JPH01245110A - Optical scanning type displacement sensor - Google Patents

Optical scanning type displacement sensor

Info

Publication number
JPH01245110A
JPH01245110A JP7354288A JP7354288A JPH01245110A JP H01245110 A JPH01245110 A JP H01245110A JP 7354288 A JP7354288 A JP 7354288A JP 7354288 A JP7354288 A JP 7354288A JP H01245110 A JPH01245110 A JP H01245110A
Authority
JP
Japan
Prior art keywords
signal
distance
light
correction value
detected object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7354288A
Other languages
Japanese (ja)
Other versions
JPH07122564B2 (en
Inventor
Yuji Takada
裕司 高田
Motoo Igari
素生 井狩
Tei Satake
禎 佐竹
Yasuo Ishiguro
石黒 恭生
Yoshito Kato
加藤 由人
Nobuyuki Suzuki
信幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Works Ltd filed Critical Toyota Motor Corp
Priority to JP7354288A priority Critical patent/JPH07122564B2/en
Priority to GB8814270A priority patent/GB2206690B/en
Priority to US07/212,228 priority patent/US4864147A/en
Priority to IT8848128A priority patent/IT1219969B/en
Priority to DE3822143A priority patent/DE3822143A1/en
Publication of JPH01245110A publication Critical patent/JPH01245110A/en
Priority to GB9107670A priority patent/GB2243442B/en
Publication of JPH07122564B2 publication Critical patent/JPH07122564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To curtail the memory capacity by providing a linearity correcting means for calculating a second distance measuring signal being proportional to a displacement of a distance to an object to be detected in accordance with a first distance measuring signal. CONSTITUTION:A light beam P from a projecting means 1 is scanned on the surface of an object to be detected 2 by a deflecting means 7. Subsequently, a reflected light beam R from the object 2 is condensed by an optical system 3 for a light receiving. Next, in a position detecting means 4 provided on the condensing surface of the optical system 3, a pair of position signals IA, IB opposed to each other corresponding to a position of a condensing spot S for moving in the condensing surface in accordance with a distance to the object 2 are outputted. Also, in an arithmetic means, the first distance measuring signal L0 being proportional to a position variation of the spot S is calculated, based on the output of the means 4. Subsequently, in a linearity correcting means, by setting a displacement DELTAl of a distance to the object 2 as a variable, a value of an inverse function of a function L0 (DELTAl) for calculating the signal L0 is calculated from the signal L0, the signal L0 is multiplied by a signal which has added a constant value to this inverse function, and the second distance measuring signal L being proportional to the displacement DELTAl to the object 2 is calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶接、ばり取り等を行うロボット用の視覚セ
ンサ、或いは製品の欠陥検出や寸法測定用のセンサとし
て用いられるFA用の変位センサに関するものであり、
特に被検知物体の表面の二次元形状を光学的な三角測量
方式を用いて計測するようにした光走査型変位センサに
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a visual sensor for robots that perform welding, deburring, etc., or a displacement sensor for FA used as a sensor for detecting product defects and measuring dimensions. It is related to
In particular, the present invention relates to an optical scanning displacement sensor that measures the two-dimensional shape of the surface of a detected object using an optical triangulation method.

[従来の技術] 近年、工場のFA(ファクトリ−・オートメーション)
化が進んでおり、生産ラインでは、物体までの距離情報
を用いて物体の位置決め、物体の有無の認識などを行う
変位センサが要望されている、このような要望を満たし
、被検知物体までの距離の検出を非接触で行う変位セン
サとして、被検知物体までの距離を光学的に測定するも
のがあり、三角測量方式のものが比較的構成が簡単であ
るところから実用化されている。
[Conventional technology] In recent years, factory FA (factory automation)
In order to meet these demands, there is a need for displacement sensors that can position objects and recognize the presence or absence of objects using information about the distance to the object. Displacement sensors that perform distance detection in a non-contact manner include those that optically measure the distance to an object to be detected, and those that use a triangulation method have been put into practical use because of their relatively simple configuration.

一般にこの種の変位センサは、第2図に示すように、半
導体レーザや発光ダイオード等を備えた投光手段1から
放射された光ビームを被検知物体2に照射し、その拡散
反射光を受光用光学系3で集光するとともに、受光用光
学系3の集光面に形成される集光スポットSを、PSD
等よりなる位置検出手段4で受光するように構成されて
いる。
Generally, as shown in FIG. 2, this type of displacement sensor irradiates a detected object 2 with a light beam emitted from a light projecting means 1 equipped with a semiconductor laser, a light emitting diode, etc., and receives the diffusely reflected light. The light is focused by the light receiving optical system 3, and the light spot S formed on the light collecting surface of the light receiving optical system 3 is focused by the PSD.
The position detecting means 4 is configured to receive the light.

位置検出手段4は集光スポットSの位置に対応した電気
信号が得られる素子であって、この電気信号に基づいて
被検知物体2までの距離が三角測量方式により演算され
る。すなわち、第1図に示すように、被検知物体2の位
置がA、B、Cと変化して投光手段1と被検知物体2と
の距離が変化すると、位置検出手段4の受光面に形成さ
れる集光スポットSの位置は紙面上をa、b、cと移動
するから、紙面上の位置検出が行えるような一次元の位
置検出手段4を用いることにより、被検知物体2までの
距離を検出することができるものである。
The position detection means 4 is an element capable of obtaining an electric signal corresponding to the position of the focused spot S, and based on this electric signal, the distance to the detected object 2 is calculated by a triangulation method. That is, as shown in FIG. 1, when the position of the detected object 2 changes from A to B to C and the distance between the light projecting means 1 and the detected object 2 changes, the light receiving surface of the position detecting means 4 changes. Since the position of the condensed spot S to be formed moves from a to b to c on the paper surface, by using a one-dimensional position detection means 4 that can detect the position on the paper surface, it is possible to detect the distance to the detected object 2. It is capable of detecting distance.

一方、第3図に示すように、被検知物体2の表面で光ビ
ームを走査させるように、投光手段1に走査ミラー等の
偏向手段7を設けることが考えられる。投光手段1は、
第4図に示すように、投光タイミングを設定するクロッ
クパルスを発生する発振回路10と、投光用発光素子1
2を駆動するドライブ回路11および凸レンズよりなる
投光用光学系13を含み、投光用発光素子12がら発せ
られる光を投光用光学系13にて光ビームに成形して投
光するようになっている。この光ビームは走査ミラー等
の偏向手段7により、被検知物体2の上でX軸方向に走
査される。被検知物体2の表面で拡散反射された反射光
は、受光用光学系3にて集光される。その集光面に配さ
れた位置検出手段4は、集光スポットSの位置に対応し
た相反する位置信号I A、 I 8を出力する0位置
検出手段4から構成される装置信号I A、 I Bを
、第4図に示すような演算手段5にて演算処理すること
により、Z軸方向についての測距信号り。を得ることが
できる。一方、走査ミラー駆動回路17からは走査角度
信号Xmが得られる。これらの測距信号L0と走査角度
信号Xmにより、被検知物体2の表面における走査線上
の二次元形状を検出することができる。
On the other hand, as shown in FIG. 3, it is conceivable to provide the light projection means 1 with a deflection means 7 such as a scanning mirror so as to scan the light beam on the surface of the object to be detected 2. The light projecting means 1 is
As shown in FIG. 4, an oscillation circuit 10 that generates a clock pulse that sets the timing of light emission, and a light emitting element 1 for light emission.
2 and a light projection optical system 13 consisting of a convex lens, the light emitted from the light projection light emitting element 12 is formed into a light beam by the light projection optical system 13, and the light is projected. It has become. This light beam is scanned over the object to be detected 2 in the X-axis direction by a deflection means 7 such as a scanning mirror. The reflected light diffusely reflected on the surface of the object to be detected 2 is collected by the light receiving optical system 3. The position detection means 4 disposed on the light condensing surface outputs device signals IA, I, which is composed of a zero position detection means 4 that outputs contradictory position signals IA, I8 corresponding to the position of the condensed spot S. A distance measurement signal in the Z-axis direction is obtained by processing B in the calculation means 5 as shown in FIG. can be obtained. On the other hand, a scanning angle signal Xm is obtained from the scanning mirror drive circuit 17. The two-dimensional shape on the scanning line on the surface of the object to be detected 2 can be detected using the ranging signal L0 and the scanning angle signal Xm.

第4図に示す演算手段5は、位置検出手段4から構成さ
れる装置信号(相反する電流信号I A、 I e)を
それぞれ増幅して電圧信号vA、v日に変換する受光回
路21a、21bと、受光回路21a、21bの出力レ
ベルを発振回路10の出力に基づいてチエツク(クロッ
クパルスに同期してレベルを判定)するレベル検出回路
22a、22bと、し゛ベル検出回路22a、22bの
出力(位置信号I A、 I 日のレベルに1:1に対
応するので、以下において、I A、 I 、と称する
)の減算を行う減算回路23と、レベル検出回路22a
、22bの出力I A、 I Bの加算を行う加算回路
24と、減算回路23がら出力される第1の信号(IA
  Is)と、加算回路24がら出力される第2の信号
(IA+IB)との比率を演算する除算回路25とで構
成されており、除算回路25がら測距信号Lo(−(I
A Is)/(IA+Ia))が出力されるようになっ
ている。
The calculation means 5 shown in FIG. 4 includes light receiving circuits 21a and 21b which amplify the device signals (contradictory current signals IA and Ie) constituted by the position detection means 4 and convert them into voltage signals vA and v day, respectively. , level detection circuits 22a and 22b that check the output levels of the light receiving circuits 21a and 21b based on the output of the oscillation circuit 10 (determine the level in synchronization with the clock pulse), and outputs of the level detection circuits 22a and 22b ( A subtraction circuit 23 that performs subtraction of the position signal IA, I (hereinafter referred to as IA, I because it corresponds 1:1 to the level of the day) and a level detection circuit 22a.
, 22b, and a first signal (IA
Is) and a second signal (IA+IB) output from the adder circuit 24.
A Is)/(IA+Ia)) is output.

上述の測距信号L0は変位距離Δlに対して以下のよう
な関係になっている。第2図に示すように、変位測定装
置から被検知物体2までの距離pを1−1c+Δ1(但
し、1cは集光スポットSが位置検出手段4の中央点に
集光されるときの基準距離であり、Δlは距離1cから
の変位距離)とし、受光用光学系3から位置検出手段4
までの距離をF、被検知物体2からの反射光Rの集光ス
ポットSの位置検出手段4の中央点からの移動距離をΔ
2、投光手段1と受光用光学系3の光軸の交差角をθと
すれば、(fc/cosθ+Δ(cosθ)Δz=(Δ
t’sinθ)F、°、Δz=(tanθ)FΔ1/ 
(lc/ eos2θ+Δ1)ここで、 a=(tanθ)F 、 b=t’c/cos2θとお
くと、Δz=aΔ1/(b+Δ1)       ・・
・■となり、集光スポットSの移動距離Δ2と被検知物
体2の変位距離Δlの関係はノンリニアとなっている。
The distance measurement signal L0 described above has the following relationship with respect to the displacement distance Δl. As shown in FIG. 2, the distance p from the displacement measuring device to the detected object 2 is 1-1c+Δ1 (where 1c is the reference distance when the focused spot S is focused on the center point of the position detecting means 4). , and Δl is the displacement distance from the distance 1c), and the distance from the light receiving optical system 3 to the position detection means 4 is
F is the distance from the center point of the position detecting means 4 of the focused spot S of the reflected light R from the detected object 2 to Δ.
2. If the intersection angle of the optical axes of the light projecting means 1 and the light receiving optical system 3 is θ, then (fc/cosθ+Δ(cosθ)Δz=(Δ
t'sinθ)F, °, Δz=(tanθ)FΔ1/
(lc/eos2θ+Δ1) Here, if we set a=(tanθ)F and b=t'c/cos2θ, then Δz=aΔ1/(b+Δ1)...
・■, and the relationship between the movement distance Δ2 of the focused spot S and the displacement distance Δl of the detected object 2 is non-linear.

ここに、位置検出手段4から構成される装置信号I A
、 1.と移動距離ΔZとの関係は、位置検出手段4の
有効長を2fpとすれば、 <I A  I e)/ (I A+ I e)=Δz
/1p  −■となっている。■、■式から明らかなよ
うに演算手段5から出力される測距信号L0は、変位距
離Δ!の情報を含む信号であるが、変位距離Δlに対し
てリニアな関係になっていない、したがって、変位距離
Δlの測定精度を距離変化(変位の大小)があっても同
一にするためには、リニアリティ補正回路6を設けて、
リニアな測距信号りが得られるように補正する必要があ
った。
Here, the device signal IA constituted by the position detection means 4
, 1. If the effective length of the position detecting means 4 is 2 fp, the relationship between and the moving distance ΔZ is as follows: <I A I e)/(I A+ I e)=Δz
/1p - ■. As is clear from equations (1) and (2), the distance measurement signal L0 output from the calculation means 5 is the displacement distance Δ! However, it does not have a linear relationship with the displacement distance Δl. Therefore, in order to make the measurement accuracy of the displacement distance Δl the same regardless of distance changes (displacement magnitude), A linearity correction circuit 6 is provided,
It was necessary to make corrections so that a linear distance measurement signal could be obtained.

次に、第3図に示すように、走査ミラー等の偏向手段7
により光ビームを走査させた場合の位置検出手段4の受
光面上の集光スポットSの動きを検討してみる。被検知
物体2が2軸に垂直な平板である場合には、集光スポッ
トSは、第4図に示すような軌跡S′を描く、第4図に
おいて、2°軸は光ビームがX軸方向に走査されていな
いときに、被検知物体2の距離の変化に応じて集光スポ
ットSが移動する方向の軸であり、X°軸は集光面上で
Z°軸とは垂直な軸である。光ビームを走査させたとき
の集光スポットSの軌跡S°は、理想的な条件下におい
ては、位置検出手段4上のX′軸に対して平行になるは
ずであるが、現実には位置検出手段4と光軸のねじれや
投光ビームのねじれ等、種々の誤差が含まれることによ
り、第4図に示すように、X′軸に対して傾いた形とな
る。この軌跡S′は被検知物体2が2軸方向に移動した
場合、一定の傾きを持ったまま2“軸方向に平行移動す
るものではなく、前記のような誤差のため、傾きが変化
しながら2°軸方向に移動することになる。つまり、光
ビームをX軸方向に走査させることにより、測距信号L
0に誤差が生じ、この誤差はXと2の両方の関数となっ
ている。したがって、第4図に示すように、走査角度信
号Xl11をリニアリティ補正回路6へ入力して、X軸
方向の誤差補正を行う必要がある。
Next, as shown in FIG. 3, deflection means 7 such as a scanning mirror
Let us consider the movement of the condensed spot S on the light receiving surface of the position detecting means 4 when the light beam is scanned by the following. When the object to be detected 2 is a flat plate perpendicular to two axes, the condensed spot S draws a trajectory S' as shown in Fig. 4. In Fig. 4, the 2° axis corresponds to the X axis of the light beam. This is the axis in which the focused spot S moves in response to changes in the distance of the detected object 2 when the object is not being scanned in the same direction, and the X° axis is an axis perpendicular to the Z° axis on the focusing surface. It is. The locus S° of the focused spot S when scanning the light beam should be parallel to the X' axis on the position detection means 4 under ideal conditions, but in reality Due to the inclusion of various errors such as the twisting of the detection means 4 and the optical axis and the twisting of the projected beam, the shape is tilted with respect to the X' axis as shown in FIG. When the detected object 2 moves in the two-axis direction, this trajectory S' does not move parallel to the two-axis direction while maintaining a constant inclination, but due to the above-mentioned error, the detected object 2 moves in the two-axis direction. In other words, by scanning the light beam in the X-axis direction, the distance measurement signal L
There is an error in 0, and this error is a function of both X and 2. Therefore, as shown in FIG. 4, it is necessary to input the scanning angle signal Xl11 to the linearity correction circuit 6 to correct the error in the X-axis direction.

加えて、位置検出手段4自身にもリニアリティ誤差を発
生させる要因が存在する0通常、位置検出手段4のリニ
アリティ誤差は、集光スポットSを位置検出手段4上の
Z′軸上で、Z°軸方向へΔ2移動させた場合、測距信
号L0の直線からのずれで評価する。このリニアリティ
誤差特性の一例を示すと、第6図の実線のようになる。
In addition, there are factors that cause linearity errors in the position detecting means 4 itself.Normally, the linearity error of the position detecting means 4 is caused by moving the focused spot S on the Z′ axis on the position detecting means 4 by Z°. When the distance measurement signal L0 is moved by Δ2 in the axial direction, the deviation from the straight line of the distance measurement signal L0 is evaluated. An example of this linearity error characteristic is shown by the solid line in FIG.

集光スポットSの移動軸を、位置検出手段4上の×°軸
方向へ×だけずらした場合のリニアリティ誤差特性は、
第6図の破線で示すようになり、位置検出手段4の2′
軸上で集光スポットSが移動する場合とは異なる特性と
なる0位置検出手段4が理想特性にあれば、リニアリテ
ィ誤差はゼロとなるはずであるが、現実には、位置検出
手段4における抵抗層の抵抗値分布が一様ではなく、そ
れが測距信号L0の誤差となって現れてくる。この不均
一な抵抗値分布は位置検出手段4のX′軸方向にも存在
しているため、集光スポットSの移動軸が異なると、リ
ニアリティ誤差特性も変化することになる。
The linearity error characteristic when the movement axis of the focused spot S is shifted by × in the ×° axis direction on the position detection means 4 is as follows.
As shown by the broken line in FIG.
If the zero position detection means 4 has ideal characteristics, which is different from the characteristic when the focused spot S moves on the axis, the linearity error should be zero, but in reality, the resistance in the position detection means 4 The resistance value distribution of the layer is not uniform, and this appears as an error in the ranging signal L0. Since this non-uniform resistance value distribution also exists in the X'-axis direction of the position detection means 4, if the movement axis of the focused spot S differs, the linearity error characteristic will also change.

以上のような種々のリニアリティ誤差を補正する手段と
して、従来、第7図に示すようなリニアリティ補正回路
6が用いられていた。測距信号り。
Conventionally, a linearity correction circuit 6 as shown in FIG. 7 has been used as means for correcting the various linearity errors as described above. Ranging signal.

及び走査角度信号Xl11はそれぞれA/D変換部61
.62にてデジタル信号に変換され、CPU63に入力
される。CPU63では、入力された測距信号L0及び
走査角度信号Xmに応じた補正値データをメモリ64か
ら読み出す。メモリ64には、測距信号L0をリニアリ
ティ補正するための補正値データ及び走査角度信号Xs
によってX軸方向についてのりニアリテイ誤差を補正す
るための補正値データが、測距信号り。及び走査角度信
号Xmのそれぞれの値に対応してマトリクス状に予め記
憶されている。CPU63は、メモリ64から読み出し
た補正値データにより、入力データを補正してD/A変
換部65に送る。D/A変換部65では、CPU63か
ら出力されたデジタル信号をアナログ信号に変換して、
リニアリティ補正後の測距信号りとして出力する。
and the scanning angle signal Xl11 are each sent to the A/D converter 61.
.. The signal is converted into a digital signal at 62 and input to the CPU 63. The CPU 63 reads out correction value data from the memory 64 according to the input ranging signal L0 and scanning angle signal Xm. The memory 64 stores correction value data for linearity correction of the ranging signal L0 and a scanning angle signal Xs.
The correction value data for correcting the linearity error in the X-axis direction is the distance measurement signal. and scanning angle signal Xm are stored in advance in a matrix format corresponding to the respective values. The CPU 63 corrects the input data using the correction value data read from the memory 64 and sends the corrected data to the D/A converter 65 . The D/A converter 65 converts the digital signal output from the CPU 63 into an analog signal.
Output as a distance measurement signal after linearity correction.

[発明が解決しようとする課題] しかしながら、上述の従来例の場合、分解能を高くする
ためには、メモリ64の記憶容量を大きくする必要があ
る。例えば、2軸方向にフルスケールの1/4000の
分解能、x軸方向にフルスケールの1/1000の分解
能を得るためには、4.000 、OO0個の補正値デ
ータをメモリ64に記憶させなければならない、また、
部品のばらつきに応じて個別に最適な補正値を設定する
必要があるので、個々の装置につき、その分解能に応じ
た個数の補正値データを調整時に作成しなければならず
、調整コストが著しく高くなり、調整時間もかかるため
、量産には適さなかった。
[Problems to be Solved by the Invention] However, in the case of the conventional example described above, in order to increase the resolution, it is necessary to increase the storage capacity of the memory 64. For example, in order to obtain a resolution of 1/4000 of full scale in the two-axis direction and a resolution of 1/1000 of full scale in the x-axis direction, 4.000,000 correction value data must be stored in the memory 64. must be, also,
Since it is necessary to set the optimal correction value individually according to the variation in parts, it is necessary to create a number of correction value data for each device according to its resolution during adjustment, which increases the adjustment cost significantly. This made it unsuitable for mass production because it took time to adjust.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、リニアリティ補正のための補正
値データの記憶容量が少なくて済み、また調整作業を容
易に行い得るようにした光走査型変位センサを提供する
ことにある。
The present invention has been made in view of these points, and its purpose is to reduce the storage capacity of correction value data for linearity correction and to facilitate adjustment work. An object of the present invention is to provide an optical scanning displacement sensor.

[課題を解決するための手段] 本発明に係る光走査型変位センサは、上記の課題を解決
するために、第1図乃至第4図に示すように、被検知物
体2の表面に光ビームPを投光する投光手段1と、前記
光ビームPを被検知物体2の表面で走査させる偏向手段
7と、被検知物体2による光ビームPの反射光Rを集光
する受光用光学系3と、受光用光学系3の集光面に配設
され被検知物体2までの距離に応じて集光面内で移動す
る集光スポットSの位置に対応した相反する一対の位置
信号I A、 1.を出力する位置検出手段4と、位置
検出手段4の出力に基づいて集光スポットSの位置変化
に比例する第1の測距信号L0を算出する演算手段5と
、被検知物体2までの距離の変位Δlを変数として第1
の測距信号L0を算出する関数り、(Δ1)の逆関数Δ
1(Lo)の値を第1の測距信号り。から算出し、この
逆関数Δ1(Lo)の値に定数値すを加えて得た信号を
、第1の測距信号L0に乗じて被検知物体2までの距離
の変位Δlに比例する第2の測距信号りを算出するリニ
アリティ補正手段6とを有して成ることを特徴とするも
のである。
[Means for Solving the Problems] In order to solve the above problems, the optical scanning displacement sensor according to the present invention applies a light beam to the surface of the detected object 2, as shown in FIGS. 1 to 4. A light projecting means 1 for projecting light P, a deflecting means 7 for scanning the light beam P on the surface of the detected object 2, and a light receiving optical system for condensing the reflected light R of the light beam P by the detected object 2. 3, and a pair of contradictory position signals I A corresponding to the position of a condensing spot S, which is disposed on the condensing surface of the light receiving optical system 3 and moves within the condensing plane according to the distance to the detected object 2. , 1. a calculation means 5 that calculates a first distance measurement signal L0 proportional to a change in the position of the focused spot S based on the output of the position detection means 4; and a calculation means 5 that calculates the distance to the detected object 2. The displacement Δl of the first
The function to calculate the ranging signal L0 is the inverse function Δ of (Δ1)
1 (Lo) as the first ranging signal. A signal obtained by adding a constant value to the value of this inverse function Δ1 (Lo) is multiplied by the first ranging signal L0 to obtain a second signal proportional to the displacement Δl of the distance to the detected object 2. The linearity correction means 6 calculates the distance measurement signal.

[作用] 以下、本発明の原理を数式を用いて説明する。[Effect] The principle of the present invention will be explained below using mathematical formulas.

0.0式より、測距信号り。は、 で表せる。つまり、測距信号L0は、Δlの関数L0(
Δ1)である、この■式をΔ!について解くと、□−L
0 p となり、ΔlはLoの関数となる。この関数ΔN(L、
)は、■式で示される関数L0(Δ1)の逆関数である
From the 0.0 formula, the distance measurement signal is obtained. can be expressed as . In other words, the ranging signal L0 is the function L0(
Δ1), this ■formula is Δ! Solving for □−L
0 p and Δl is a function of Lo. This function ΔN(L,
) is an inverse function of the function L0 (Δ1) shown by equation (2).

さらに、このΔ1(Lo)に定数すを加算して、α(L
o)=Δ1(L 、)+ b      ・・・■とい
う補正値を求める。この補正値α(Lo)は、測距信号
L0の値から理論的に求めることができる。■式を■式
に乗算すると、 L=L、、・α(Lo) =−・Δl        ・・・■ p 0式に示すように、測距信号L0はリニアライズされて
、Δlに比例する測距信号りが得られる。
Furthermore, by adding a constant S to this Δ1(Lo), α(L
A correction value of o)=Δ1(L,)+b...■ is determined. This correction value α(Lo) can be theoretically determined from the value of the ranging signal L0. Multiplying the formula ■ by the formula ■ gives L=L,,・α(Lo) =−・Δl...■ p As shown in the formula 0, the distance measurement signal L0 is linearized and becomes a measurement proportional to Δl. A distance signal can be obtained.

つまり、測距信号L0より0式と■式の演算を行い、補
正値α(Lo)を求めて、これを測距信号り。
In other words, the calculations of formula 0 and formula (2) are performed from the distance measurement signal L0 to obtain the correction value α (Lo), which is then used as the distance measurement signal.

に乗算することにより、リニアライズが行われる。Linearization is performed by multiplying by .

各装置の部品にばらつきがなく、定数a、bが設計値通
りであれば、これだけで完全なリニアライズが行われる
If there are no variations in the parts of each device and the constants a and b are as designed, complete linearization can be achieved with just this.

次に、部品のばらつきや組立誤差が存在する場合のリニ
アライズ方式について説明する。まず、Z軸方向のリニ
アリティ誤差について検討する。
Next, a linearization method when there are component variations or assembly errors will be described. First, consider the linearity error in the Z-axis direction.

■式より、部品のばらつきや組立誤差は、定数a。■From the formula, component variations and assembly errors are constant a.

bに関係することが分かる。そこで、ばらついた状態で
の定数をa’ 、b’とすると、■式は次のようになる
It can be seen that this is related to b. Therefore, if the constants in the state of variation are a' and b', the equation (2) becomes as follows.

!p(b’+Δl) 今、定数すの補正値をβ、定数aの補正値をγとし、各
々を次式の通り定義する。
! p(b'+Δl) Now, let β be the correction value of constant S, and let γ be the correction value of constant a, and define each as the following equation.

β=b’−b γ=a/a’              ・・・■こ
こで、■式の両辺に次のようにα、β、γを掛けると、 L = L O(α(L、)+β)・γ=−Δ!   
       ・・・■p となり、0式に示すように、測距信号L0はリニアライ
ズされる。つまり、測距信号L0より0式と0式の演算
を行い、理論的な補正値α(Lo)を求めて、この補正
値α(Lo)に、個々の装置のばらつきにより決定され
る補正値β、γを付は加え、0式のような演算を行うこ
とにより、Z軸方向のリニアリティ誤差が補正されるわ
けである。
β=b'-b γ=a/a'...■Here, multiplying both sides of the formula by α, β, and γ as follows, L = L O(α(L,)+β)・γ=-Δ!
. . ■p As shown in equation 0, the distance measurement signal L0 is linearized. In other words, the equations 0 and 0 are calculated from the distance measurement signal L0 to obtain a theoretical correction value α (Lo), and this correction value α (Lo) is added to a correction value determined by variations in individual devices. By adding β and γ and performing calculations such as equation 0, the linearity error in the Z-axis direction is corrected.

次に、X軸方向のリニアリティ誤差について検討する。Next, consider the linearity error in the X-axis direction.

第5図に位置検出手段4の受光面における集光スポット
Sの軌跡S′を示したが、このように光ビームを走査し
た場合、集光スポットSが2軸上を通過するときの測距
値は、0式の演算を行うことによって、リニアライズさ
れる。今、位置検出手段4の2°軸上における集光スポ
ットSが位置検出手段4の中央を通る場合において、集
光スポットSがX゛軸方向にXだけ移動した場合のZ。
FIG. 5 shows the locus S' of the condensed spot S on the light receiving surface of the position detection means 4. When the light beam is scanned in this way, the distance measurement when the condensed spot S passes on two axes is The value is linearized by performing the operation of the 0 expression. Now, when the focused spot S on the 2° axis of the position detecting means 4 passes through the center of the position detecting means 4, Z is when the focused spot S moves by X in the X' axis direction.

軸方向のずれをAc(x)とおき、x’=xにおける0
式の定数a、bの値をTI 、 b パとすると、0式
は次のようになる。
Let the deviation in the axial direction be Ac(x), and 0 at x'=x
If the values of the constants a and b in the formula are TI and b, then the formula 0 becomes as follows.

1、。’−L、+Ac(x) ip(b”+Δl) ここで、定数すの補正値をβ(x)、定数aの補正値を
γ(×)とし、 β(x) = b” −b γ(x)=a/a”           ・・・■と
定義する。ここで、[相]式の両辺に次のようにα(L
o)、β(x) 、 r (x) 、 A c(x)を
かけると、L = (L o’  Ac(x)Hα(L
 o)+β(X)+7(X)lp (b”+Δ!)a′ =−Δl             ・・・@p となり、0式に示すように、測距信号L0°はリニアラ
イズされる。つまり、測距信号Lo’とそのときの走査
角度信号Xmから、測距信号L o ” L o’−A
c(x)を求め、この測距信号り。から理論的な補正値
α(Lo)を求め、この補正値α(Lo)に、個々の装
置のばらつきにより決定される補正値β(×)。
1. '-L, +Ac(x) ip(b"+Δl) Here, the correction value of constant S is β(x), the correction value of constant a is γ(x), and β(x) = b" -b γ (x)=a/a” ...■.Here, α(L
o), β(x), r(x), A c(x), L = (L o' Ac(x)Hα(L
o)+β(X)+7(X)lp (b''+Δ!)a' = -Δl...@p As shown in equation 0, the distance measurement signal L0° is linearized.In other words, the distance measurement signal L0° is linearized. From the distance signal Lo' and the scanning angle signal Xm at that time, the distance measurement signal Lo''Lo'-A
Find c(x) and use this distance measurement signal. A theoretical correction value α(Lo) is obtained from the above, and a correction value β(×) determined by variations in individual devices is added to this correction value α(Lo).

γ(x)を付は加え、0式のような演算を行うことによ
り、X軸方向も含めたZ軸方向のリニアライズが行われ
るわけである。
By adding γ(x) and performing calculations such as equation 0, linearization in the Z-axis direction including the X-axis direction is performed.

[実施例] 以下、実施例について説明する。実施例におけるリニア
リティ補正回路6のハードウェアの構成は、第7図の従
来例とほぼ同じであるが、上述のように、その処理のア
ルゴリズムが異なり、また、メモリ64の使い方が全く
異なる。つまり、実施例においては、第8図に示すよう
に、0式の演算を行うために必要な定数、つまり、a/
fp、b、β(x)、γ(x)、Ac(x)のみをメモ
リ64に記憶させておく、このうち、a/1p及びbは
、設計値により計算で求まる定数であり、β(×)、γ
(x)及びAc(x)は個々の装置に特有の補正定数で
ある。これらの定数を用いて第1図に示すようなフロー
に従って計算を行えば、リニアライズされた測距信号り
を求めることができる。
[Example] Examples will be described below. The hardware configuration of the linearity correction circuit 6 in this embodiment is almost the same as that of the conventional example shown in FIG. 7, but as described above, the processing algorithm is different and the way the memory 64 is used is completely different. In other words, in the embodiment, as shown in FIG.
Only fp, b, β(x), γ(x), and Ac(x) are stored in the memory 64. Among these, a/1p and b are constants calculated based on design values, and β( ×), γ
(x) and Ac(x) are correction constants specific to each individual device. By performing calculations using these constants and following the flow shown in FIG. 1, a linearized distance measurement signal can be obtained.

メモリ64に記憶されるこれらの定数は、測距信号の分
解能とは無関係である。つまり、分解能をどんなに高く
しても、補正に必要な定数の個数に変化はない、したが
って、従来例のように分解能に応じた何百万個という数
の補正値データを持つ必要がない、もちろん、補正値β
(X)、γ(x)、Ac(x)は走査角度信号Xll1
に応じた定数であるので、走査角度信号x11の分解能
に応じた個数の定数がそれぞれ必要であるが、通常、X
軸方向の走査による誤差はそれほど大きくないので、設
計と組み立ての誤差を考慮し、走査角度信号Xmの適当
な区間毎の定数とすれば、メモリ空間を圧縮することが
可能となる。例えば、走査角度信号Xmの1/1000
の分解能に対して、走査角度信号X +nを100区間
に分割し、それぞれ100個の補正定数を記憶すれば、
メモリ空間は大幅に圧縮できる。
These constants stored in memory 64 are independent of the resolution of the ranging signal. In other words, no matter how high the resolution is, the number of constants required for correction does not change.Therefore, there is no need to have millions of correction value data depending on the resolution as in the conventional example. , correction value β
(X), γ(x), Ac(x) are scanning angle signals Xll1
Therefore, the number of constants corresponding to the resolution of the scanning angle signal x11 is required.
Since the error caused by scanning in the axial direction is not so large, it is possible to compress the memory space by setting a constant for each appropriate section of the scanning angle signal Xm, taking into account errors in design and assembly. For example, 1/1000 of the scanning angle signal Xm
If the scanning angle signal X+n is divided into 100 sections and 100 correction constants are stored in each section, then
Memory space can be significantly compressed.

さらに、各装置に固有の補正値β(x)、γ(×)、A
c(x)の調整作業も大幅に省力化できる。第9図に示
すように、基準圧MICに対して、遠距離側の変位をΔ
IF、近距離側の変位をΔ1Nとしたときに、Δ1.=
ΔIN              ・・・■が成り立
つ位置、つまり、遠近等距離の位置に被検知物体2を置
いた場合の測距信号り、、LNの大きさは、正しくリニ
アライズされたときには次式のように等しくなる。
Furthermore, correction values β(x), γ(x), A
The adjustment work for c(x) can also be greatly reduced. As shown in Fig. 9, the displacement on the far side is Δ with respect to the reference pressure MIC.
IF, when the displacement on the short distance side is Δ1N, Δ1. =
When the detected object 2 is placed at a position where ΔIN...■ is established, that is, at a position equidistant from near and far, the magnitude of the distance measurement signal, LN, is equal as shown in the following equation when linearized correctly. Become.

l LFI = l LNI ここで、L p> O、L N< Oであるので、上式
は次のように表せる。
l LFI = l LNI Here, since L p > O and L N < O, the above equation can be expressed as follows.

LF=−LN              ・・・■こ
の性質を利用して調整を行うと、調整作業を容易に行う
ことができる。各測距信号L p 、 L Nは、それ
ぞれ0式の演算式を用いて、 L F= (L OF” −A c(x)l (αF+
β(×))γ(×)L++=(LoN’−Ac(x)H
ah+β(x)l r (x)・・・■ と表せる。0式を0式に代入して、γ(x)を消去し、
β(×)を求める。
LF=-LN . . . By making use of this property, the adjustment work can be easily performed. Each of the distance measurement signals L p and L N is calculated as follows using the formula 0, L F = (LOF" - A c (x) l (αF
β(x))γ(x)L++=(LoN'-Ac(x)H
It can be expressed as ah+β(x)l r(x)...■. Substitute formula 0 into formula 0, eliminate γ(x),
Find β(×).

(Lop″−Ac(x)■αF+β(X))−(L o
N’ −A c(x)■αN+β(X))・・・[相] つまり、[相]式で求まるようなβ(×)を用いて、0
式の演算を行えば、測距信号L 01はリニアライズさ
れる。また、距離Δbにおける正しい測距信号をLFT
とすると、傾きの補正値γ(×)は走査角度信号Xl1
1に応じて、 ・・・O で求めることができる。こうして求められたγ(x)を
用いて傾きを補正すれば、リニアライズされた測距信号
りが得られる。
(Lop″-Ac(x)■αF+β(X))-(L o
N' -A c(x)■αN+β(X))...[Phase] In other words, using β(x) as found by the [Phase] formula, 0
By calculating the formula, the ranging signal L01 is linearized. In addition, the correct distance measurement signal at distance Δb is converted to LFT.
Then, the tilt correction value γ(×) is the scanning angle signal Xl1
1, it can be determined by ...O. By correcting the tilt using γ(x) thus obtained, a linearized ranging signal can be obtained.

したがって、調整時においては、基準距離1cに光軸に
垂直に平板を置いて原点を決め、光ビームを走査した場
合の補正値Ac(x)をまず求め、そこから遠近両側等
距離ΔlF=ΔlNに平板を平行移動させた場合のそれ
ぞれの走査角度信号Xmに対する測距信号り。p’ 、
 L ON’から[相]式を用いて補正値β(x)を求
め、さらに0式を用いて補正値γ(x)を求めれば良い
Therefore, during adjustment, the origin is determined by placing a flat plate perpendicular to the optical axis at the reference distance 1c, and the correction value Ac(x) when the light beam is scanned is first determined, and from there, the equidistant distance on both far and near sides ΔlF = ΔlN The distance measurement signal for each scanning angle signal Xm when the flat plate is translated in parallel. p',
The correction value β(x) may be obtained from L ON' using the [phase] equation, and then the correction value γ(x) may be obtained using the 0 equation.

このように、各装置に固有の補正値β(X)、γ(×)
及びAc(x)を求めるのに、対象物体2を2回移動さ
せ、走査角度信号Xff1に対するデータL、N’、L
ap’、Ac(x)を取り、後は[株]、O式を用いて
β(×)、γ(x)を計算すれば良いので、従来例にお
いて数百万のデータを取る必要があったことに比較する
と、調整時間・コストの削減が可能になるものである。
In this way, the correction values β(X) and γ(×) specific to each device are
and Ac(x), the target object 2 is moved twice and the data L, N', L for the scanning angle signal Xff1 are calculated.
All you need to do is take ap' and Ac(x) and then use the O formula to calculate β(x) and γ(x), which eliminates the need to collect millions of pieces of data in the conventional example. Compared to other methods, it is possible to reduce adjustment time and costs.

[発明の効果] 本発明は上述のように、被検知物体までの距離の変位を
変数として第1の測距信号を算出する間数の逆関数の値
を第1の測距信号から算出し、この逆関数の値に定数値
を加えて得た信号を、第1の測距信号に乗じて被検知物
体までの距離の変位に比例する第2の測距信号を算出す
るようにしたので、リニアリティ補正を行うには、第1
の測距信号から理論的な補正値を算出するための定数値
を記憶しておくだけで良く、従来のように分解能に1=
1に対応した膨大な数の補正値を記憶する必要はないか
ら、メモリ容量の大幅な削減が可能になるという効果が
ある。
[Effects of the Invention] As described above, the present invention calculates, from the first ranging signal, the value of the inverse function of the interval for calculating the first ranging signal using the displacement of the distance to the detected object as a variable. , the signal obtained by adding a constant value to the value of this inverse function is multiplied by the first ranging signal to calculate the second ranging signal that is proportional to the displacement of the distance to the detected object. , to perform linearity correction, the first
All you need to do is memorize the constant value for calculating the theoretical correction value from the distance measurement signal.
Since it is not necessary to store a huge number of correction values corresponding to 1, there is an effect that the memory capacity can be significantly reduced.

また、第1の測距信号に加算する第1の補正値と、逆関
数に乗算する第2の補正値と、定数値に加算する第3の
補正値を、偏向手段の各走査角度毎に設定すれば、個々
の装置のばらつきを少数の補正値のみで補正することが
でき、簡単な測定を行うだけで、後は計算により第1乃
至第3の補正値を求めることができるので、従来のよう
に分解能に1=1に対応する補正値データを調整時に全
て求める必要がないから、調整コストの大幅な削減が可
能になるものである。
In addition, a first correction value to be added to the first ranging signal, a second correction value to be multiplied by the inverse function, and a third correction value to be added to the constant value are determined for each scanning angle of the deflection means. Once set, variations in individual devices can be corrected with only a small number of correction values, and the first to third correction values can be calculated by performing simple measurements, making it possible to correct variations in individual devices using only a small number of correction values. Since it is not necessary to obtain all the correction value data corresponding to the resolution of 1=1 at the time of adjustment, it is possible to significantly reduce the adjustment cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるリニアリティ補正手段の処理の
流れを示す流れ図、第2図は従来例の測距光学系の概略
構成図、第3図は従来例の全体構成を示す斜視図、第4
図は従来例に用いる信号処理回路のブロック回路図、第
5図は同上の動作説明図、第6図は同上のリニアリティ
誤差特性を示す図、第7図は同上に用いるリニアリティ
補正回路のブロック回路図、第8図は本発明に用いるメ
モリの記憶内容を示す説明図、第9図は本発明の動作説
明図である。 1は投光手段、2は被検知物体、3は受光用光学系、4
は位置検出手段、5は演算手段、6はリニアリティ補正
回路、7は偏向手段である゛。
FIG. 1 is a flowchart showing the processing flow of the linearity correction means used in the present invention, FIG. 2 is a schematic configuration diagram of a conventional distance measuring optical system, FIG. 3 is a perspective view showing the overall configuration of the conventional example, and FIG. 4
The figure is a block circuit diagram of the signal processing circuit used in the conventional example, Figure 5 is an explanatory diagram of the same operation as above, Figure 6 is a diagram showing linearity error characteristics as above, and Figure 7 is a block circuit of the linearity correction circuit used in the above. FIG. 8 is an explanatory diagram showing the stored contents of the memory used in the present invention, and FIG. 9 is an explanatory diagram of the operation of the present invention. 1 is a light projecting means, 2 is an object to be detected, 3 is a light receiving optical system, 4
5 is a position detection means, 5 is a calculation means, 6 is a linearity correction circuit, and 7 is a deflection means.

Claims (2)

【特許請求の範囲】[Claims] (1)被検知物体の表面に光ビームを投光する投光手段
と、前記光ビームを被検知物体の表面で走査させる偏向
手段と、被検知物体による光ビームの反射光を集光する
受光用光学系と、受光用光学系の集光面に配設され被検
知物体までの距離に応じて集光面内で移動する集光スポ
ットの位置に対応した相反する一対の位置信号を出力す
る位置検出手段と、位置検出手段の出力に基づいて集光
スポットの位置変化に比例する第1の測距信号を算出す
る演算手段と、被検知物体までの距離の変位を変数とし
て第1の測距信号を算出する関数の逆関数の値を第1の
測距信号から算出し、この逆関数の値に定数値を加えて
得た信号を、第1の測距信号に乗じて被検知物体までの
距離の変位に比例する第2の測距信号を算出するリニア
リティ補正手段とを有して成ることを特徴とする光走査
型変位センサ。
(1) Light projecting means for projecting a light beam onto the surface of the detected object, deflection means for scanning the light beam on the surface of the detected object, and light receiving means for condensing the light reflected from the light beam by the detected object. outputs a pair of contradictory position signals corresponding to the positions of the light-condensing spots that are arranged on the light-converging surfaces of the light-receiving optical system and the light-receiving optical system and move within the light-converging plane according to the distance to the object to be detected. a position detection means; a calculation means for calculating a first distance measurement signal proportional to a change in the position of the focused spot based on the output of the position detection means; The value of the inverse function of the function that calculates the distance signal is calculated from the first ranging signal, and the signal obtained by adding a constant value to the value of this inverse function is multiplied by the first ranging signal to determine the detected object. An optical scanning displacement sensor comprising: linearity correction means for calculating a second distance measurement signal proportional to the displacement of the distance to the object.
(2)第1の測距信号に加算する第1の補正値と、逆関
数に乗算する第2の補正値と、定数値に加算する第3の
補正値を偏向手段の各走査角度毎に設定したことを特徴
とする請求項1記載の光走査型変位センサ。
(2) A first correction value to be added to the first ranging signal, a second correction value to be multiplied by the inverse function, and a third correction value to be added to the constant value for each scanning angle of the deflection means. The optical scanning displacement sensor according to claim 1, wherein the optical scanning displacement sensor is set as follows.
JP7354288A 1987-06-30 1988-03-28 Optical scanning displacement sensor Expired - Fee Related JPH07122564B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7354288A JPH07122564B2 (en) 1988-03-28 1988-03-28 Optical scanning displacement sensor
GB8814270A GB2206690B (en) 1987-06-30 1988-06-16 Optically scanning displacement sensor
US07/212,228 US4864147A (en) 1987-06-30 1988-06-27 Optically scanning displacement sensor with linearity correction means
IT8848128A IT1219969B (en) 1987-06-30 1988-06-27 OPTICAL SCAN DISPLACEMENT SENSOR, BASED ON TRIANGULATION CALCULATIONS
DE3822143A DE3822143A1 (en) 1987-06-30 1988-06-30 DISPLACEMENT SENSOR WITH OPTICAL SCAN
GB9107670A GB2243442B (en) 1987-06-30 1991-04-11 Optically scanning displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7354288A JPH07122564B2 (en) 1988-03-28 1988-03-28 Optical scanning displacement sensor

Publications (2)

Publication Number Publication Date
JPH01245110A true JPH01245110A (en) 1989-09-29
JPH07122564B2 JPH07122564B2 (en) 1995-12-25

Family

ID=13521229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7354288A Expired - Fee Related JPH07122564B2 (en) 1987-06-30 1988-03-28 Optical scanning displacement sensor

Country Status (1)

Country Link
JP (1) JPH07122564B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279806A (en) * 1991-03-08 1992-10-05 Nippon Telegr & Teleph Corp <Ntt> Light beam scanning type distance measuring device
JP2014070989A (en) * 2012-09-28 2014-04-21 Fuji Xerox Co Ltd Detection apparatus, processing apparatus, image forming apparatus, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279806A (en) * 1991-03-08 1992-10-05 Nippon Telegr & Teleph Corp <Ntt> Light beam scanning type distance measuring device
JP2014070989A (en) * 2012-09-28 2014-04-21 Fuji Xerox Co Ltd Detection apparatus, processing apparatus, image forming apparatus, and program

Also Published As

Publication number Publication date
JPH07122564B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US4864147A (en) Optically scanning displacement sensor with linearity correction means
JP4246071B2 (en) Method for determining and correcting guidance errors in coordinate measuring machines.
AU2011231747B2 (en) Measurement method for a surface-measuring measuring machine
JPS62181889A (en) Fine positioning device for robot arm
US5459577A (en) Method of and apparatus for measuring pattern positions
EP0843155A1 (en) Optical distance measuring equipment and method therefor
JPH01245110A (en) Optical scanning type displacement sensor
JP2010256107A (en) Measuring device and measurement method
JP2007003204A (en) Thickness measurement machine
JPH01113608A (en) Optical displacement measuring apparatus
JPH0648190B2 (en) Optical displacement measuring device
JPS62127604A (en) Optical position detecting device
JPH0534120A (en) Method and apparatus for measuring shape of surface
JP3526724B2 (en) Error correction method in shape measuring device
JPH0781841B2 (en) Thickness measuring device
JPH03195915A (en) Optical scanning type displacement sensor
JPH051904A (en) Optical shape measuring instrument
JPS623609A (en) Range finder
JP2858819B2 (en) Optical scanning displacement sensor
JP5950760B2 (en) Calibration method of interference shape measuring mechanism
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
Huang et al. Inclination angle measurement of inertial platform based on LD-PSD
JP2003042729A (en) Apparatus and method for noncontact measurement of shape
JPH045507A (en) Shape measuring instrument
JPS63108217A (en) Optical displacement measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees