JPH01244682A - Manufacture of compound piezoelectric body - Google Patents

Manufacture of compound piezoelectric body

Info

Publication number
JPH01244682A
JPH01244682A JP63071481A JP7148188A JPH01244682A JP H01244682 A JPH01244682 A JP H01244682A JP 63071481 A JP63071481 A JP 63071481A JP 7148188 A JP7148188 A JP 7148188A JP H01244682 A JPH01244682 A JP H01244682A
Authority
JP
Japan
Prior art keywords
piezoelectric
organic
manufacturing
composite piezoelectric
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63071481A
Other languages
Japanese (ja)
Inventor
Yasuo Arai
新井 保夫
Shigeru Sadamura
定村 茂
Chitose Nakatani
中谷 千歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP63071481A priority Critical patent/JPH01244682A/en
Publication of JPH01244682A publication Critical patent/JPH01244682A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy and efficient manufacture of a compound piezoelectric body of high performance and high precision wherein electro-mechanical coupling-coefficient is large and acoustic impedance is small, by forming a piezoelectric board as a pillar type piezoelectric members of minute dimension, and retaining the pillar type piezoelectric members in an integrated body with an organic body compound of organic material. CONSTITUTION:On the upper surface of a PZT plate 10 of t0 thick, a plurality of trenches 11 intersecting each other in the form of a mesh are formed, whose width and depth are (w) and d1 (d1<t0), respectively. The pitch of row is (p), and that of column is 2p. Thus, a plurality of pillar type piezoelectric members 12 are formed. The trenches 11 are filled with resin, which is hardened and processed in a specified thickness (t). Electrode layers 13 composed of conductive metal material are formed on the surface and the rear of the PZT plate 10. Organic bodies 14 are formed so as to retain a plurality of piezoelectric members 12. In the intermediate part of the organic bodies 14 arranged with pitches 2p, out of the above organic bodies, a plurality of trenches 15 (w) in width and d2(d2<t+t1) in depth are formed with pitches 2p, and a group form arranged compound piezoelectric body 16 composed of a plurality of piezoelectric members 12 are formed. By the processing to obtain a dimension of T+t1, from a substrate surface, the organic bodies 14 to retain the group form arranged compound piezoelectric body 16 is exposed on the processed surface. After the processed surface is washed, an electrode layer 17 of t2 thick is stuck thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2通常1−3型と呼ばれる複合圧電体。[Detailed description of the invention] [Industrial application field] The present invention is a composite piezoelectric material commonly called 1-3 type.

すなわち3次元に連結した有機物中に、1次元に連結し
たセラミックスからなる圧電体を多数埋設した構造の複
合圧電体の製造方法に関するものであり、特に電気機械
結合係数が高く、かつ音響インピーダンスが低い複合圧
電体の製造方法に関するものである。
In other words, it relates to a method for producing a composite piezoelectric material having a structure in which a large number of piezoelectric materials made of one-dimensionally connected ceramics are embedded in a three-dimensionally connected organic material, and has a particularly high electromechanical coupling coefficient and low acoustic impedance. The present invention relates to a method for manufacturing a composite piezoelectric body.

(従来の技術〕 従来、医療分野においては生体組織を断層像として表示
観察するために超音波診断装置を効果的に使用している
。このような診断装置は超音波の送受信によって断層像
をリアルタイムで診断することができることと、安全性
が極めて高いものであるため、最近になって急速に普及
してきたものである。しかしながら、超音波診断にはか
なりの熟練を要するため、感度−2分解能等の性能向上
による診断機能の向上が望まれている。一方上記の機能
向上のためには、センサ一部を構成する圧電材料の高性
能化が必要であり、電気機械結合係数が高く、音響イン
ピーダンスが生体に近い低い値のもめが望ましい。
(Prior Art) Conventionally, in the medical field, ultrasound diagnostic equipment has been effectively used to display and observe biological tissues as tomographic images.Such diagnostic equipment can generate tomographic images in real time by transmitting and receiving ultrasonic waves. Ultrasonic diagnosis has become rapidly popular in recent years because it can be used for diagnosis and is extremely safe.However, as ultrasonic diagnosis requires considerable skill, sensitivity - 2 resolution, etc. It is desired to improve the diagnostic function by improving the performance of A low value close to that of a living body is desirable.

上記の圧電材料としては、ジルコン酸チタン酸鉛系セラ
ミックス(以下PZTと記す)若しくはチタン酸鉛系セ
ラミックス(以下PTOと記す)等の無機圧電材料の他
に、ポリフッ化ビニリデン(以下PVF、と記す)等の
有機圧電材料がある。
The above piezoelectric materials include inorganic piezoelectric materials such as lead zirconate titanate ceramics (hereinafter referred to as PZT) and lead titanate ceramics (hereinafter referred to as PTO), as well as polyvinylidene fluoride (hereinafter referred to as PVF). ) and other organic piezoelectric materials.

しかし上記材料のうち、PZTおよびPTOは電気機械
結合係数が極めて高い反面において音響インピーダンス
も高いという欠点がある。また一方のPVF、は音響イ
ンピーダンスが低いが、電気機械結合係数もまた低い値
であり1両特性値を同時に満足する材料が存在しない。
However, among the above-mentioned materials, PZT and PTO have extremely high electromechanical coupling coefficients, but have the disadvantage that they also have high acoustic impedance. On the other hand, PVF has a low acoustic impedance, but also has a low electromechanical coupling coefficient, and there is no material that satisfies both characteristic values at the same time.

最近、上記無機圧電材料と有機材料との組み合わせによ
る複合圧電体が提案されており、このうち電気機械結合
係数の高い、すなわち変換効率の高い無機圧電材料から
なる複数個の柱状圧電体を樹脂その他の有機材料からな
る有機体で支持した構成のものが医療用の超音波探触子
として検討されている。
Recently, composite piezoelectric bodies have been proposed that are made by combining the above-mentioned inorganic piezoelectric materials with organic materials. An ultrasonic probe for medical use is being considered as an ultrasonic probe for medical use.

第2図(a) (blは各々上記従来の複合圧電体を製
造する手段を説明する図である。まず第2図talに示
すものは1例えばPZTからなる圧電体板1に。
FIG. 2(a) (bl) is a diagram illustrating means for manufacturing the above-mentioned conventional composite piezoelectric bodies. First, what is shown in FIG. 2 (tal) is a piezoelectric plate 1 made of, for example, PZT.

回転ブレード2を介して厚さ方向に途中の深さまで網目
状に複数個の溝3を設け、これらの溝3に樹脂(図示せ
ず)を充填硬化させた後、適宜の厚さに切断研磨して複
合圧電体とするものである。
A plurality of grooves 3 are formed in a mesh pattern to a depth halfway in the thickness direction via a rotating blade 2, and after filling and hardening resin (not shown) in these grooves 3, cutting and polishing to an appropriate thickness is performed. A composite piezoelectric material is obtained by combining the two.

また第2図fblに示すものは、平滑に研磨仕上した基
板4上に、薄板状に形成した上記同様材料からなる圧電
体板lを仮接着し、グイシングツ−等の切断工具を介し
て網目状に、かつ厚さ方向に完全に切断して複数個の柱
状圧電体5を形成し、切断により形成した複数個の溝3
内に樹脂6を充填硬化させた後、基板4から剥離して複
合圧電体を得るものである。
In addition, in the case shown in FIG. 2 fbl, a thin piezoelectric plate l made of the same material as described above is temporarily adhered to a smooth polished substrate 4, and then cut into a mesh shape using a cutting tool such as a cutting tool. and completely cut in the thickness direction to form a plurality of columnar piezoelectric bodies 5, and a plurality of grooves 3 formed by cutting.
A composite piezoelectric body is obtained by filling and hardening the resin 6 inside the body and then peeling it off from the substrate 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の方法において、まず第2図(alに示すもの
においては、所定の厚さの複合圧電体を得るだめの切断
研磨が困難であり、特に溝3内に充填する樹脂材料が軟
らかい場合には、薄肉状に切断する作業が殆ど不可能で
あるという問題点がある。
In the conventional method described above, first, in the method shown in FIG. However, there is a problem in that it is almost impossible to cut into thin pieces.

また溝3の幅を狭くすることは、グイシングツ−若しく
は切断用ブレードの1¥さを薄くする必要があり1強度
上からも自ずと限界がある。−力筒2図(blに示すも
のにおいては、切断によって形成した柱状圧電体5が倒
伏したり、剥離散逸したりするのみならず、欠は等の疵
を発生する。また樹脂充填後の剥離が困難である等の問
題点がある。
Further, reducing the width of the groove 3 requires reducing the width of the cutting tool or the cutting blade, which naturally has a limit in terms of strength. - In the case shown in Fig. 2 (bl), the columnar piezoelectric body 5 formed by cutting not only collapses or peels off, but also causes defects such as chips.Also, peeling after resin filling occurs. There are problems such as difficulty in

なお上記複合圧電体を例えば医療用超音波探触子の構成
要素として使用する場合には、単位素子を構成するアレ
ー数が大である稈屑像度が高く。
In addition, when the above-mentioned composite piezoelectric material is used as a component of a medical ultrasonic probe, for example, the culm image quality is high because the number of arrays constituting a unit element is large.

高性能化することができることは当然であるが。Of course, it is possible to improve performance.

このような複合圧電体においては前記柱状圧電体が極め
て微小寸法となり、切断溝の一幅寸法により有効変位部
分が極めて小さくなる。更にこれらの柱状圧電体表裏面
に設ける電極は、一般に蒸着法によるものが多いため、
信号取り出しのためのリード線の取り付けにはんだ付け
を使用することができず、接着剤等によらざるを得ない
。従ってリード線取り付は作業が著しく困難であると共
に。
In such a composite piezoelectric body, the columnar piezoelectric body has extremely small dimensions, and the effective displacement portion due to the width dimension of the cut groove becomes extremely small. Furthermore, since the electrodes provided on the front and back surfaces of these columnar piezoelectric bodies are generally made by vapor deposition,
Soldering cannot be used to attach lead wires for signal extraction, and adhesives or the like must be used. Therefore, attaching the lead wires is extremely difficult.

取り付は後の信頼性が低下するという問題点がある。更
に上記電極をマスキング手段のみによって設ける場合に
おいては、マスキング材の幅寸法を大幅に微小化するこ
とは物理的に不可能であるため、柱状圧電体の有効変位
部分の面積が減少し5高い電気機械結合係数を有する圧
電材料本来の特性を活用することができないという問題
点がある。
There is a problem in that the reliability after installation is lowered. Furthermore, in the case where the above electrodes are provided only by masking means, it is physically impossible to significantly reduce the width dimension of the masking material, so the area of the effective displacement portion of the columnar piezoelectric body decreases and There is a problem in that the inherent characteristics of piezoelectric materials having a mechanical coupling coefficient cannot be utilized.

本発明は、上記従来技術に存する問題点を解決し、電気
機械結合係数が高く、かつ音響インピーダンスの低い高
性能かつ高精度の複合圧電体を。
The present invention solves the problems existing in the above-mentioned prior art, and provides a high-performance, high-precision composite piezoelectric material with a high electromechanical coupling coefficient and low acoustic impedance.

容易かつ効率よく製造し得る方法を提供することを目的
とする。
The purpose is to provide a method that can be manufactured easily and efficiently.

〔課題を解決するための手段〕[Means to solve the problem]

上記従来技歯に存在する問題点を解決するために1本発
明においては。
One aspect of the present invention is to solve the problems existing in the conventional teeth described above.

A、複数個の圧電体を有機体を介して直角方向のピッチ
p+、p1、p2にて配設した厚さTなる複合圧電体の
製造方法において。
A. In a method for manufacturing a composite piezoelectric material having a thickness T in which a plurality of piezoelectric materials are arranged at pitches p+, p1, and p2 in the perpendicular direction via an organic material.

B、厚さ【。(to > t >T)なる圧電材料から
なる圧電体板の上面に1幅w、(w、<pl )、W2
(wx<pz)、深さdl(dt <to)なる複数個
の網目状に交差する溝を、一方をpl若しくはI’2、
他方を2pz若しくは2p+なるピッチで穿設して複数
個の圧電体を形成する。
B. Thickness [. 1 width w, (w, <pl), W2 on the top surface of a piezoelectric plate made of a piezoelectric material (to > t > T)
(wx<pz), depth dl (dt<to), and one side is pl or I'2, and the other is pl or I'2,
The other one is bored at a pitch of 2pz or 2p+ to form a plurality of piezoelectric bodies.

C0前記複数個の溝に有機材料を充填固化させて前記圧
電体を保持する有機体を形成する。
C0 The plurality of grooves are filled with an organic material and solidified to form an organic material that holds the piezoelectric material.

D、前記圧電体板をその上面から所定の厚さ(に加工成
形する。
D. Processing and forming the piezoelectric plate to a predetermined thickness from its upper surface.

E、圧電体板の表裏両面に厚さ【、なる電極層を形成す
る。
E. Form an electrode layer on both the front and back surfaces of the piezoelectric plate with a thickness of .

F、前記圧電体板にピッチ2pz若しくは2p+で配設
した有機体の中間に1幅w、若しくはWt+深さd2(
d2 <t +L1)なる複数個の溝をと、7チ2pz
若しくは2p+で穿設して複数個の圧電体からなる群状
整列複合圧電体を形成する。
F, 1 width w or Wt + depth d2 (
d2 < t + L1), and 7 grooves 2 pz
Alternatively, a 2p+ hole is formed to form a group-aligned composite piezoelectric body consisting of a plurality of piezoelectric bodies.

G、前記複数個の溝に有機材料を充填固化させて前記群
状整列複合圧電体を保持する有機体を形成する。
G. Filling and solidifying an organic material in the plurality of grooves to form an organic body that holds the group-aligned composite piezoelectric material.

H,この群状整列複合圧電体を有機体の上面から所定の
厚さTに加工成形する。
H. Process and mold this cluster-aligned composite piezoelectric material to a predetermined thickness T from the upper surface of the organism.

J、この加工成形面に17さt2なる電極層を形成する
J. An electrode layer 17st2 is formed on this processed and formed surface.

という技術的手段を採用したのである。This technical method was adopted.

〔作用〕[Effect]

以上の構成により、圧電材料からなる圧電体板を微小寸
法の柱状圧電体に形成すると共に、これらの柱状圧電体
を有機材料からなる有機体によって一体的に支持する複
合圧電体を得ることができるのである。
With the above configuration, it is possible to form a piezoelectric body plate made of a piezoelectric material into a columnar piezoelectric body of minute dimensions, and to obtain a composite piezoelectric body in which these columnar piezoelectric bodies are integrally supported by an organic body made of an organic material. It is.

〔実施例〕〔Example〕

第1図tal〜(dlは夫々本発明の実施例における複
合圧電体の製造工程の要部を示す拡大斜視図である。ま
ず第1図(alに示すような厚さLoのPZT板IOを
#!備する。この場合PZT板の厚さtoは、複合圧電
体とした場合の厚さtより若干大に形成しておく。次に
このPZT板1板金0滑な基板(図示せず)上にワック
スその他の加熱軟化性樹脂を介して仮接着し、第1図(
b)に示すようにPZT板1板金0面に幅W、深さdl
(dl < Lo )なる複数個の網目状に交差する溝
11を、一方をp、他方を2pなるピッチで穿設して、
複数個の柱状の圧電体12を形成する。上記複数個の圧
電体12は、PZT板IOの底部にて一体に連結した状
態であるため、溝11を穿設しても倒伏したり、剥離散
逸することはない。次に上記の溝It内にポリウレタン
系若しくはエポキシ系等の樹脂を充填硬化させ、圧電体
12を保持する有機体(図示せず)を形成した後、加熱
して前記ワックスを溶解させてPZT板IOを剥離し、
裏返して再び基板上に前記同様にして仮接着し、所定の
厚さtに加工成形する。なお前記溝llの深さd。
Figures 1 (tal) to (dl) are enlarged perspective views showing the main parts of the manufacturing process of the composite piezoelectric material in the embodiments of the present invention. First, a PZT plate IO of thickness Lo as shown in Figure 1 (al) is #! Prepared. In this case, the thickness to of the PZT plate is made slightly larger than the thickness t when it is made into a composite piezoelectric material. Next, this PZT plate 1 sheet metal 0 smooth substrate (not shown) Temporarily adhered to the top with wax or other heat-softening resin, as shown in Figure 1 (
As shown in b), the width W and the depth dl are set on the 0th side of the PZT plate 1 sheet metal.
(dl < Lo), a plurality of grooves 11 intersecting in a mesh shape are bored at a pitch of p on one side and 2p on the other side,
A plurality of columnar piezoelectric bodies 12 are formed. Since the plurality of piezoelectric bodies 12 are connected together at the bottom of the PZT plate IO, they will not collapse or peel off even if the groove 11 is bored. Next, a polyurethane-based or epoxy-based resin is filled and cured in the groove It to form an organic body (not shown) that holds the piezoelectric body 12, and then heated to melt the wax and form a PZT plate. Peel off the IO,
It is turned over and temporarily bonded onto the substrate again in the same manner as described above, and processed and formed to a predetermined thickness t. Note that the depth d of the groove ll.

はd、>tとなるように選定するのが好ましい。is preferably selected so that d>t.

厚さ(に加工成形したPZT板lOの表裏両面に。Thickness

第1図(clに示すように例えばNi等の導電性金属材
料からなる電極層13を例えばメ・ツキにより形成した
後、再び前記同様にしてワックスを介して基板(図示せ
ず)上に仮接着する。次に複数個の圧電体12を保持す
るように形成した有機体14のうち、ピッチ2pにて配
設した有機体14の中間に9幅W、深さd、(d、<t
+t、)なる複数個の溝15をピッチ2pで穿設して、
複数個の圧電体12からなる群状整列複合圧電体16を
形成する。なお溝15内には前記と同様に樹脂を充填硬
化させて2群状整列複合圧電体16を保持する有機体(
図示せず)を形成する。樹脂硬化後pzT仮10を基板
から剥離し1反転させて再び基板に貼着する。次に基板
面からT十t、  (但しTくt、’r+t、<a、)
の寸法に加工し、前記群状整列複合圧電体16を保持す
る有機体14が加工面に出現するようにする。加工面を
洗浄後第1図fd)に示すように厚さtzの電極層17
を被着すれば、上下に電極層を有する微小柱状の圧電体
12を内蔵する複合圧電体を得ることができる。この場
合電極層17は複数個の微小柱状の圧電体12の共通電
極を形成する。
As shown in FIG. 1 (cl), an electrode layer 13 made of a conductive metal material such as Ni is formed by, for example, metal plating, and then temporarily placed on a substrate (not shown) via wax in the same manner as described above. Next, among the organic bodies 14 formed to hold a plurality of piezoelectric bodies 12, a 9-width W, depth d, (d, <t
+t, ) are drilled at a pitch of 2p,
A group-aligned composite piezoelectric body 16 consisting of a plurality of piezoelectric bodies 12 is formed. Note that the groove 15 is filled with resin and cured in the same manner as described above to fill the organic body (
(not shown). After the resin has hardened, the pzT temporary 10 is peeled off from the substrate, turned over once, and then affixed to the substrate again. Next, T tent from the board surface (however, Tkut,'r+t,<a,)
The organic body 14 holding the group-aligned composite piezoelectric body 16 appears on the machined surface. After cleaning the processed surface, an electrode layer 17 with a thickness of tz is formed as shown in FIG.
By depositing the above, it is possible to obtain a composite piezoelectric body containing a micro-column-shaped piezoelectric body 12 having upper and lower electrode layers. In this case, the electrode layer 17 forms a common electrode for the plurality of micro-column-shaped piezoelectric bodies 12.

上記製造方法により、80mmX80mm、厚さ1mm
のPZT板に35〜40μmの溝を設けることにより、
80μm×80μmの微小柱状圧電体を直角方向のピッ
チ各々110umで配設した厚さ0.4mmの複合圧電
体を得た。なおN+電極層の厚さは表裏面各々2μmで
あった。また上記複合圧電体の電気機械結合係数に、お
よび音響インピーダンスZ1は表の通りであり、圧電体
を保持する有機体を形成する有機材料によって若干の差
があるが、各々従来のものと比較して格段に優れた値を
示している。
By the above manufacturing method, 80mm x 80mm, thickness 1mm
By providing a groove of 35 to 40 μm on the PZT plate,
A composite piezoelectric material having a thickness of 0.4 mm was obtained in which minute columnar piezoelectric materials each having a size of 80 μm×80 μm were arranged at a pitch of 110 μm in the perpendicular direction. Note that the thickness of the N+ electrode layer was 2 μm on each of the front and back surfaces. In addition, the electromechanical coupling coefficient and acoustic impedance Z1 of the composite piezoelectric material described above are as shown in the table, and although there are slight differences depending on the organic material forming the organic body that holds the piezoelectric material, each is compared with the conventional one. It shows a much better value.

本実施例においては、圧電材料がpz”rである場合に
ついて記述したが、PZT以外の圧電材料を使用するこ
とができる。また圧電体を支持するための有機体を形成
するために圧電体板に設けるべき網目状に交差する溝を
各々異なる幅w、、wzとすることができ、圧電体の配
設ピッチを直角方向において異なるピッチp+、pzと
してもよく。
In this example, the case where the piezoelectric material is pz"r is described, but piezoelectric materials other than PZT can be used. Also, in order to form an organic body for supporting the piezoelectric material, a piezoelectric material plate is used. The grooves intersecting each other in the form of a mesh to be provided may have different widths w, , wz, and the piezoelectric bodies may be arranged at different pitches p+, pz in the orthogonal direction.

更に網目の交差角を直角以外の任意の角度とすることも
できる。更に圧電体に圧電作用を行わせるための導電部
を形成すべき電極層をNi以外の他の導電性金属材料に
よって形成しても作用は同一である。なお電極層の一方
を共通電極として形成した例を示したが2表裏両面を各
々分割した構成としてもよい。また複数個の圧電体をp
l、ptなるピッチで配設するのみでなく1例えば第1
図fblに示すような構造であっても、第1図(C1に
おけるd2の寸法が充分に大であれば同一の作用を期待
できる。更に圧電体の表裏面に設ける電極層の形成手段
がメツキである場合について記述したが。
Furthermore, the intersecting angle of the mesh may be any angle other than a right angle. Furthermore, even if the electrode layer in which the conductive portion for causing the piezoelectric body to perform the piezoelectric action is formed of a conductive metal material other than Ni, the same effect will be obtained. Although an example has been shown in which one of the electrode layers is formed as a common electrode, a structure in which the two front and back surfaces are each divided may also be used. In addition, multiple piezoelectric bodies are
Not only are they arranged at a pitch of l, pt, but also
Even with the structure shown in Figure fbl, the same effect can be expected as long as the dimension d2 in Figure 1 (C1) is sufficiently large. I described the case where .

銀ペースト塗布その他の形成手段によってもよい。It may also be formed by silver paste coating or other forming means.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
下記の効果を期待し得る。
Since the present invention has the structure and operation as described above,
The following effects can be expected.

(1)  ブロック状の圧電体板から薄板状に切断する
加工をせず、最終肉厚寸法に近似する厚さ寸法の圧電体
板から成形するため、微小柱状の圧電体を保持する有機
体を構成する有機材料には。
(1) In order to form a piezoelectric plate with a thickness close to the final wall thickness without cutting into thin plates from a block-shaped piezoelectric plate, the organic body that holds the micro-column-shaped piezoelectric body is For the organic materials that make up the product.

例えば可撓性に冨み、かつ音響インピーダンスの低い+
A料を自由に選定することができ、高性能かつ高精度の
複合圧電体を製造し得る。
For example, it is highly flexible and has low acoustic impedance.
Material A can be freely selected, and a composite piezoelectric body with high performance and high precision can be manufactured.

(2)圧電体板から複数個の微小柱状の圧電体を形成す
る場合における圧電体の倒伏、剥離逸散等がな(、欠は
等の疵の発生がないため、複合圧電体の信頼性を大幅に
向上させ得ると共に、製造歩留りが高い。
(2) When forming multiple micro-column-shaped piezoelectric bodies from a piezoelectric plate, the piezoelectric bodies do not collapse or peel off, and there are no defects such as cracks, which increases the reliability of the composite piezoelectric body. can be significantly improved, and the manufacturing yield is high.

(3)素材である圧電体板は比較的薄いものを使用する
ため、有機体を形成するために圧電体板に穿設する溝の
幅寸法を極めて小とすることができ、高歩留り、高効率
の生産が可能である。
(3) Since the piezoelectric plate used as the material is relatively thin, the width of the grooves drilled in the piezoelectric plate to form the organic body can be made extremely small, resulting in high yield and high Efficiency production is possible.

(4)  圧電体の表裏両面に形成する電極層をメツキ
処理によって形成するものであるため、従来の蒸着膜に
よるものにおけるようなはんだによる食われが皆無とな
り、リード線の取り付けが容易かつ確実となる。
(4) Since the electrode layers formed on both the front and back sides of the piezoelectric body are formed by plating, there is no erosion by solder unlike in conventional vapor-deposited films, and lead wires can be attached easily and reliably. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(diは夫々本発明の実施例における複
合圧電体の製造工程の要部を示す拡大斜視図、第2図t
a+ (b)は各々従来の複合圧電体を製造する手段を
説明する図である。 tt、ts:溝、12:圧電体、13.I7:電極層、
14:有機体。
FIG. 1 (al to (di) are enlarged perspective views showing the main parts of the manufacturing process of the composite piezoelectric material in the embodiments of the present invention, and FIG. 2 t
a+ (b) are diagrams each illustrating means for manufacturing a conventional composite piezoelectric body. tt, ts: groove, 12: piezoelectric material, 13. I7: electrode layer,
14: Organism.

Claims (7)

【特許請求の範囲】[Claims] (1)複数個の圧電体を有機体を介して直角方向のピッ
チp_1、p_2にて配設した厚さTなる複合圧電体の
製造方法において、厚さt_0(t_0>t>T)なる
圧電材料からなる圧電体板の上面に、幅w_1(w_1
<p_1)、w_2(w_2<p_2)、深さd_1(
d_1<t_0)なる複数個の網目状に交差する溝を、
一方をp_1若しくはp_2、他方を2p_2若しくは
2p_1なるピッチで穿設して複数個の圧電体を形成し
、前記複数個の溝に有機材料を充填固化させて前記圧電
体を保持する有機体を形成し、前記圧電体板をその上面
から所定の厚さtに加工成形し、圧電体板の表裏両面に
厚さt_1なる電極層を形成し、前記圧電体板にピッチ
2p_2若しくは2p_1で配設した有機体の中間に、
幅w_1若しくはw_2、深さd_2(d_2、t+t
_1)なる複数個の溝をピッチ2p_2若しくは2p_
1で穿設して複数個の圧電体からなる群状整列複合圧電
体を形成し、前記複数個の溝に有機材料を充填固化させ
て前記群状整列複合圧電体を保持する有機体を形成し、
この群状整列複合圧電体を有機体の上面から所定の厚さ
Tに加工成形し、この加工成形面に厚さt_2なる電極
層を形成したことを特徴とする複合圧電体の製造方法。
(1) In a method for manufacturing a composite piezoelectric material having a thickness T in which a plurality of piezoelectric materials are arranged at pitches p_1 and p_2 in the perpendicular direction via an organic material, a piezoelectric material having a thickness t_0 (t_0>t>T) A width w_1 (w_1
<p_1), w_2(w_2<p_2), depth d_1(
d_1<t_0), which intersects in a mesh pattern,
A plurality of piezoelectric bodies are formed by drilling one groove at a pitch of p_1 or p_2 and the other groove at a pitch of 2p_2 or 2p_1, and the plurality of grooves are filled with an organic material and solidified to form an organic body that holds the piezoelectric body. Then, the piezoelectric plate was processed and formed to have a predetermined thickness t from its upper surface, and electrode layers having a thickness of t_1 were formed on both the front and back surfaces of the piezoelectric plate, and the electrode layers were arranged on the piezoelectric plate at a pitch of 2p_2 or 2p_1. In the middle of the organism,
Width w_1 or w_2, depth d_2 (d_2, t+t
_1) A plurality of grooves with a pitch of 2p_2 or 2p_
1 to form a group-aligned composite piezoelectric body made up of a plurality of piezoelectric bodies, and fill and solidify an organic material in the plurality of grooves to form an organic body that holds the group-aligned composite piezoelectric body. death,
A method for manufacturing a composite piezoelectric material, characterized in that the group-aligned composite piezoelectric material is processed and formed to a predetermined thickness T from the upper surface of the organic body, and an electrode layer having a thickness t_2 is formed on this processed and formed surface.
(2)圧電体を構成する材料がジルコン酸チタン酸鉛系
セラミックス若しくはチタン酸鉛系セラミックスである
請求項1記載の複合圧電体の製造方法。
(2) The method for manufacturing a composite piezoelectric body according to claim 1, wherein the material constituting the piezoelectric body is a lead zirconate titanate ceramic or a lead titanate ceramic.
(3)有機体を構成する有機材料がポリウレタン系樹脂
若しくはエポキシ系樹脂である請求項1若しくは2記載
の複合圧電体の製造方法。
(3) The method for manufacturing a composite piezoelectric body according to claim 1 or 2, wherein the organic material constituting the organic body is a polyurethane resin or an epoxy resin.
(4)溝の交差角が直角である請求項1ないし3何れか
に記載の複合圧電体の製造方法。
(4) The method for manufacturing a composite piezoelectric material according to any one of claims 1 to 3, wherein the intersecting angle of the grooves is a right angle.
(5)圧電体の配設ピッチがP_1=P_2である請求
項1ないし4何れかに記載の複合圧電体の製造方法。
(5) The method for manufacturing a composite piezoelectric body according to any one of claims 1 to 4, wherein the arrangement pitch of the piezoelectric bodies is P_1=P_2.
(6)有機体を形成する溝の幅がw_1=w_2である
請求項1ないし5何れかに記載の複合圧電体の製造方法
(6) The method for manufacturing a composite piezoelectric material according to any one of claims 1 to 5, wherein the width of the groove forming the organic body is w_1=w_2.
(7)有機体を形成する溝の幅w_1および/またはw
_2が75μm以下である請求項1ないし6何れかに記
載の複合圧電体の製造方法。
(7) Width w_1 and/or w of the groove forming the organism
The method for manufacturing a composite piezoelectric material according to any one of claims 1 to 6, wherein _2 is 75 μm or less.
JP63071481A 1988-03-25 1988-03-25 Manufacture of compound piezoelectric body Pending JPH01244682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071481A JPH01244682A (en) 1988-03-25 1988-03-25 Manufacture of compound piezoelectric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071481A JPH01244682A (en) 1988-03-25 1988-03-25 Manufacture of compound piezoelectric body

Publications (1)

Publication Number Publication Date
JPH01244682A true JPH01244682A (en) 1989-09-29

Family

ID=13461872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071481A Pending JPH01244682A (en) 1988-03-25 1988-03-25 Manufacture of compound piezoelectric body

Country Status (1)

Country Link
JP (1) JPH01244682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1337138A2 (en) * 2002-02-06 2003-08-20 Ngk Insulators, Ltd. Structure for retaining cut-processed components and a method of washing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1337138A2 (en) * 2002-02-06 2003-08-20 Ngk Insulators, Ltd. Structure for retaining cut-processed components and a method of washing
EP1337138A3 (en) * 2002-02-06 2004-04-28 Ngk Insulators, Ltd. Structure for retaining cut-processed components and a method of washing
US7122091B2 (en) 2002-02-06 2006-10-17 Ngk Insulators, Ltd. Structure of retaining cut-processed components, method of fabricating cut-processed components, tray for housing cut-processed components, and method of cleaning cut-processed components

Similar Documents

Publication Publication Date Title
US5844349A (en) Composite autoclavable ultrasonic transducers and methods of making
EP0681513B1 (en) Manufacturing method of an mechanically focusing ultrasonic transducer array
EP2459322B1 (en) Ultrasound imaging transducer acoustic stack with integral electrical connections
JP4433378B2 (en) Electrical connection to an ultrasonic transducer via an acoustic backing material
US6859984B2 (en) Method for providing a matrix array ultrasonic transducer with an integrated interconnection means
KR102301253B1 (en) Collective process for ultrasound transducers
US20070182287A1 (en) Arrayed Ultrasonic Transducer
CN101278843B (en) Ultrasonic probe and production method thereof
US6489706B2 (en) Medical diagnostic ultrasound transducer and method of manufacture
JPH01244682A (en) Manufacture of compound piezoelectric body
US20080189933A1 (en) Photoetched Ultrasound Transducer Components
CN108701754B (en) Method for manufacturing piezoelectric element and piezoelectric element
JPH01244683A (en) Manufacture of compound piezoelectric body
JPS5821883A (en) Manufacture of composite piezoelectric material
JPH01244684A (en) Manufacture of compound piezoelectric body
EP1496553A1 (en) Composite piezoelectric body
JPH01244681A (en) Compound piezoelectric body
JPH0475718B2 (en)
JPH02303300A (en) Composite piezoelectric body
CN218868611U (en) Piezoelectric composite ceramic material manufacturing structure
JPS6468981A (en) Manufacture of composite piezoelectric material
CN105848791A (en) Ultrasound transducer stack
JPS60247159A (en) Ultrasonic probe
JPS6177498A (en) Ultrasonic probe and manufacturing method
JPS6359200A (en) Production of ultrasonic probe