JPH01244676A - Manufacture of superconductive element - Google Patents

Manufacture of superconductive element

Info

Publication number
JPH01244676A
JPH01244676A JP63072383A JP7238388A JPH01244676A JP H01244676 A JPH01244676 A JP H01244676A JP 63072383 A JP63072383 A JP 63072383A JP 7238388 A JP7238388 A JP 7238388A JP H01244676 A JPH01244676 A JP H01244676A
Authority
JP
Japan
Prior art keywords
microbridge
solid solution
temperature
temperature superconducting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072383A
Other languages
Japanese (ja)
Inventor
Masanobu Yoshisato
善里 順信
Takaaki Ikemachi
隆明 池町
Minoru Takai
高井 穣
Maruo Jinno
丸男 神野
Hiroshi Suzuki
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63072383A priority Critical patent/JPH01244676A/en
Publication of JPH01244676A publication Critical patent/JPH01244676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a multi-function type superconductor element capable of selectively utilizing high temperature phase or low temperature phase according to the purpose, by using bismuth material, and positively forming three parts, e.g., a high temperature superconducting part, a low temperature superconducting part and an insulating part. CONSTITUTION:After respective powder of Bi2O3, SrCO3, CaCO3 and CuO are mixed and molded by pressure, a solid solution 1 is formed by heat treatment at a temperature higher than or equal to the melting point. The solid solution 1 is cut into a plate type member 2, and its one side surface is fixed on a base stand 3 of, e.g., crystallized glass plate by using adhesive agent. Then by laser processing or ultrasonic processing, the solid solution is worked in the form of a microbridge 4. Since a microbridge mold 5 obtained by eliminating the adhesive agent is not yet in a superconducting state, a part of the microbridge mold 5 is scanned by a beam system of laser 6 in an oxidizing atmosphere. At the time of the scanning, the output of the beam and the scanning speed are adjusted in the manner in which a laser irradiation part (a) only is kept at 870-880 deg.C. By this process, high temperature superconducting state is obtained in the laser irradiation part (a). Its vicinity (b) is given a temperature of 840-870 deg.C, and low temperature superconducting state is obtained. After that, the microbridge mold 5 is fixed on a crystallized glass substrate 7 by using epoxy system adhesive agent, and a superconductor element is obtained.

Description

【発明の詳細な説明】 (イ)本発明はビスマス系材料を用いた超電導素子の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) The present invention relates to a method for manufacturing a superconducting element using bismuth-based materials.

(ロ)従来の技術 昭和63年2月に工業技術院金属材料研究所がB15r
CaCu*Ox  で表わされる新しい酸化物材料が1
00に以上の高い温度で超電導状態になることを発表し
、希土類材料を用いない点で注目を浴びている。
(b) Conventional technology In February 1986, the Agency of Industrial Science and Technology's Institute of Materials Research established B15r.
A new oxide material represented by CaCu*Ox is 1
It has been announced that it becomes superconducting at temperatures above 0.00C, and is attracting attention because it does not use rare earth materials.

ところで、このビスマス系材料は例えば希土類材料の場
合とは異なり、高温(約105K)及び低温(約80K
)の超電導相が混在した超電導体となっている。また、
この高温相と低温相の混晶は非超電導相も含み乱雑に分
散しており、熱処理や製造条件を変えても混晶の比率が
変化するだけで、高温相のみの単相を得ることは非常に
困難であった。
By the way, unlike rare earth materials, for example, this bismuth-based material can withstand high temperatures (approximately 105K) and low temperatures (approximately 80K).
) is a superconductor with a mixture of superconducting phases. Also,
This mixed crystal of high-temperature and low-temperature phases also includes non-superconducting phases and is randomly dispersed, so changing heat treatment or manufacturing conditions only changes the ratio of the mixed crystal, and it is not possible to obtain a single phase consisting only of the high-temperature phase. It was extremely difficult.

それゆえ、このビスマス系材料を用いて超電導素子を作
成しても、低温相が支配的となり高温相の素子を得るこ
とはできなかった。
Therefore, even if a superconducting device is made using this bismuth-based material, the low-temperature phase becomes dominant, and a high-temperature phase device cannot be obtained.

尚、超電導素子としては、超電導臨界電流特性を利用し
た電流制限素子、成るいは粒界(Grain  Bou
ndary)で生じるバウンダリージョセフソン効果を
用いた弱結合素子、及びその弱結合部で電磁波や光によ
り超電導状態の不平衡を生じさせるセンサーなどがある
In addition, as a superconducting element, a current limiting element using superconducting critical current characteristics, or a grain boundary (grain boundary)
There are weak-coupling elements that use the boundary Josephson effect produced by (ndary), and sensors that use electromagnetic waves or light to cause unbalance in the superconducting state at the weak-coupling portion.

(ハ)発明が解決しようとする課題 ′本発明は前述せ
るビスマス系材料の特異性を巧みに利用し、高温超電導
部分、低温超電導部分及び絶縁部分の三部分を猜極的に
形成することによって、用途に応じて高温相酸るいは低
温相を選択的に利用しうる多機能型の超電導素子を得る
ことを目的とするものである。
(c) Problems to be solved by the invention 'The present invention skillfully utilizes the peculiarities of the bismuth-based material mentioned above, and by actively forming three parts: a high-temperature superconducting part, a low-temperature superconducting part, and an insulating part. The purpose of this invention is to obtain a multifunctional superconducting element that can selectively utilize a high temperature phase or a low temperature phase depending on the application.

(ニ)課題を解決するための手段 本発明による超電導素子の製造法は、Bl*OmとS 
r COaとCa COsとCuOとの混合物を高温溶
融径急冷して固溶体を得、該固溶体に酸化雰囲気中で高
エネルギービームを照射して局所的に870〜880℃
に加熱し、少なくとも該ビームを受けた個所を高温超電
導相とすると共にその高温超電導相に隣接して低温超電
導相を形成することを特徴とするものである。
(d) Means for Solving the Problems The method for manufacturing a superconducting element according to the present invention is based on Bl*Om and S
r A mixture of COa, Ca COs and CuO is rapidly cooled to a high temperature melt diameter to obtain a solid solution, and the solid solution is irradiated with a high energy beam in an oxidizing atmosphere to locally heat the mixture to 870-880°C.
The method is characterized in that at least a portion receiving the beam is heated to a high temperature superconducting phase, and a low temperature superconducting phase is formed adjacent to the high temperature superconducting phase.

(ホ)作用 本発明法のように固溶体に酸化雰囲気中で高エネルギー
ビームを照射して局所的に870〜880″Cに加熱す
ると、少なくともビームを受けた個所は高温超電導状態
が得られ、この部分に隣接すの部分は低温超電導状態が
得られる。
(e) Effect When a solid solution is irradiated with a high-energy beam in an oxidizing atmosphere and locally heated to 870 to 880''C as in the method of the present invention, at least the area that receives the beam becomes a high-temperature superconducting state. A low-temperature superconducting state is obtained in the part adjacent to the part.

尚、熱処理温度を870〜880℃に限定したのは87
0°C以上でないと高温超電導状態が得られず、一方8
80℃を越えると絶縁物が生成するという不都合を有す
るためである。
In addition, the heat treatment temperature was limited to 870 to 880°C in 87
High-temperature superconducting state cannot be obtained unless the temperature is 0°C or higher;
This is because if the temperature exceeds 80° C., there is a problem that an insulator is formed.

また、高エネルギービームとしてはレーザ光や電子ビー
ムが適用しうる。
Furthermore, a laser beam or an electron beam can be used as the high-energy beam.

(へ)実施例 以下本発明の一実施例を第1図に基づき説明する。(f) Example An embodiment of the present invention will be described below with reference to FIG.

本発明の第1の工程は、B15onとSrC0mとCa
CO5とCuOの各粉末を1:1:1:2のモル比で混
合し、この混合物を加圧成形した後、融点以上で熱処理
して溶融し、ついで10”’C/ secの速度で室温
まで急冷して固溶体(1)を作成することにある。この
第1工程で得られた固溶体(1)は大気中で安定な微結
晶を均一に含む塊りであって、内部には気孔が極めて少
なく高密度′″(約5.2g/an ” )(7)状態
にある。
The first step of the present invention is to combine B15on, SrC0m and Ca
CO5 and CuO powders were mixed at a molar ratio of 1:1:1:2, this mixture was pressure-molded, and then heat-treated above the melting point to melt it, and then cooled to room temperature at a rate of 10''C/sec. The solid solution (1) obtained in the first step is a lump uniformly containing microcrystals that are stable in the atmosphere, and there are pores inside. It has a very low density and a high density'' (approximately 5.2 g/an'') (7).

本発明の第2の工程は、前述の固溶体(1)をダイヤモ
ンドカッター或いは内周刃等を用いて厚さo、snm程
度の板状体(2)に切り出し、この板状体(2)の両面
を片側づつ鏡面研摩にかけて最終的にlθ〜200μ論
程度の厚さに仕上げた後、板状体(2)の片面を接着剤
により例えば結晶化ガラス板製の基台(3)に固定した
のちレーザ加工或いは超音波加工によって、ブリッジ山
数μ−〜数+μ−のマイクロブリッジ状(4)に加工す
ることにある。
In the second step of the present invention, the solid solution (1) described above is cut into a plate-shaped body (2) with a thickness of about o, sm using a diamond cutter or an inner peripheral blade, and this plate-shaped body (2) is cut out. After polishing both sides one side at a time to a final thickness of about lθ~200μ, one side of the plate-shaped body (2) was fixed to a base (3) made of, for example, a crystallized glass plate with an adhesive. Later, by laser processing or ultrasonic processing, it is processed into a microbridge shape (4) having bridge ridges of several μ− to several +μ−.

本発明の第3の工程は、前工程から接着剤を除いて得た
マイクロブリッジ型(5)が未だ超電導状態でないため
、これを超電導化する工程であり、レーザ(6)のビー
ム系を2μm程度に絞り、酸化雰囲気においてブリッジ
型(5)の一部を走査する、この走査の際、第2図に示
すようにレーザ照射部(a)のみ約数十分間、870℃
を保つようにビームの出力、走査速度を調整する。
The third step of the present invention is to make the microbridge mold (5) obtained by removing the adhesive from the previous step superconducting since it is not yet in a superconducting state, and the beam system of the laser (6) is During this scanning, only the laser irradiated part (a) is heated to 870°C for about several tens of minutes as shown in Figure 2.
Adjust the beam output and scanning speed to maintain the

この工程によりレーザ照射部(a)は100に級の高温
超電導状態が得られ、またその近傍部(b)は第2図に
示す如く温度勾配によって840〜870″C程度の温
度が付与きれ80に級の低温超電導状態が得られる。
Through this step, the laser irradiated part (a) attains a high-temperature superconducting state of 100°C, and the neighboring part (b) is heated to a temperature of about 840 to 870''C due to the temperature gradient as shown in Figure 2. A low-temperature superconducting state on the order of

尚、第2図から理解されるようにレーザ照射部(a)と
その近傍部(b)との境界を明確にするためには温度勾
配を急峻にすれば良く、それゆえレーザ光の照射は間欠
的に行なう方が好ましい、その理由は熱伝導が悪くなる
ためである。
As can be understood from Fig. 2, in order to make the boundary between the laser irradiated part (a) and its neighboring part (b) clear, the temperature gradient needs to be made steep, and therefore the laser beam irradiation is It is preferable to carry out the process intermittently, since heat conduction becomes poor.

その後、このマイクロブリッジ型(5)をエポキシ系接
着剤により結晶化ガラス基板(7)に固定して超電導素
子を得る。
Thereafter, this microbridge mold (5) is fixed to a crystallized glass substrate (7) using an epoxy adhesive to obtain a superconducting element.

(ト)発明の効果 上述した如く、本発明のように固溶体に局所的に870
〜880℃の温度で熱処理すると、固溶体の一部のみ高
温(105k)の超電導状態が得られ、またその近傍部
は温度勾配によって870″Cより若干低めの温度が付
与され、低温(80k)の超電導状態が得られることに
なる。従って本発明法により得た素子は、用途に応じて
高温相酸るいは低温相を選択することにより多機能型の
超電導素子として利用することができるものであり、そ
の工業的価値は極めて大である。
(g) Effects of the invention As mentioned above, as in the present invention, 870% is locally applied to a solid solution.
When heat-treated at a temperature of ~880°C, only a part of the solid solution becomes a high-temperature (105k) superconducting state, and the nearby part is given a temperature slightly lower than 870°C due to the temperature gradient, resulting in a low-temperature (80k) superconducting state. A superconducting state is obtained. Therefore, the device obtained by the method of the present invention can be used as a multifunctional superconducting device by selecting the high temperature phase or low temperature phase depending on the application. , its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係り、第1図は本発明法を説明するための
製造工程図、第2図は固溶体のレーザ照射部(a)とそ
の近傍部(b)における温度勾配を示す図である。 (1〉・・・固溶体、(2)・・・板状体、(3)・・
・基台、(5)・・・マイクロブリッジ型、(7)・・
・基板、(a)・・・レーザ照射部(高温相)、(b)
・・・レーザ照射部の近傍部〈低温相)。
The figures relate to the present invention; FIG. 1 is a manufacturing process diagram for explaining the method of the present invention, and FIG. 2 is a diagram showing the temperature gradient in the laser irradiated part (a) of the solid solution and its neighboring part (b). . (1>... solid solution, (2)... plate-like body, (3)...
・Base, (5)...Micro bridge type, (7)...
・Substrate, (a)... Laser irradiation part (high temperature phase), (b)
... Near the laser irradiation part (low temperature phase).

Claims (1)

【特許請求の範囲】[Claims] (1)Bi_2O_3とSrCO_3とCaCO_2と
CuOとの混合物を高温溶融後急冷して固溶体を得、該
固溶体に酸化雰囲気中で高エネルギービームを照射して
局所的に870〜880℃に加熱し、少なくとも該ビー
ムを受けた個所を高温超電導相とすると共にその高温超
電導相に隣接して低温超電導相を形成することを特徴と
する超電導素子の製造法。
(1) A mixture of Bi_2O_3, SrCO_3, CaCO_2, and CuO is melted at a high temperature and then rapidly cooled to obtain a solid solution, and the solid solution is irradiated with a high-energy beam in an oxidizing atmosphere to locally heat it to 870-880°C, and at least A method for manufacturing a superconducting element, which comprises forming a high-temperature superconducting phase at a location receiving the beam and forming a low-temperature superconducting phase adjacent to the high-temperature superconducting phase.
JP63072383A 1988-03-25 1988-03-25 Manufacture of superconductive element Pending JPH01244676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072383A JPH01244676A (en) 1988-03-25 1988-03-25 Manufacture of superconductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072383A JPH01244676A (en) 1988-03-25 1988-03-25 Manufacture of superconductive element

Publications (1)

Publication Number Publication Date
JPH01244676A true JPH01244676A (en) 1989-09-29

Family

ID=13487710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072383A Pending JPH01244676A (en) 1988-03-25 1988-03-25 Manufacture of superconductive element

Country Status (1)

Country Link
JP (1) JPH01244676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111862A (en) * 1991-06-08 1994-04-22 Hoechst Ag Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111862A (en) * 1991-06-08 1994-04-22 Hoechst Ag Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture

Similar Documents

Publication Publication Date Title
JP2855614B2 (en) Method of forming superconducting circuit
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JPH01244676A (en) Manufacture of superconductive element
JPH02239102A (en) Production of oxide superconductor
JPH11503711A (en) Method for manufacturing melt-textured volume probe based on high temperature superconductor YBa 2 lower Cu 3 lower 7 (YBCO)
JPH01243485A (en) Manufacture of superconducting element
JPH06234509A (en) Method for producing oxide superconductor and device therefor
JPS63276822A (en) Patterning method for superconductive thin film
JPH01100818A (en) High temperature superconducting material
JP2639961B2 (en) Superconducting element manufacturing method
JP2774219B2 (en) Manufacturing method of oxide superconductor
JP2813691B2 (en) Laser deposition target
JP2801811B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP2767454B2 (en) Manufacturing method of oxide superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH01160898A (en) Forming of oxide superconductor film
JPH02265283A (en) Formation of superconducting circuit
JPH0362978A (en) Method of producing oxide superconductor circuit
JPH02257529A (en) Manufacture of oxide superconductor
JPH0692795A (en) Method for producing unidirectionally solidified body and device therefor
JP2928311B2 (en) Manufacturing method of oxide superconductor
JPH0524804A (en) Production of oxide superconductor by method for laser vacuum deposition and apparatus for laser vacuum deposition
JPH01100096A (en) Production of oxide superconductor thin film
JP2729988B2 (en) Manufacturing method of oxide superconductor
JPH04132696A (en) Production of single crystal of bi-based oxide superconductor