JPH01244307A - Thickness measuring method of double-layered body - Google Patents

Thickness measuring method of double-layered body

Info

Publication number
JPH01244307A
JPH01244307A JP7226388A JP7226388A JPH01244307A JP H01244307 A JPH01244307 A JP H01244307A JP 7226388 A JP7226388 A JP 7226388A JP 7226388 A JP7226388 A JP 7226388A JP H01244307 A JPH01244307 A JP H01244307A
Authority
JP
Japan
Prior art keywords
thickness
layer
layers
ultrasonic waves
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226388A
Other languages
Japanese (ja)
Inventor
Kanji Arimatsu
有松 寛次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7226388A priority Critical patent/JPH01244307A/en
Publication of JPH01244307A publication Critical patent/JPH01244307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure the thickness of a double-layered body positively even when the difference of acoustic impedances between the layers is small, by calculating each thickness of said two layers based upon the receiving result of echoes of both waves from the reverse surface of said body. CONSTITUTION:The ultrasonic probes 3, 4 are provided on a double-layered body 1a, 1b which are transferred by a pair of pinch rollers 2, 2. The probe 3 projects transversal ultrasonic waves, while the probe 4 projects longitudinal ultrasonic waves, respectively in a vertical direction to the body. These ultrasonic waves are reflected respectively by the reverse surface of the body and received by the probes 3, 4. An operating unit 6 measures the time since each of the transversal and longitudinal ultrasonic waves is sent out until it is received. The operating unit calculates the thickness of each layer of the body 1 based on the measured result, and the total thickness of the body 1 from the sum total of the thicknesses of the two layers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば母材及び合せ材を2層に積層してなる
クラツド鋼材等の2層体における各層の厚さ及び全厚を
超音波を利用して測定する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides an ultrasonic method to measure the thickness of each layer and the total thickness of a two-layer body such as a clad steel material made by laminating two layers of a base material and a laminate material. Concerning how to measure using.

〔従来技術〕[Prior art]

耐蝕性に優れた高合金鋼と、高強度を有すると共に低度
な炭素鋼又は低合金鋼とを厚さ方向に積層させ、冶金的
に結合させたクランド鋼材は、例えば、サワーガスの輸
送管又は海底に敷設されるパイプライン等、内側又は外
側が腐食環境下に晒されると共に経済性を要求される場
合に使用されるクラッド鋼管、の材料として広汎な使用
実績を有している。このような用途に用いられるクラツ
ド鋼材においては、その全厚は勿論、2層夫々の厚さを
正確に知ることが重要である。
Crund steel materials, which are made by laminating high alloy steel with excellent corrosion resistance and low carbon steel or low alloy steel with high strength and bonding them metallurgically, are used, for example, in sour gas transport pipes or It has a wide range of use as a material for clad steel pipes, which are used in situations where the inside or outside is exposed to corrosive environments and economical efficiency is required, such as pipelines laid on the seabed. For clad steel materials used in such applications, it is important to accurately know not only the total thickness but also the thickness of each of the two layers.

このような2層体の厚さを測定する方法として、従来、
超音波を利用する方法と磁力線を利用する方法とがある
。前者は、2層体の表面からこれに垂直な方向に超音波
を入射させ、該超音波が、2層の境界面及び裏面から反
射されて生じるエコーを夫々受信し、境界面からのエコ
ーが受信されるまでの時間に基づいて表面側の層の厚さ
を、また裏面からのエコーが受信されるまでの時間に基
づいて全厚を夫々算出する方法であり、後者は、−方の
層が磁性体であり、他方が非磁性体であるような2層体
において、2つの磁極を有する磁石を非磁性体層の表面
に臨ませて配し、該磁石を通る磁束量が非磁性体層の厚
さに対応して増減することを利用して非磁性体層の厚さ
を測定する方法である。
Conventionally, as a method for measuring the thickness of such a two-layer body,
There are two methods: one using ultrasonic waves and the other using magnetic lines of force. In the former method, ultrasonic waves are incident from the surface of the two-layer body in a direction perpendicular to the two-layer body, and the echoes generated when the ultrasonic waves are reflected from the boundary surface and the back surface of the two layers are received, and the echoes from the boundary surface are This method calculates the thickness of the layer on the front side based on the time until the echo is received, and the total thickness based on the time until the echo from the back side is received. In a two-layer body where one is a magnetic material and the other is a non-magnetic material, a magnet with two magnetic poles is placed facing the surface of the non-magnetic material layer, and the amount of magnetic flux passing through the magnet is equal to that of the non-magnetic material. This is a method of measuring the thickness of a non-magnetic layer by utilizing the fact that it increases or decreases in accordance with the thickness of the layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前者の方法は、2層における音響インピーダ
ンス(物体中の音速と該物体の密度とを乗算して得られ
る値であり、音波通過の難易を示す値)間に大きい差が
ない場合、境界面からのエコーが小さく、これの検出が
困難であるという難点があり、2層の組合せによっては
、各層の厚さの測定が困難又は不可能になる虞があった
However, in the former method, if there is no large difference between the acoustic impedances (a value obtained by multiplying the speed of sound in an object by the density of the object, and indicates the difficulty of sound waves passing through the object) in the two layers, the boundary There is a problem that the echo from the surface is small and difficult to detect, and depending on the combination of two layers, it may become difficult or impossible to measure the thickness of each layer.

例えば、2層の音響インピーダンスが夫々Z。For example, the acoustic impedance of two layers is Z.

Z2である場合、境界面における音圧反射率rは、公知
の次式にて表される。
In the case of Z2, the sound pressure reflectance r at the boundary surface is expressed by the following well-known formula.

2++22 従って、この場合に得られる境界面からのエコー■の裏
面からのエコーBに対する比は、となり、この式を炭素
鋼とステンレス鋼(JISSUS 304)とからなる
一般的なりラフト鋼材に適用し、炭素鋼の音響インピー
ダンスZ、 =46.3X10’ kg/ tm” s
と、SOS 304の音響インピーダンスZz =45
.OX10hkg/ m” sとを夫々代入すると、I
/Bが略0.01となり、即ち、境界面からのエコーは
裏面からのエコーの1層程度となり、境界面からのエコ
ーの検出が困難であることは明らかである。クラツド鋼
においては、このように、2層夫々の音響インピーダン
ス間に大きい差がないものが多く、前述の方法は、クラ
ツド鋼の厚さ測定には適用できないものである。
2++22 Therefore, the ratio of the echo ■ from the boundary surface obtained in this case to the echo B from the back surface is as follows.Applying this formula to a general raft steel material made of carbon steel and stainless steel (JISSUS 304), Acoustic impedance Z of carbon steel, =46.3X10'kg/tm"s
and the acoustic impedance of SOS 304 Zz = 45
.. By substituting OX10hkg/m”s, I
/B is approximately 0.01, that is, the echo from the boundary surface is about one layer of the echo from the back surface, and it is clear that it is difficult to detect the echo from the boundary surface. In many clad steels, there is no large difference in acoustic impedance between the two layers, and the above-mentioned method cannot be applied to the thickness measurement of clad steel.

また後者の方法は、前述した如く、一方の層が磁性体で
あり他方が非磁性体であるような2層体にのみ適用可能
であり、その適用範囲が限定される上、非磁性体側から
のみ測定が可能であり、例えば被測定物が外側に磁性体
層を有する管体である場合、測定を内側から行わざるを
得す、測定作業に困難を伴うという難点があった。更に
、この方法により測定されるのは非磁性体層の厚さのみ
であり、2層の厚さが共に必要である場合、磁性体層の
厚さは、他の方法、例えば超音波を用いる方法により全
厚を測定し、この測定値から非磁性体層の厚さを減算し
て求めざるを得ないという煩わしさがあった。
Furthermore, as mentioned above, the latter method is applicable only to two-layer bodies in which one layer is magnetic and the other is non-magnetic, and the range of application is limited. For example, if the object to be measured is a tube having a magnetic layer on the outside, the measurement must be carried out from the inside, making the measurement work difficult. Furthermore, only the thickness of the non-magnetic layer is measured by this method; if both thicknesses are required, the thickness of the magnetic layer can be measured by other methods, such as using ultrasound. There was the trouble of having to measure the total thickness using the method and then subtracting the thickness of the nonmagnetic layer from this measured value.

本発明は斯かる事情に鑑みてなされたものであり、2N
体の各層の厚さ又は更に全厚を、各層の材質の如何に拘
わらず、確実に、しかも同時的に測定可能な厚さ測定方
法を提供することを目的とする。
The present invention has been made in view of such circumstances, and is based on 2N
It is an object of the present invention to provide a thickness measuring method that can reliably and simultaneously measure the thickness of each layer of a body, or even the total thickness, regardless of the material of each layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る2層体の厚さ測定方法は、厚さ方向に積層
された2層を有する2N体の各層の厚さ、又は更に全厚
を測定する方法において、縦波超音波と横波超音波とを
、前記2層体の表面から、これと垂直な方向に各別に入
射せしめ、該2層体の裏面からの両波のエコーを検出し
、この検出がなされるまでの時間を前記両波の夫々につ
いて測定して、再測定結果に基づいて前記各層さを算出
することを特徴とする。
The method for measuring the thickness of a two-layer body according to the present invention is a method for measuring the thickness of each layer or the total thickness of a 2N body having two layers laminated in the thickness direction. A sound wave is made incident on each side of the two-layer body in a direction perpendicular thereto, and the echoes of both waves are detected from the back side of the two-layer body, and the time taken to detect the two waves is equal to The present invention is characterized in that each wave is measured and the thickness of each layer is calculated based on the remeasurement results.

〔作用〕[Effect]

本発明においては、境界面からのエコーを用いることな
く、縦波超音波及び横波超音波の裏面からのエコーの受
信結果に基づいて2層の厚さを夫々算出し、両者の和と
して2層体の全厚を算出する。
In the present invention, the thickness of the two layers is calculated based on the reception results of echoes from the back side of longitudinal wave ultrasound and transverse wave ultrasound, without using echoes from the boundary surface, and the thickness of the two layers is calculated as the sum of both. Calculate the total body thickness.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る2層体の厚さ測定方法(以下本
発明方法という)の実施態様を示す模式的ブロック図で
ある。
The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic block diagram showing an embodiment of the method for measuring the thickness of a two-layer body according to the present invention (hereinafter referred to as the method of the present invention).

図において、1は、上層1aと下層1bとを厚さ方向に
積層させてなる2層体であり、該2層体1は、駆動モー
タ20により回転駆動される一対のピンチロール2.2
間に挟持され、所定の方向(図の右方向)に搬送される
ようになっている。また図中3は、横波超音波の送受を
行う超音波探触子であり、4は、縦波超音波の送受を行
う超音波探触子であり、これらは、2層体1の搬送方向
に所定距離だけ離隔し、該2層体10表面(上Jila
側及び下層lb側のいずれであってもよい)に密着せし
めてあり、夫々が発する超音波を、2層体1の内部に、
前記表面に対して垂直な方向、即ち厚さ方向に入射させ
るようになしである。
In the figure, 1 is a two-layer body formed by laminating an upper layer 1a and a lower layer 1b in the thickness direction, and the two-layer body 1 includes a pair of pinch rolls 2.
It is held between them and transported in a predetermined direction (to the right in the figure). In the figure, 3 is an ultrasonic probe that transmits and receives transverse ultrasound waves, and 4 is an ultrasound probe that transmits and receives longitudinal ultrasound waves. a predetermined distance apart from the surface of the two-layer body 10 (the upper
The ultrasonic waves emitted by each layer are transmitted to the inside of the two-layer body 1.
The beam is arranged so as to be incident in a direction perpendicular to the surface, that is, in the thickness direction.

縦波超音波を垂直入射させる超音波探触子4としては、
一般的に公知のものを用いればよく、また横波超音波を
垂直入射させる超音波探触子3としては、例えば、電磁
超音波法を利用し、被検査体の内部に直接的に横波超音
波を発生させるもの(「製鉄研究」第310号374頁
参照)、又は振動子が発振する縦波超音波を、所定の角
度を有する2種のくさび内を通過させて横波超音波に変
換するもの等を用いることができる。
As the ultrasonic probe 4 that vertically injects longitudinal ultrasonic waves,
Generally known probes may be used, and as the ultrasonic probe 3 that vertically injects transverse ultrasonic waves, for example, an electromagnetic ultrasonic method may be used to direct transverse ultrasonic waves into the interior of the object to be inspected. (see "Steel Manufacturing Research" No. 310, p. 374), or a device that converts longitudinal ultrasonic waves emitted by a vibrator into transverse ultrasonic waves by passing them through two types of wedges having a predetermined angle. etc. can be used.

超音波探触子3.4からの超音波の発振は、共通の発振
部5からの発振指令信号に従ってなされ、測探触子3.
4における反射エコーの受信結果は、各別の受信部30
.40に入力されるようになっている。発振部5には、
例えばピンチロール2,2が所定量回転する毎に、即ち
2層体1が所定距離だけ搬送される毎に、前記駆動モー
タ2oに装着されたパルス発生器21が発生するパルス
信号が与えられており、該発振部5は、このパルス信号
に従って前記発振指令信号を発するようになしである。
Oscillation of ultrasonic waves from the ultrasonic probes 3.4 is performed according to an oscillation command signal from the common oscillation unit 5, and the ultrasonic waves from the ultrasonic probes 3.
The reception result of the reflected echo at 4 is sent to each separate receiving section 30.
.. 40 is input. The oscillator 5 includes
For example, each time the pinch rolls 2, 2 rotate by a predetermined amount, that is, each time the two-layer body 1 is conveyed by a predetermined distance, a pulse signal generated by a pulse generator 21 attached to the drive motor 2o is applied. The oscillating section 5 is configured to emit the oscillation command signal in accordance with this pulse signal.

第2図は、2屠体Iの内部における超音波の進行状態の
説明図であり、第3図は、受信部30.40における入
力信号を示すグラフである。超音波探触子3又は同4に
より、例えば上層1aの表面から2層体1の内部に入射
した超音波は、第2図に示す如く、上Nlaと下層1b
の境界面においてその一部が反射してエコー(境界面エ
コー)を生じ、残部は下層1bの表面、即ち2層体1の
裏面に達し、該裏面においてその大部分が反射してエコ
ー(裏面エコー)を生じ、両エコーが2層体1内部を逆
に進行し、超音波探触子3又は同4に受信される。
FIG. 2 is an explanatory diagram of the progress state of the ultrasonic waves inside the two carcasses I, and FIG. 3 is a graph showing input signals in the receiving section 30, 40. As shown in FIG.
A part of it is reflected at the boundary surface of Both echoes travel in the opposite direction inside the two-layer body 1 and are received by the ultrasound probe 3 or 4.

従って、超音波探触子3又は同4がら、受信部3゜又は
同40に入力される信号中には、第3図に示すように、
前記境界面エコーの受信に伴うピークIと、裏面エコー
の受信に伴うエコーBとが現出する。なお図中Tは超音
波の発振に伴うピークである。前述した如く、従来の2
層体の厚さ測定方法においては、超音波の発振時点がら
、ピーク■及びピークBが夫々現出するまでの時間1.
及びt2を夫々検出して、前者がら上層1aの厚さsI
を、後者から2N体1の全厚S。を夫々算出し、下層1
bの厚さs2は、soから3.を減算することにより求
めている。従って、両層の厚さs、及びs2は前記ピー
ク■が十分な高さを有している場合にのみ測定可能であ
った。
Therefore, as shown in FIG.
A peak I accompanying the reception of the boundary surface echo and an echo B accompanying the reception of the back surface echo appear. Note that T in the figure is a peak associated with ultrasonic oscillation. As mentioned above, the conventional 2
In the method for measuring the thickness of a layered body, the time from the point of ultrasonic oscillation to the appearance of peaks 1 and 1, respectively, is 1.
and t2, respectively, and the thickness sI of the upper layer 1a is determined from the former.
and the total thickness S of the 2N body 1 from the latter. are calculated respectively, and the lower layer 1
The thickness s2 of b is 3. It is calculated by subtracting . Therefore, the thicknesses s and s2 of both layers could be measured only when the peak (2) had a sufficient height.

本発明方法においては、境界面エコーの受信に伴うピー
クIを用いることなく、底面エコーの受信に伴って生じ
るピークBの現出までの時間のみを使用する。即ち、前
記受信部30.40は、夫々の入力信号を監視し、予め
設定された所定値を超えるピークが現出するまでの時間
を検出し、検出結果に相当する信号を夫々出力する。前
記所定値は、予想される前記ピークBのレベルよりは小
さく、また前記ピークIのレベルよりは大きくなるよう
に設定しである。従って受信部30の出力信号は、超音
波探触子3が発する横波超音波による前記裏面エコーの
受信までの時間、即ち横波超音波が2屠体10表裏面間
を厚さ方向に往復するのに要する時間に対応し、また受
信部4oの出力信号は、超音波探触子4が発する縦波超
音波が、2層体1の表裏面間を厚さ方向に往復するのに
要する時間に対応する。
In the method of the present invention, only the time until the appearance of peak B, which occurs with the reception of the bottom echo, is used, without using the peak I that accompanies the reception of the boundary echo. That is, the receiving sections 30 and 40 monitor each input signal, detect the time until a peak exceeding a preset value appears, and output respective signals corresponding to the detection results. The predetermined value is set to be smaller than the expected level of the peak B and larger than the expected level of the peak I. Therefore, the output signal of the receiving unit 30 corresponds to the time it takes for the backside echo to be received by the transverse ultrasonic waves emitted by the ultrasonic probe 3, that is, the time it takes for the transverse ultrasonic waves to reciprocate between the front and back surfaces of the two carcasses 10 in the thickness direction. The output signal of the receiver 4o corresponds to the time required for the longitudinal ultrasound emitted by the ultrasound probe 4 to travel back and forth between the front and back surfaces of the two-layer body 1 in the thickness direction. handle.

受信部30.40の出力信号は演算部6に入力され、該
演算部6は、これらから後述する如き手順にて、上層1
aの厚さ、、S、及び下層1bの厚さs2を演算し、演
算結果を表示部7に出力して、該表示部7に表示せしめ
る。2層体1の搬送方向下流側の超音波探触子4に付随
する受信部40の出力信号は、前記演算部6に直接与え
られるが、前記搬送方向上流側の超音波探触子3に付随
する受信部3oの出力信号は、−旦記憶部31に記憶せ
しめられ、該記憶部31から与えられるようになってい
る。これは、2層体1上の同一地点に対応する夫々の出
力を、演算部6に同時的に入力せしめるためであり、こ
れを実現するため、超音波探触子3.4間の離隔距離は
、これらによる超音波の発振時点間における2層体1の
搬送距離の整数倍に設定してあり、例えば、超音波探触
子3,4間の離隔距離が前記搬送距離の1倍である場合
には、記憶部31は、その記憶内容を受信部30から次
の入力信号が与えられると同時に出力し、更に前記出力
信号を新たに記憶するようにしである。
The output signals of the receiving units 30 and 40 are input to the calculation unit 6, and the calculation unit 6 processes the output signals from the upper layer 1 in a procedure as described below.
The thickness of a, S, and the thickness s2 of the lower layer 1b are calculated, and the calculation results are output to the display section 7 and displayed on the display section 7. The output signal of the receiving section 40 attached to the ultrasonic probe 4 on the downstream side in the conveyance direction of the two-layer body 1 is directly given to the calculation section 6, but is not transmitted to the ultrasonic probe 3 on the upstream side in the conveyance direction. The output signal of the accompanying receiving section 3o is first stored in a storage section 31, and then provided from the storage section 31. This is to simultaneously input the respective outputs corresponding to the same point on the two-layer body 1 to the calculation section 6. To achieve this, the distance between the ultrasonic probes 3 and 4 is is set to an integer multiple of the transport distance of the two-layer body 1 between the ultrasound oscillation points, and for example, the separation distance between the ultrasonic probes 3 and 4 is one time the transport distance. In this case, the storage section 31 outputs the stored contents at the same time as the next input signal is given from the reception section 30, and further stores the output signal anew.

演算部6には、前述した如(、横波超音波の往復時間と
縦波超音波の往復時間とが与えられおり、また、上層1
a及び下層1bにおける横波超音波並びに縦波超音波の
伝播速度が、予め入力されており、演算部6は、これら
の各値から前記厚さs、及びs2を演算する。
The calculation unit 6 is given the round trip time of the transverse wave ultrasound and the round trip time of the longitudinal ultrasound as described above.
The propagation velocities of the transverse wave ultrasound and the longitudinal ultrasound in the lower layer 1b are input in advance, and the calculation unit 6 calculates the thicknesses s and s2 from these respective values.

即ち、横波超音波の往復時間を2・t、とし、上層1a
及び下層1bにおける横波超音波の伝播速度を夫々V、
及び■2とした場合、次式が成立する。
That is, the round trip time of the transverse ultrasonic wave is 2·t, and the upper layer 1a
and the propagation velocity of the transverse ultrasonic wave in the lower layer 1b are respectively V,
and ■2, the following equation holds true.

V、    V。V,    V.

一方、縦波超音波の往復時間を2・t4とし、上層1a
及び下層1bにおける縦波超音波の伝播速度を夫々v1
及びv2とした場合、同様に次式が成立する。
On the other hand, the round trip time of the longitudinal ultrasound is 2·t4, and the upper layer 1a
and the propagation velocity of the longitudinal ultrasound in the lower layer 1b are respectively v1
and v2, the following equation holds true as well.

■I       ■2 (3)式と(4)式とは、S、及びS2を未知数とする
連立方程式であり、これを解くと、s、及びS2を夫々
与える次式が得られる。
■I ■2 Equations (3) and (4) are simultaneous equations in which S and S2 are unknowns, and by solving them, the following equations giving s and S2, respectively, are obtained.

演算部6は、受信部30.40の出力信号から、前記j
ff+  t4を夫々認識し、これらを前記(5)式及
び(6)式に夫々代入して、上層1aの厚さSl及び下
層1bの厚さS2を夫々演算し、更に必要であれば、2
層体1の全厚S0を、前記S1と32の和として算出す
る。
The calculation unit 6 calculates the above j from the output signal of the reception unit 30.40.
ff+t4, respectively, and substitute them into the above equations (5) and (6) to calculate the thickness Sl of the upper layer 1a and the thickness S2 of the lower layer 1b, respectively, and further calculate 2 if necessary.
The total thickness S0 of the layered body 1 is calculated as the sum of the above S1 and 32.

(5)式及び(6)式から明らかな如く、上N1aにお
ける横波超音波の伝播速度■、と下層1bにおける横波
超音波の伝播速度■2との間の比と、上層1aにおける
縦波超音波の伝播速度v1と下層1bにおける縦波超音
波の伝播速度Vgとの間の比とが異なる限り、換言すれ
ば(5)式及び(6)式の分母がOでない限り、演算部
6における演算は可能であるが、。
As is clear from equations (5) and (6), the ratio between the propagation velocity of the transverse ultrasonic wave in the upper layer N1a, ■, and the propagation velocity of the transverse ultrasonic wave in the lower layer, 1b, is As long as the ratio between the propagation velocity v1 of the sound wave and the propagation velocity Vg of the longitudinal ultrasound in the lower layer 1b is different, in other words, as long as the denominators of equations (5) and (6) are not O, the calculation unit 6 Although the calculation is possible.

両式の分母がOとなるのは、上層1aのポアソン比と下
層1bのそれとが一致する場合であり、クラツド鋼材に
一般的に用いられる材料の組合せにおいては、両材料の
ポアソン比が異なることは公知であるから、上層1aの
材質と下層1bの材質とが異なる限り、両層の材質の如
何に拘わらず、(5)式及び(6)式による両層の厚さ
の算出は可能である。
The denominator of both equations is O when the Poisson's ratio of the upper layer 1a and that of the lower layer 1b match, and in the combination of materials commonly used for clad steel materials, the Poisson's ratio of both materials is different. is known, so as long as the material of the upper layer 1a and the material of the lower layer 1b are different, it is possible to calculate the thickness of both layers using equations (5) and (6) regardless of the materials of both layers. be.

〔効果〕〔effect〕

以上詳述した如(、本発明方法は、2層体の表面から縦
波超音波と横波超音波とを夫々入射せしめ、8521E
f体の裏面からの両波のエコー受信結果により2層の厚
さを算出しているから、両層の材質の如何に拘わらず、
例えば、両層の音響インピーダンス間に極めて小さい差
しか存在しない場合においても、両層の材質が異なる限
り、2層体の厚さの確実な測定が可能である等、優れた
効果を奏する。
As described in detail above, the method of the present invention involves injecting longitudinal ultrasound waves and transverse ultrasound waves from the surface of a two-layer body, and
Since the thickness of the two layers is calculated based on the echo reception results of both waves from the back side of the f-body, regardless of the materials of both layers,
For example, even if there is only a very small difference in acoustic impedance between the two layers, as long as the materials of the two layers are different, it is possible to reliably measure the thickness of the two-layer structure, and other excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式的ブロック図
、第2図は2層体内部における超音波の伝播状態を示す
説明図、第3図は超音波探触子の出力信号の一例を示す
グラフである。 1・・・2層体  1a・・・上Jl   ib・・・
下層3.4・・・超音波探触子  6・・・演算部枠 
許 出願人  住友金属工業株式会社代理人 弁理士 
 河  野  登、 夫第2図 第3図
Fig. 1 is a schematic block diagram showing the implementation state of the method of the present invention, Fig. 2 is an explanatory diagram showing the propagation state of ultrasound inside the two-layer body, and Fig. 3 is an example of the output signal of the ultrasound probe. This is a graph showing. 1...2-layer body 1a...Upper Jl ib...
Lower layer 3.4...Ultrasonic probe 6...Calculation section frame
Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney
Noboru Kono, HusbandFigure 2Figure 3

Claims (1)

【特許請求の範囲】 1、厚さ方向に積層された2層を有する2層体の各層の
厚さ、又は更に全厚を測定する方法において、 縦波超音波と横波超音波とを、前記2層体の表面から、
これと垂直な方向に各別に入射せしめ、該2層体の裏面
からの両波のエコーを検出し、この検出がなされるまで
の時間を前記両波の夫々について測定して、両測定結果
に基づいて前記各厚さを算出することを特徴とする2層
体の厚さ測定方法。
[Claims] 1. A method for measuring the thickness of each layer or even the total thickness of a two-layer body having two layers laminated in the thickness direction, comprising: From the surface of the two-layer body,
The echoes of both waves are detected from the back surface of the two-layered body, and the time until this detection is made is measured for each of the two waves, and the results of both measurements are A method for measuring the thickness of a two-layer body, characterized in that each thickness is calculated based on the above.
JP7226388A 1988-03-25 1988-03-25 Thickness measuring method of double-layered body Pending JPH01244307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226388A JPH01244307A (en) 1988-03-25 1988-03-25 Thickness measuring method of double-layered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226388A JPH01244307A (en) 1988-03-25 1988-03-25 Thickness measuring method of double-layered body

Publications (1)

Publication Number Publication Date
JPH01244307A true JPH01244307A (en) 1989-09-28

Family

ID=13484227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226388A Pending JPH01244307A (en) 1988-03-25 1988-03-25 Thickness measuring method of double-layered body

Country Status (1)

Country Link
JP (1) JPH01244307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171234A (en) * 1998-12-03 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Film thickness measuring method for spray deposit
JP2006194716A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Radar apparatus
CN104776819A (en) * 2015-04-18 2015-07-15 上海和伍新材料科技有限公司 Ultrasonic thickness measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171234A (en) * 1998-12-03 2000-06-23 Ishikawajima Harima Heavy Ind Co Ltd Film thickness measuring method for spray deposit
JP2006194716A (en) * 2005-01-13 2006-07-27 Fujitsu Ltd Radar apparatus
CN104776819A (en) * 2015-04-18 2015-07-15 上海和伍新材料科技有限公司 Ultrasonic thickness measuring method

Similar Documents

Publication Publication Date Title
Guo et al. The interaction of Lamb waves with delaminations in composite laminates
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
US8770027B2 (en) Pulse-echo method by means of an array-type probe and temperature compensation
US5974886A (en) Method and apparatus for thickness determination in multilayer articles
US8739630B2 (en) Pulse-echo method for determining the damping block geometry
JPH01244307A (en) Thickness measuring method of double-layered body
Kažys et al. Propagation of ultrasonic shear horizontal waves in rectangular waveguides
CN1056001C (en) Ultrasonic detecting technology for internal material state of structural member
US10024822B2 (en) Method for characterising a part made of a composite material
Clark Jr et al. Residual stress determination in aluminium using electromagnetic acoustic transducers
Alers A history of EMATs
Hayashi et al. Defect detection using quasi-scholte wave for plate loaded with water on single surface
US5406851A (en) Ultrasonic transducer system
Pant et al. Paint thickness measurement using acoustic interference
JPH03167418A (en) Clad-thickness measuring apparatus
JPH09304357A (en) Method for examining filling state of filler using ultrasonic wave
JPS60125513A (en) Device for measuring plate thickness from above coated film by ultrasonic wave
JPH06347449A (en) Crystal grain size evaluation method for metallic sheet
Fukuoka et al. Ultrasonic resonance method with EMAT for stress measurement in thin plates
JPS5896247A (en) Detector for welded part
Lowe et al. Comparison of reflection coefficient minima with dispersion curves for ultrasonic waves in embedded layers
Daryabor et al. Investigation of the Lamb Wave Modes Sensitivity in the Inspection of Bonding between Aluminum and Composite Patch
JPH01244308A (en) Ultrasonic probe and thickness measuring device of clad material
JPH02210258A (en) Method for measuring material of cold rolled steel sheet and measuring instrument of speed of ultrasonic wave propagated in cold rolled steel plate
JPH0367164A (en) Ultrasonic flaw detection