JPS63220940A - Forging method - Google Patents

Forging method

Info

Publication number
JPS63220940A
JPS63220940A JP5284787A JP5284787A JPS63220940A JP S63220940 A JPS63220940 A JP S63220940A JP 5284787 A JP5284787 A JP 5284787A JP 5284787 A JP5284787 A JP 5284787A JP S63220940 A JPS63220940 A JP S63220940A
Authority
JP
Japan
Prior art keywords
forged
rolling reduction
anvil
forged material
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5284787A
Other languages
Japanese (ja)
Other versions
JP2503484B2 (en
Inventor
Yoshito Suzuki
義人 鈴木
Kazuo Moribe
森部 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62052847A priority Critical patent/JP2503484B2/en
Publication of JPS63220940A publication Critical patent/JPS63220940A/en
Application granted granted Critical
Publication of JP2503484B2 publication Critical patent/JP2503484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To better the uniformity of a metal structure by preventing an inner part crack by inclining the rolling reduction face of die at specific angle in the case of reducing the diameter of the material to be forged in an axial shape by subjecting to a rolling reduction by a die. CONSTITUTION:A forging is effected by die by arranging at equal intervals in the four directions of orthogonal direction for the axial direction of the material 1 to be forged. In this case those which have the rolling reduction face inclining at an angle delta (2 deg..7 deg.) for the vertical face in the rolling reduction direction of the anvil are used. Dies 2a-2d are moved in the centripetal direction simultaneously from the orthogonal four directions for the axial direction of the material 1 to be forged to subject the material 1 to be forged to rolling reduction. Then the dies 2a-2d are simultaneously pulled in to rotate the material 1 to be forged in an arrow mark A direction and the dies 2a-2d are again moved in the centripetal direction simultaneously from the four parts in the orthogonal direction for the axial direction to effect rolling reduction. By repeating this the axial cogged roll stock having uniform metal structure is obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、軸状をなす被鍛造材を軸方向に対し直角方
向の複数方向から金敷により同時に圧下して当該被鍛造
材をスェージングにより細径化(テーパ化を含む、)す
るのに利用される鍛造方法に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to rolling down a shaft-shaped forged material from multiple directions perpendicular to the axial direction using an anvil simultaneously. The present invention relates to a forging method used to reduce the diameter (including tapering) of a material by swaging.

(従来の技術) 従来、輪状をなす被鍛造材を軸方向に対し直角方向の複
数方向、例えば四方向から金敷により同時に圧下して当
該被鍛造材をスェージングにより細径化するに際しては
、例えば第5図に示すように、被鍛造材1の軸方向に対
し直角方向でかっ90’間隔で配設した四つの金敷2a
、2b。
(Prior Art) Conventionally, when reducing the diameter of a ring-shaped forged material by swaging by simultaneously rolling down a ring-shaped forged material from multiple directions perpendicular to the axial direction, for example, four directions, using an anvil, for example, As shown in FIG.
, 2b.

2c、2dを用い、前記軸状をなす被鍛造材1を図示し
ない被鍛造材保持装置によって保持した状態にして、ま
ず、被鍛造材1の軸方向に対し直角方向の四方向から金
敷2a〜2dを同時に求心方向に移動させることにより
前記被鍛造材1を圧下し、次いで金敷2a〜2dを同時
に遠心方向に引込ませたのち、被鍛造材1を第5図の矢
印A方向に角度(θ)だけ回転させ、次いで再び被鍛造
材1の軸方向に対し直角方向の四方向から金敷2a〜2
dを同時に求心方向に移動させることにより前記被鍛造
材1を圧下し、続いて、再び金敷2a〜2dを同時に遠
心方向に引込ませたのち、被鍛造材1を第5図の矢印A
方向に同じく角度(θ)だけ回転させ、かくして金敷2
a〜2dによる1回の圧下毎に被鍛造材1を角度(θ)
だけ回転させるという圧下一回転を繰返して鍛伸(スェ
ージング)することにより、被鍛造材1を次第に細径化
するようにしていた。
2c and 2d, the shaft-shaped forged material 1 is held by a forged material holding device (not shown), and the anvils 2a to 2d are first inserted from four directions perpendicular to the axial direction of the forged material 1. 2d in the centripetal direction, and then the anvils 2a to 2d are simultaneously drawn in the centrifugal direction, and then the forged material 1 is moved at an angle (θ) in the direction of arrow A in FIG. ), and then the anvils 2a to 2 are rotated again from four directions perpendicular to the axial direction of the forged material 1.
d in the centripetal direction, and then the anvils 2a to 2d are simultaneously retracted in the centrifugal direction, and then the forged material 1 is moved in the direction indicated by the arrow A in FIG.
The anvil 2 is rotated by the same angle (θ) in the direction.
For each reduction by a to 2d, the angle (θ) of the forged material 1 is
The material to be forged 1 is gradually reduced in diameter by swaging by repeating one round of rolling.

(発明が解決しようとする問題点) しかしながら、このような従来の鍛造方法では、とくに
超合金などの難加工性材料の鍛造を行った場合に、表面
から約1/3半径の深さのところで内部割れを発生する
ことがあり、かつまた金属組織の均一性に劣ったものに
なることがありうるという問題点があった。
(Problems to be Solved by the Invention) However, with such conventional forging methods, especially when forging difficult-to-work materials such as superalloys, a There are problems in that internal cracks may occur and the uniformity of the metal structure may be poor.

(発明の目的) この発明は上述した従来の問題点に着目してなされたも
ので、超合金などの難加工性材料の鍛造を行う場合であ
っても内部割れを生じがたく、金属組織の均一性を十分
良好なものにして、被鍛造材の細径化ないしはテーパ化
を実現することが可能である鍛造方法を提供することを
目的としているものである。
(Purpose of the Invention) This invention was made by focusing on the above-mentioned conventional problems, and even when forging difficult-to-work materials such as superalloys, internal cracks are difficult to occur, and the metal structure is It is an object of the present invention to provide a forging method that achieves sufficiently good uniformity and allows the material to be forged to be reduced in diameter or tapered.

[発明の構成] (問題点を解決するための手段) この発明に係る鍛造方法は、軸状をなす被鍛造材を軸方
向に対し直角方向の複数方向、例えば四方向から金敷に
より同時に圧下して当該被鍛造材をスェージングにより
細径化(テーパ化を含む、)するに際し、前記金敷とし
て、当該金敷の圧下方向の垂直面に対し2°〜7°、よ
り好ましくは3°〜6°の範囲で傾斜した圧下面を有す
るものを用いるようにしたことを特徴としているもので
ある。
[Structure of the Invention] (Means for Solving the Problems) The forging method according to the present invention involves simultaneously rolling down a shaft-shaped forged material from multiple directions perpendicular to the axial direction, for example, from four directions, using an anvil. When reducing the diameter (including tapering) of the material to be forged by swaging, the anvil is formed at an angle of 2° to 7°, more preferably 3° to 6°, with respect to the vertical plane in the rolling direction of the anvil. This is characterized by the use of a rolling surface that is inclined within a range.

本発明者は、前述したごとく、被鍛造材1に対する1回
の圧下毎に第5図に示したように所定角度(θ)だけ回
転させる従来の鍛造方法において、とくに超合金などの
難加工性材料の鍛造に際して表面から約173半径の深
さのところで内部割れが発生しやすい原因について種々
の検討を重ねた。
As mentioned above, the present inventor has discovered that in the conventional forging method of rotating the forged material 1 by a predetermined angle (θ) as shown in FIG. Various studies were conducted on the reasons why internal cracks tend to occur at a depth of approximately 173 radii from the surface during forging of materials.

そして、従来の鍛造方法では、第6図に示すように、変
形前における被鍛造材1の材料(第6図に0印で示す)
が、金敷2a〜2dによる変形に際して、被鍛造材1の
表層側の領域では鍛伸時回転方向(第6図矢印へ方向)
と同方向へ流れる(第6図に・印で示す)と同時に、被
鍛造材1の表面から約1/3深さのところでは鍛伸時回
転方向と逆方向へ流れる(同じく第6図に・で示す)こ
とが、横断面ファイバーフローの解析によって確認され
、上記のような角度(θ)毎の圧下・回転を繰返してい
くことによって、被鍛造材1の表面から約173深さの
ところにおいては、蓄積された大きな剪断歪を発生する
(第1図の圧下面の傾斜角度(δ)Ooの曲線を参照)
ため、超合金などの難加工性材料の鍛造に際しては、表
面から約1/3半径の深さのところで内部割れが発生し
やすいことを見い出した。
In the conventional forging method, as shown in Fig. 6, the material of the forged material 1 before deformation (indicated by the 0 mark in Fig. 6)
However, during deformation by the anvils 2a to 2d, the surface area of the forged material 1 rotates in the direction of rotation during forging (in the direction of the arrow in Fig. 6).
At the same time, at about 1/3 depth from the surface of the forged material 1, it flows in the opposite direction to the direction of rotation during forging (also shown in Figure 6). ) was confirmed by analysis of the cross-sectional fiber flow, and by repeating the reduction and rotation at each angle (θ) as described above, a , a large accumulated shear strain is generated (see the curve of the inclination angle (δ) Oo of the rolled surface in Fig. 1).
Therefore, it has been found that when forging difficult-to-work materials such as superalloys, internal cracks tend to occur at a depth of about 1/3 radius from the surface.

また、従来の鍛造方法では、金敷2a〜2dとして、第
3図に示すように、金!112c(2a。
In addition, in the conventional forging method, as shown in FIG. 3, the anvils 2a to 2d are made of gold! 112c (2a.

2b、2d)の圧下方向(第3図の矢印B方向)の垂直
面に対し傾斜角度0°すなわち前記圧下方向に対し垂直
の圧下面2を有するものを用いているが、この場合には
、被鍛造材1との接触面が当該被鍛造材1の入側に多く
片寄ってしまい、出側での接触面が少なくなってしまう
ことを突きとめた。そして、第4図に示すように、金敷
2c(2a、2b、2d)の圧下方向(第4図の矢印B
方向)の垂直面に対しある程度の傾斜角度(δ)だけ傾
斜した圧下面2を有するものを用いれば、被鍛造材1と
の接触面が当該被鍛造材1の入側と出側とでほぼ同じに
できることを種々の実験の結果確認し、これによって被
鍛造材1の内部に蓄積される剪断歪をかなり少なくでき
ることを確認した。そして、引続き種々の実験を行った
とこ゛ろ、金敷2a〜2dの圧下方向の垂直面に対する
傾斜角度(δ)が2°未満であれば、内部に蓄積される
剪断歪の低減に十分な効果が得られず。
2b, 2d) having an inclination angle of 0° with respect to the vertical plane in the rolling direction (direction of arrow B in Fig. 3), that is, the rolling surface 2 is perpendicular to the rolling direction. In this case, It has been found that the contact surface with the forged material 1 is biased toward the entry side of the forged material 1, and the contact surface on the exit side is reduced. Then, as shown in FIG. 4, the direction in which the anvil 2c (2a, 2b, 2d) is rolled down (arrow B
If the rolling surface 2 is inclined by a certain angle of inclination (δ) with respect to the vertical plane of the forged material 1, the contact surface with the forged material 1 will be approximately equal to the entrance and exit sides of the forged material 1. The results of various experiments have confirmed that the same can be achieved, and it has been confirmed that the shear strain accumulated inside the forged material 1 can be considerably reduced. Subsequently, various experiments were conducted, and it was found that if the inclination angle (δ) of the anvils 2a to 2d with respect to the vertical plane in the rolling direction was less than 2 degrees, a sufficient effect was obtained in reducing the shear strain accumulated inside. I can't help it.

反対に前記傾斜角度(δ)を7°よりも大きくしたとし
ても剪断歪の低減に対する効果の向上はあまりみられな
くなり、かえって金敷2a〜2dにとって好ましくない
分力が増大することから、前記傾斜角度(δ)は2°〜
7°の範囲、より好ましくは3°〜6°の範囲とするの
がよいことを確認した。
On the other hand, even if the inclination angle (δ) is made larger than 7°, the effect of reducing shear strain will not be improved much, and the unfavorable component force for the anvils 2a to 2d will increase, so the inclination angle (δ) is 2°~
It has been confirmed that the angle is preferably in the range of 7°, more preferably in the range of 3° to 6°.

(実施例) 被鍛造材として、耐食耐熱超合金(インコネル718)
からなり、外径が340mmφのインゴットを選んだ。
(Example) Corrosion-resistant and heat-resistant superalloy (Inconel 718) was used as the material to be forged.
An ingot with an outer diameter of 340 mmφ was selected.

そして、前記被鍛造材に対してソーキングを施したのち
、第5図に示したと同様に、被鍛造材1の軸方向に対し
直角方向の四方向、すなわち90°方向に等間隔で配置
した金敷2a〜2dによって鍛造を行った。
After soaking the forged material, as shown in FIG. Forging was performed according to steps 2a to 2d.

この実施例において、金敷2a〜2dとしては、圧下面
2の長手方向(第3図、第4図の紙面垂直方向)の傾斜
角度が中央部分から外側部分にかけて段階的に変化して
いくものを使用し、かつまた、圧下面2の短手方向(第
3図の上下方向)の傾斜角度(δ)が、金敷2a〜2d
の圧下方向(第3図の矢印四方向)の垂直面に対して0
0であるもの(従来のもの)、圧下面2の短手方向(第
4図の上下方向)の傾斜角度(δ)が、金敷2a〜2d
の圧下方向(第4図の矢印四方向)の垂直面に対して2
°であるもの、4°であるもの、および6°であるもの
を用いた。
In this embodiment, the anvils 2a to 2d are those in which the inclination angle of the rolling surface 2 in the longitudinal direction (direction perpendicular to the plane of the paper in FIGS. 3 and 4) changes stepwise from the center part to the outer part. In addition, the inclination angle (δ) of the rolling surface 2 in the transverse direction (vertical direction in FIG. 3) is the same as that of the anvils 2a to 2d.
0 with respect to the vertical plane in the rolling direction (four arrow directions in Figure 3)
0 (conventional), the inclination angle (δ) of the rolling surface 2 in the transverse direction (vertical direction in FIG. 4) is
2 with respect to the vertical plane in the rolling direction (four directions of arrows in Figure 4)
One with an angle of 4°, and one with an angle of 6° were used.

そして、これらの傾斜角度(δ)ごとの各金敷2a〜2
dを用い、前記軸状をなす被鍛造材1を図示しない被鍛
造材保持装置によって保持した状態にして、まず、被鍛
造材1の軸方向に対し直角の四方向から金敷2a〜2d
を同時に求心方向に移動させることにより被鍛造材1を
圧下し、次いで金敷2a〜2dを同時に遠心方向に引込
ませたのち、被鍛造材1を第3図(従来の場合)および
第4図(本発明実施例の場合)の矢印A方向に角度(O
;この場合はθ=13°)だけ回転させ、次いで再び被
鍛造材1の軸方向に対し直角方向の四方向から金敷2a
〜2dを同時に求心方向に移動させることにより前記被
鍛造材1を圧下し、続いて再び金敷2a〜2dを同時に
遠心方向に引込ませたのち被鍛造材1を第3図および第
4図の矢゛印A方向に同じく角度(θ;この場合もθ=
13°)だけ回転させ、かくして金敷2a〜2dによる
1回の圧下毎に被鍛造材1を角度(θ=13°)ずつ回
転させる工程を繰返して鍛伸(スェージング)すること
により、外径165mmの軸状鍛伸材を得た。
And each anvil 2a to 2 for each of these inclination angles (δ)
d, the shaft-shaped forged material 1 is held by a forged material holding device (not shown), and the anvils 2a to 2d are first moved from four directions perpendicular to the axial direction of the forged material 1.
The forged material 1 is rolled down by simultaneously moving them in the centripetal direction, and then the anvils 2a to 2d are simultaneously retracted in the centrifugal direction. In the case of the embodiment of the present invention), the angle (O
; In this case, the anvil 2a is rotated by θ=13°), and then the anvil 2a is rotated again from four directions perpendicular to the axial direction of the forged material 1.
2d are simultaneously moved in the centripetal direction, the forged material 1 is rolled down, and then the anvils 2a to 2d are simultaneously retracted in the centrifugal direction, and then the forged material 1 is moved in the direction shown by the arrows in FIGS. 3 and 4. Similarly, the angle (θ; in this case, θ=
By repeating the process of rotating the forged material 1 by an angle (θ = 13°) each time the anvils 2a to 2d are rolled by an angle of 13° (swaging), the outer diameter is 165 mm. A axially forged and drawn material was obtained.

このようにして得られた軸状鍛伸材の表面からの位置と
剪断歪蓄積量との関係を調べた結果は第1図に示すとお
りであり、圧下面2の傾斜角度(δ)が0°のときは剪
断歪蓄積量がかなり大きな値を示したが、圧下面の傾斜
角度(δ)を2°、4°、6°へと大きくしていくこと
によって、剪断歪M積置は次第に低減することが確かめ
られ、第2図に示すように最大剪断歪蓄積量は前記圧下
面2の傾斜角度(δ)を7°より大きくしてもさほど減
少せず、かえって分力の増大による影響が見られるよう
になることが確かめられた。
The results of investigating the relationship between the position from the surface of the shaft-shaped forged material obtained in this way and the amount of shear strain accumulated are as shown in Fig. 1, and the inclination angle (δ) of the rolled surface 2 is 0. The shear strain accumulation amount showed a fairly large value when As shown in Fig. 2, the maximum shear strain accumulation does not decrease significantly even when the inclination angle (δ) of the rolling surface 2 is made larger than 7°, and is rather affected by the increase in component force. It was confirmed that it became visible.

そして、鍛伸後における軸状鍛伸材の軸直角方向の断面
を調べたところ、圧下面2の傾斜角度(δ)を00にし
た従来の金敷2a〜2dを用いた場合には、鍛伸材の表
面から約1/3半径の深さのところに内部割れを生じて
いたのに対して、圧下面2の傾斜角度(δ)を2’、4
°、6°に示した本発明実施例の金敷2a〜2dを用い
た場合には鍛伸材の内部に割れを生じておらず、表面疵
の発生もほとんどみられず、鍛伸材の全域にわたって均
一かつ良好な金属組織となっているものであるという満
足のいく結果を得ることができた。
When we examined the cross section of the shaft-shaped forged material in the direction perpendicular to the axis after forging, we found that when using conventional anvils 2a to 2d with the inclination angle (δ) of the rolling surface 2 set to 00, the forging Internal cracks had occurred at a depth of about 1/3 radius from the surface of the material, but the inclination angle (δ) of the rolling surface 2 was changed to 2', 4'.
When using the anvils 2a to 2d according to the embodiments of the present invention shown in 6° and 6°, no cracks were generated inside the forged material, almost no surface flaws were observed, and the entire area of the forged material was Satisfactory results were obtained in which the metal structure was uniform and good throughout.

[発明の効果] 以上説明してきたように、この発明に係る鍛造方法によ
れば、軸状をなす被鍛造材を軸方向に対し直角方向の複
数方向から金敷により同時に圧下して当該被鍛造材をス
ェージングにより細径化するに際し、前記金敷として、
当該金敷の圧下方向の垂直面に対し2°〜7°の範囲で
傾斜した圧下面を有するものを用いるようにしたから、
超合金などの難加工性材料の鍛造を行う場合であっても
内部割れを生じがたく、金属組織の均一性を十分良好な
ものにして、被鍛造材の細径化ないしはテーパ化を実現
することが可能であるという著大なる効果がもたらされ
る。
[Effects of the Invention] As explained above, according to the forging method of the present invention, a shaft-shaped to-be-forged material is simultaneously rolled down with an anvil from multiple directions perpendicular to the axial direction. When reducing the diameter by swaging, as the anvil,
Since we used an anvil with a rolling surface inclined in the range of 2° to 7° with respect to the vertical plane in the rolling direction of the anvil,
Even when forging difficult-to-work materials such as superalloys, internal cracks are unlikely to occur, and the uniformity of the metal structure is sufficiently good to achieve thinner or tapered diameters of the forged material. This has the great effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被鍛造材の鍛伸後における表面からの位置と剪
断歪蓄積量との関連を示すグラフ、第2図は被鍛造材の
鍛伸後における金敷の圧下面の傾斜角度(δ)と最大剪
断歪蓄積量との関連を示すグラフ、第3図は従来の金敷
における被鍛造材との接触状況を示す側面説明図、第4
図はこの発明の実施例による金敷における被鍛造材との
接触状況を示す側面説明図、第5図は軸状をなす被鍛造
材を軸方向に対し直角方向の四方向から金敷により同時
に圧下して鍛伸を行う鍛造方法の説明図、!86図は鍛
伸による被鍛造材の横断面ファイバーフローを示す説明
図である。 1・・・被鍛造材、 2a〜2d・・・金敷、 2・・・金敷の圧下面、 δ・・・金敷圧下面の傾斜角度。 特許出願人   大同特殊鋼株式会社 代理人弁理士  小  塩    豊 第1図      第2図 第3図      第4図 0ノ′ −始べ
Figure 1 is a graph showing the relationship between the position from the surface of the material to be forged and the amount of accumulated shear strain after forging and stretching, and Figure 2 is the inclination angle (δ) of the rolling surface of the anvil after the material to be forged is forged and stretched. Fig. 3 is a side explanatory view showing the contact situation with the material to be forged in a conventional anvil, Fig. 4 is a graph showing the relationship between
The figure is an explanatory side view showing the state of contact between the anvil and the material to be forged according to the embodiment of the present invention, and FIG. An explanatory diagram of the forging method that performs forging and elongation! FIG. 86 is an explanatory diagram showing a cross-sectional fiber flow of a forged material by forging. 1... Material to be forged, 2a to 2d... Anvil, 2... Reduction surface of the anvil, δ... Inclination angle of the anvil reduction surface. Patent Applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 1 Figure 2 Figure 3 Figure 4 0' -Start

Claims (1)

【特許請求の範囲】[Claims] (1)軸状をなす被鍛造材を軸方向に対し直角方向の複
数方向から金敷により同時に圧下して当該被鍛造材をス
エージングにより細径化するに際し、前記金敷として、
当該金敷の圧下方向の垂直面に対し2°〜7°の範囲で
傾斜した圧下面を有するものを用いることを特徴とする
鍛造方法。
(1) When reducing a shaft-shaped forged material from multiple directions perpendicular to the axial direction with an anvil simultaneously to reduce the diameter of the forged material by swaging, as the anvil,
A forging method characterized by using an anvil having a rolling surface inclined in the range of 2° to 7° with respect to a vertical plane in the rolling direction.
JP62052847A 1987-03-10 1987-03-10 Forging method Expired - Lifetime JP2503484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052847A JP2503484B2 (en) 1987-03-10 1987-03-10 Forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052847A JP2503484B2 (en) 1987-03-10 1987-03-10 Forging method

Publications (2)

Publication Number Publication Date
JPS63220940A true JPS63220940A (en) 1988-09-14
JP2503484B2 JP2503484B2 (en) 1996-06-05

Family

ID=12926237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052847A Expired - Lifetime JP2503484B2 (en) 1987-03-10 1987-03-10 Forging method

Country Status (1)

Country Link
JP (1) JP2503484B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS449329Y1 (en) * 1966-03-31 1969-04-16
JPS5564935A (en) * 1978-11-10 1980-05-16 Ono Roll Seisakusho:Kk Swaging machine
JPS61286033A (en) * 1985-06-11 1986-12-16 Daido Steel Co Ltd Working method for difficult workability material by rotary swaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS449329Y1 (en) * 1966-03-31 1969-04-16
JPS5564935A (en) * 1978-11-10 1980-05-16 Ono Roll Seisakusho:Kk Swaging machine
JPS61286033A (en) * 1985-06-11 1986-12-16 Daido Steel Co Ltd Working method for difficult workability material by rotary swaging

Also Published As

Publication number Publication date
JP2503484B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPH0124563B2 (en)
JP2996077B2 (en) Piercing method of seamless metallic tube
JPS63220940A (en) Forging method
JPS63220939A (en) Forging method
US6250125B1 (en) Method for producing iron-base dispersion-strengthened alloy tube
JPS6040625A (en) Working method of cylinder end part
JP2009233732A (en) Ring rolling method of ring-shaped product having complicated surface shape of axial cross section
JPH0569075A (en) Form rolling of short cylinder
JP3369320B2 (en) Tilt rolling equipment
JP3082678B2 (en) Manufacturing method of small diameter seamless metal pipe
JP2002210504A (en) Method and apparatus for rolling by ring rolling
JPH05237581A (en) Pressing method and die for pressing
JP2700418B2 (en) Endless belt and its manufacturing method
JPH06238385A (en) Forging of stepped shaft stock
JPH11347680A (en) Method for roll-forging shaft with step
JPS60244436A (en) Formation of circular columnar blank material by forging
JPH0655204A (en) Manufacture of seamless tube
JPH06218406A (en) Manufacture of seamless tube
JPS6171111A (en) Inclined rolling method of seamless steel pipe
JPS63230205A (en) Piercing roll method for free-cutting steel billet
JP2975964B2 (en) Manufacturing method of spinning ring
JP2996124B2 (en) Perforation rolling method for seamless metal pipe
JPH03248720A (en) Intrasurface bending method
PL238842B1 (en) Method for rolling of shaft forgings
JPS60124435A (en) Forging method of metallic material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term