Method of rolling seamless metal pipe
DE2910445A1 (en) * 1979-03-16 1980-09-18 Schloemann Siemag Ag Planetary skew rolling mill for mfg. tube from hollow ingots - where ingot is driven over stationary conical mandrel so tube has larger external dia than ingot

Also Published As

Publication number Publication date
JPS59147702A (en) 1984-08-24

Similar Documents

Publication Publication Date Title
JPH0124563B2 (en)
JPS63238909A (en) Piercing method for seamless tube
JP4315155B2 (en) Seamless pipe manufacturing method
JPH0124564B2 (en)
JP2996077B2 (en) Piercing method of seamless metallic tube
US4512177A (en) Method of manufacturing metallic materials having a circular cross section
JPS60130401A (en) Device for dividing rolling-material into multiple bars
JPH0475082B2 (en)
JP3204117B2 (en) Manufacturing method of fine wire
EP2008733A1 (en) Process for producing seamless pipe
JPH06182404A (en) Rolling machine for small diameter wire
JPH0310401B2 (en)
JPS5910843B2 (en) Different speed rolling method and different speed rolling machine
JP2996124B2 (en) Perforation rolling method for seamless metal pipe
JP2692524B2 (en) Inclined elongation rolling method of hot seamless steel pipe
JP3082415B2 (en) Tube rolling method
JPS6054209A (en) Skew rolling mill for manufacturing seamless steel pipe
JPS61276705A (en) Cold rolling method for decreasing edge drop
JPH01273605A (en) Method of increasing friction between tool and material to be rolled and proper roll
US4628718A (en) Method of rolling to impart triangular section
JPS60247404A (en) Continuous pipe drawing rolling mill
JPH0857506A (en) Mandrel mill
JPH0231601B2 (en) TSUGIMENASHIKANNOKEISHAATSUENHOHOOYOBISOCHI
JP2586772B2 (en) Inclined elongation rolling method of hot seamless steel pipe
JPS63220940A (en) Forging method