JPH01243485A - Manufacture of superconducting element - Google Patents
Manufacture of superconducting elementInfo
- Publication number
- JPH01243485A JPH01243485A JP63070268A JP7026888A JPH01243485A JP H01243485 A JPH01243485 A JP H01243485A JP 63070268 A JP63070268 A JP 63070268A JP 7026888 A JP7026888 A JP 7026888A JP H01243485 A JPH01243485 A JP H01243485A
- Authority
- JP
- Japan
- Prior art keywords
- solid solution
- superconducting
- superconductivity
- brought
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000006104 solid solution Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract description 3
- 235000010216 calcium carbonate Nutrition 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000013081 microcrystal Substances 0.000 abstract description 3
- 229910000018 strontium carbonate Inorganic materials 0.000 abstract description 3
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 abstract description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 abstract 4
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 4
- 238000010791 quenching Methods 0.000 abstract 2
- 230000000171 quenching effect Effects 0.000 abstract 2
- 230000001066 destructive effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- -1 CaC0z Chemical compound 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は100に近傍で超電導状態に入るビスマス系材
料を用いた超電導素子の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing a superconducting element using a bismuth-based material that enters a superconducting state at around 100%.
口、従来の技術
昭和63年2月工業技術院金属材料研究所がB i 5
rCaCuzOx で表される新しい酸化物材料が10
0に以上の高い温度で超電導状態になることを発表し、
希土類材料を用いない点で注目を浴びている。In February 1986, the Agency of Industrial Science and Technology's Metal Materials Research Institute established B i 5.
A new oxide material represented by rCaCuzOx is 10
announced that it becomes superconducting at temperatures above 0.
It is attracting attention because it does not use rare earth materials.
そして、このB i−S r−Ca−Cu−0系の超電
導材料を用いた超電導素子は、焼結体或いは溶融熱処理
して超電導状態になったバルク体をウェハー状に加工し
、ついでこのウェハーを所定の基板に固着しv&細前加
工て得ていた。A superconducting element using this B i-S r-Ca-Cu-0-based superconducting material is produced by processing a sintered body or a bulk body that has undergone melt heat treatment into a superconducting state into a wafer shape, and then processing this wafer into a wafer shape. It was obtained by fixing it to a predetermined substrate and performing V& fine processing.
尚、超電導素子としては、超電導臨界電流特性を利用し
た電流制限素子、或いは粒界(GrainBoaoda
r7 )で生じるバウンダリージョセフソン効果を用い
た弱結合素子、及びその弱結合部で電磁波や光により超
電導状態の不平衡を生じさせるセンサーなどがある。In addition, as a superconducting element, a current limiting element using superconducting critical current characteristics, or a grain boundary (grain boundary)
There are weak-coupling devices that use the boundary Josephson effect generated in r7), and sensors that use electromagnetic waves or light to cause unbalance in the superconducting state at the weak-coupling portion.
ハ1発明が解決しようとする課題
一般にビスマス系超電導体は複数個の結晶相が混在して
いること、又結晶粒径が10μm以上に成長しているこ
と、更に各々の結晶相の相違或いは同一結晶であっても
その方位が不定であることにより、超電導化された後の
加工工程において、機械加工の際には表面部分の脱落な
どの発生が生じ、又レーザ加工の際には結晶粒の種類の
相違或いは方位の不定によるレーザ光の吸収差によって
加工のみだれが生じ、更にエツチング加工の際には結晶
粒による化学性質の差に起因する加工のみだれが生じる
など′fILm加工において種々の問題があった。C1 Problems to be Solved by the Invention In general, bismuth-based superconductors have a plurality of crystal phases mixed together, the crystal grain size has grown to 10 μm or more, and each crystal phase is different or the same. Even in crystals, their orientation is unstable, so in the processing process after making them superconducting, surface parts may fall off during machining, and crystal grains may fall off during laser processing. There are various problems in 'fILm processing, such as processing sagging due to differences in absorption of laser light due to differences in type or undefined orientation, and furthermore, during etching processing, processing sagging occurs due to differences in chemical properties due to crystal grains. was there.
更に、又、これらの加工工程の際にダメージ層も発生し
ており、特にレーザ加工ではそのダメージ層が例えば弱
結合ブリッジの微小加工の限界となっていると共に、機
械加工(例えば超音波加工)ではこのダメージ層により
再現性が著しく低下するものであった。Furthermore, a damaged layer is also generated during these processing steps, and this damaged layer is the limit for microfabrication of weakly coupled bridges, for example, especially in laser processing, and also in machining (e.g., ultrasonic processing). In this case, the reproducibility was significantly lowered due to this damaged layer.
本発明は上記せる課題を解決することを目的とする。The present invention aims to solve the above problems.
二、課題を解決するための手段
本発明による超電導素子の製造法は、Bi2O、と5r
CO,とCaCO3とCuOとを混合し、この混合物を
高温溶融後急冷して固溶体を作成する第1の工程と、
該固溶体を所望形状に加工する第2の工程と、所望形状
の固溶体を熱処理して超電導化する第3の工程とからな
ることを特徴とする。2. Means for Solving the Problems The method for manufacturing a superconducting element according to the present invention includes Bi2O and 5r.
A first step of mixing CO, CaCO3, and CuO, melting this mixture at a high temperature and then rapidly cooling it to create a solid solution, a second step of processing the solid solution into a desired shape, and heat-treating the solid solution in the desired shape. and a third step of making the material superconducting.
ホ8作 用
本発明者等がビスマス系超電導材料について鋭意検討し
たところ、Bi2O,と5rCOiとCaC0,とCu
Oとを混合し、この混合物を高温溶融後急冷して得た固
溶体は、微小結晶を均一に含んだ高密度の固溶体である
ことを見出した。The present inventors conducted extensive studies on bismuth-based superconducting materials, and found that Bi2O, 5rCOi, CaC0, and Cu
It has been found that a solid solution obtained by mixing the mixture with O and melting the mixture at a high temperature and then rapidly cooling it is a high-density solid solution uniformly containing microcrystals.
それ故、斯る固溶体においては微細加工処理が丁j
可能と=る。そのため前述したように超電導化した後に
加工処理を行う場合における問題が解消される。Therefore, microfabrication treatments are possible in such solid solutions. Therefore, as described above, the problem that occurs when processing is performed after making the material superconducting is solved.
へ、実施例 以下本発明の一実施例を図面に基づき説明する。To, Example An embodiment of the present invention will be described below based on the drawings.
本発明の第1の工程は、Bi2O,とS r CO3と
CaC0zとCuOの各粉末を1:1+1:2のモル比
で混合し、この混合物を加圧成形した後、融点以上の高
温1200℃以上で熱処理して溶融し、ついで105℃
(7s e cの速度で室温まで急冷して固溶体(1)
を作成することにある。この第1工程で得られた固溶体
(1)は大気中で安定な微結晶を均一に含んだ塊ってあ
り、内部には気孔が極めて少なく高密度(約5.2g/
c+i3)の状態にある。The first step of the present invention is to mix Bi2O, SrCO3, CaC0z, and CuO powders at a molar ratio of 1:1+1:2, press-mold this mixture, and then heat the mixture to a high temperature of 1200°C above the melting point. Heat treated above to melt, then heated to 105℃
(Quickly cool to room temperature at a rate of 7 sec to form a solid solution (1)
The purpose is to create. The solid solution (1) obtained in the first step is a mass uniformly containing microcrystals that are stable in the atmosphere, and has a high density (approximately 5.2 g/min) with very few pores inside.
c+i3).
本発明の第2の工程は、前述の固溶体(1)をダイヤモ
ンドカッター或いは内周刃等を用いて厚さ0.5ffR
程度の板状体(2)に切り出し、この板状体(2)の両
面を片側づつ鏡面研串にかけ最終的に10〜200μm
程度の厚さに仕上げ、ついで板状体(2)の片面を接着
剤により例えば結晶化ガラス板製の基台(3)に固定し
たのちレーザ加工或いは超音波加工によって、ブリッジ
山数μmへ数十μmのマイクロブリッジ状(4)に加工
することにある。In the second step of the present invention, the solid solution (1) described above is cut to a thickness of 0.5ffR using a diamond cutter or an inner peripheral blade.
The plate-like material (2) is cut out into a plate-like material (2) with a diameter of 10 to 200 μm.
Then, one side of the plate-shaped body (2) is fixed to a base (3) made of, for example, a crystallized glass plate with an adhesive, and then the bridge ridges are cut to several micrometers by laser processing or ultrasonic processing. The purpose is to process it into a microbridge shape (4) of 10 μm.
本発明の第3の工程は、前工程から接着剤を除いて得た
マイクロブリッジ型(5)が未だ超電導状態でないため
、これを超電導化する工程であり、マイクロブリッジ型
(5)を大気或いは酸素雰囲気の電気炉(6)中にて、
870℃で3〜5時間熱処理した後、1時間に100’
C程度降温する徐冷処理を行い室温まで冷却する。この
処理によりマイクロブリッジ型(5)は100K程度で
超電導状態を示す。The third step of the present invention is to make the microbridge mold (5) superconducting since it is not yet in a superconducting state obtained by removing the adhesive from the previous step. In an electric furnace (6) in an oxygen atmosphere,
After heat treatment at 870℃ for 3 to 5 hours, 100' per hour
A slow cooling process is performed to lower the temperature by approximately C and the mixture is cooled to room temperature. Through this treatment, the microbridge type (5) exhibits a superconducting state at about 100K.
その後、このマイクロブリッジ型(5)をエポキシ系接
着剤により結晶化ガラス基板(7)に固定して超電導素
子を得る。Thereafter, this microbridge mold (5) is fixed to a crystallized glass substrate (7) using an epoxy adhesive to obtain a superconducting element.
ト1発明の効果
上述した如く、本発明法によれば超電導化する前に加工
工程を施すため、超電導化後に加工工程を施す場合にお
ける種々の問題点を解消することができ高精度の超電導
素子が得られるものであり、その工業的価値は極めて大
である。(1) Effects of the Invention As mentioned above, according to the method of the present invention, since a processing step is performed before superconducting, various problems that occur when processing steps are performed after superconducting can be solved, and a high-precision superconducting element can be manufactured. can be obtained, and its industrial value is extremely large.
図面は本発明の製造工程を示す。
(1)・・・固溶体、(2)・・・板状体、(3)・・
・基台、(5)・・・マイクロブリッジ型、(6)・・
・電気炉、(7)・・・基板。The drawings illustrate the manufacturing process of the invention. (1)... solid solution, (2)... plate-like body, (3)...
・Base, (5)...Micro bridge type, (6)...
・Electric furnace, (7)...Substrate.
Claims (1)
CuOとを混合し、この混合物を高温溶融後急冷して固
溶体を作成する第1の工程と、 該固溶体を所望形状に加工する第2の工程と、所望形状
の固溶体を熱処理して超電導化する第3の工程とからな
る超電導素子の製造法。(1) A first step of mixing Bi_2O_3, SrCO_3, CaCO_3, and CuO, melting this mixture at a high temperature and then rapidly cooling it to create a solid solution; a second step of processing the solid solution into a desired shape; and a second step of processing the solid solution into a desired shape. A method for manufacturing a superconducting element, comprising a third step of heat-treating a solid solution of the solid solution to make it superconducting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63070268A JPH01243485A (en) | 1988-03-24 | 1988-03-24 | Manufacture of superconducting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63070268A JPH01243485A (en) | 1988-03-24 | 1988-03-24 | Manufacture of superconducting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01243485A true JPH01243485A (en) | 1989-09-28 |
Family
ID=13426608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63070268A Pending JPH01243485A (en) | 1988-03-24 | 1988-03-24 | Manufacture of superconducting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01243485A (en) |
-
1988
- 1988-03-24 JP JP63070268A patent/JPH01243485A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5015618A (en) | Laser zone melted Bi--Sr--Ca--Cu--O thick films | |
JP3985144B2 (en) | Method for producing oxide ion conductive crystal | |
JPH01144689A (en) | Formation of superconducting circuit | |
KR100209580B1 (en) | Manfacturing method of yttrium ultra conduct | |
JPH01243485A (en) | Manufacture of superconducting element | |
Levinson et al. | Laser zone‐melted Bi‐Sr‐Ca‐Cu‐O thick films | |
JPS63273371A (en) | Manufacture of superconducting electric circuit | |
JPH02239102A (en) | Production of oxide superconductor | |
JPH01244676A (en) | Manufacture of superconductive element | |
JPH05208898A (en) | Production of high-temperature superconductive component | |
JP2639961B2 (en) | Superconducting element manufacturing method | |
JPH01242406A (en) | Production of superconductor | |
JPS63224270A (en) | Manufacture of superconductor device | |
KR0166709B1 (en) | Fabrication method of superconductor | |
JPH01226735A (en) | Production of superconducting material | |
JPS63274019A (en) | Structure of superconductor and its manufacture | |
RU2006079C1 (en) | Method of film manufacture from high-temperature superconductors | |
JPH02192780A (en) | Manufacture of base substrate for superconducting element | |
JPH02258692A (en) | Production of oxide superconductor | |
JPH04175296A (en) | Production of oxide superconductor and crystal growth control therein | |
JPH02164786A (en) | Production of eutectic semiconductor | |
JPH0362978A (en) | Method of producing oxide superconductor circuit | |
JPH02258695A (en) | Production of oxide superconductor | |
JPH01100096A (en) | Production of oxide superconductor thin film | |
JPH04132696A (en) | Production of single crystal of bi-based oxide superconductor |