JPH01244258A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH01244258A
JPH01244258A JP7160588A JP7160588A JPH01244258A JP H01244258 A JPH01244258 A JP H01244258A JP 7160588 A JP7160588 A JP 7160588A JP 7160588 A JP7160588 A JP 7160588A JP H01244258 A JPH01244258 A JP H01244258A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
liquid
liquid refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7160588A
Other languages
Japanese (ja)
Other versions
JPH0656273B2 (en
Inventor
Mokichi Kurosawa
黒沢 茂吉
Shinichi Kannou
閑納 眞一
Sadatoshi Takemoto
竹本 貞寿
Masahiko Oshima
大島 正彦
Tomoharu Hisatsuchi
智春 久土
Takahiro Sei
静 隆広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Yazaki Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Yazaki Corp, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7160588A priority Critical patent/JPH0656273B2/en
Publication of JPH01244258A publication Critical patent/JPH01244258A/en
Publication of JPH0656273B2 publication Critical patent/JPH0656273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To allow a stable operation even if the coolant temperature fluctuates by an orifice disposed in a connecting pipe and a refrigerant bypass line having a U-tube, the joint of the refrigerant bypass line being situated higher than the joint of the connecting pipe. CONSTITUTION:During the 'HI' operation where the refrigerant flow rate to the evaporator 7 is high, the refrigerant flow from the liquid refrigerant well 2 to the liquid refrigerant reservoir 3 is regulated by an orifice 10, and so, the refrigerant that cannot enter the liquid refrigerant reservoir 3 flows through a refrigerant bypass line 9 to the evaporator 7. The refrigerant bypass line comprises a U-tube, and, as the pressure of refrigerant in the refrigerant bypass line is balanced across the ends of the U-tube while the pressure in the condenser 1 is higher than that of the evaporator 7, the level of the liquid surface 12 on the side of the condenser 1 is lower than the joint to the evaporator 7 and can change subject to the pressure change in the condenser. For example, when the coolant temperature is high, so is the condenser pressure. Therefore, the liquid level becomes lower to the B position. As the coolant temperature becomes lower, the pressure also becomes lower, and so, the liquid level 12 moves upward to the A position where it is balanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は冷媒比例弁を備えた吸収冷凍機に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to an absorption refrigerator equipped with a refrigerant proportional valve.

特に冷媒バイパス回路を備えて吸収液濃度の制御に配慮
した吸収冷凍機に関する。
In particular, the present invention relates to an absorption refrigerator that is equipped with a refrigerant bypass circuit and takes into account the control of absorption liquid concentration.

〔従来の技術〕[Conventional technology]

従来、冷媒比例弁を備えた吸収冷凍機としては例えば特
開昭59−170665号公報に記載された3段階能力
制御(高−低一断)を行う吸収冷凍機がある。この他に
冷媒比例弁を備えた吸収冷凍機の例としては、第3図に
示すように、凝縮器1と、該凝縮器1の下部に設けられ
た液冷媒溜め2と、該液冷媒溜め2に接続して設けられ
た液冷媒貯蔵室3と、該液冷媒貯蔵室3と蒸発器7を冷
媒比例弁6を介して接続する冷媒比例弁回路8と、該冷
媒比例弁回路の前記冷媒比例弁の上流側と下流側を冷媒
止め弁5を介してバイパスする冷媒止め弁回路とを備え
たものが知られている。前述の吸収冷凍機においては、
また、前記凝縮器1と液冷媒貯蔵室3とは均圧管4によ
り連通されている。
Conventionally, as an absorption refrigerating machine equipped with a refrigerant proportional valve, there is an absorption refrigerating machine that performs three-stage capacity control (high-low switching) described in, for example, Japanese Patent Laid-Open No. 59-170665. In addition, as an example of an absorption refrigerator equipped with a refrigerant proportional valve, as shown in FIG. 2, a refrigerant proportional valve circuit 8 connecting the liquid refrigerant storage chamber 3 and the evaporator 7 via a refrigerant proportional valve 6, and a refrigerant proportional valve circuit 8 connected to the refrigerant proportional valve circuit 2; One is known that includes a refrigerant stop valve circuit that bypasses the upstream and downstream sides of the proportional valve via a refrigerant stop valve 5. In the absorption refrigerator mentioned above,
Further, the condenser 1 and the liquid refrigerant storage chamber 3 are communicated through a pressure equalizing pipe 4.

吸収冷凍機の冷凍能力は、蒸発器で蒸発する冷媒量に左
右されるが、蒸発した冷媒蒸気を吸収液濃溶液に効率よ
く吸収させるためには、この濃溶液の濃度を蒸発量に合
わせて制御する必要がある。
The refrigerating capacity of an absorption chiller depends on the amount of refrigerant evaporated in the evaporator, but in order to efficiently absorb the evaporated refrigerant vapor into a concentrated absorption solution, it is necessary to adjust the concentration of this concentrated solution to the amount of evaporation. need to be controlled.

冷媒R?蔵室3は、吸収冷凍機内を循環している冷媒の
一部を貯蔵し、かつその量を制御することによりa?a
液の濃度を制御する機能を果している。
Refrigerant R? The storage compartment 3 stores a part of the refrigerant circulating in the absorption refrigerator and controls the amount of refrigerant. a
It functions to control the concentration of the liquid.

この第3図に示す吸収冷凍機においては、凝縮器1で凝
縮した冷媒はまず液冷媒溜め2に集まり。
In the absorption refrigerator shown in FIG. 3, the refrigerant condensed in the condenser 1 first collects in a liquid refrigerant reservoir 2.

次いで液冷媒貯蔵室3及び冷媒比例弁回路8を経て蒸発
器7に流入する。冷媒の蒸発器7への必要流入量は、吸
収冷凍機の運転状態が高い冷凍能力を発揮する″高″運
転か低い冷凍能力を出す゛′低低連運転により異なり、
″低″運転では前記冷媒比例弁6のみが開かれるが、高
”運転では前記冷媒比例弁6に加えて冷媒止め弁5も開
かれ″低″運転時よりも多量の冷媒を蒸発器7へ送りこ
んでいる。また、液冷媒貯蔵室3の冷媒は、凝縮器1と
蒸発器7の圧力差により冷媒比例弁回路8を経て蒸発器
7へ流入するが、凝縮器冷却水の温度(以下冷却水温度
と記す)が変動すると、凝縮器1の圧力や蒸発器7にお
ける冷媒温度(以下EVA温度と記す)が変動し、凝縮
器1と蒸発器7の圧力差が変動するので、前記冷媒比例
弁6や冷媒止め弁5の開度を同じにしておくと、蒸発器
7へ88人する冷媒流量が変動すると共に、液冷媒貯蔵
室;3に貯えられている冷媒量が変化し、運転が不安定
になると共に蒸発器における冷媒の凍結や濃溶液の晶析
の恐れが生ずる。
The liquid refrigerant then flows into the evaporator 7 via the liquid refrigerant storage chamber 3 and the refrigerant proportional valve circuit 8. The amount of refrigerant required to flow into the evaporator 7 differs depending on the operating state of the absorption chiller: "high" operation, which produces a high refrigerating capacity, or "low and continuous operation," which produces a low refrigerating capacity.
In the "low" operation, only the refrigerant proportional valve 6 is opened, but in the "high" operation, the refrigerant stop valve 5 is also opened in addition to the refrigerant proportional valve 6, allowing a larger amount of refrigerant to be sent to the evaporator 7 than in the "low" operation. Furthermore, the refrigerant in the liquid refrigerant storage chamber 3 flows into the evaporator 7 via the refrigerant proportional valve circuit 8 due to the pressure difference between the condenser 1 and the evaporator 7. When the water temperature) fluctuates, the pressure in the condenser 1 and the refrigerant temperature in the evaporator 7 (hereinafter referred to as EVA temperature) fluctuate, and the pressure difference between the condenser 1 and the evaporator 7 fluctuates. If the opening degrees of the valve 6 and the refrigerant stop valve 5 are kept the same, the flow rate of refrigerant to the evaporator 7 will vary, and the amount of refrigerant stored in the liquid refrigerant storage chamber 3 will also change, causing operational problems. In addition to instability, there is a risk of freezing of the refrigerant in the evaporator and crystallization of the concentrated solution.

このため、冷却水温度の変動に伴って前記EVA温度が
変化すると、このEVA温度の変化に比例して冷媒比例
弁6の開度を変化させて、冷媒の蒸発器7への流入量と
液冷媒貯蔵室3の液面位置を制御し、冷凍能力を維持す
ると共に冷媒の凍結とIA温溶液晶析を防止している。
Therefore, when the EVA temperature changes due to fluctuations in the cooling water temperature, the opening degree of the refrigerant proportional valve 6 is changed in proportion to the change in the EVA temperature, thereby increasing the amount of refrigerant flowing into the evaporator 7 and liquid liquid. The liquid level position in the refrigerant storage chamber 3 is controlled to maintain the refrigerating capacity and to prevent freezing of the refrigerant and IA warm solution crystallization.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来技術にあって、第4図線Cに示すように
、″高′″運転時に冷却水温度が低下した場合、凝縮器
の圧力が低下して凝縮器1−蒸発器7間の圧力差が小さ
くなるため、冷媒止め弁5を流れる冷媒流量は第4図線
りで示されるように減少する。これに対し冷媒比例弁6
は、冷却水温度が低下してEVA温度が低下すると、E
VA温度の低Fに伴い弁開度を増加させて、前記冷媒止
め弁における流斌低下および凝縮器と蒸発器の圧力差の
低下に伴う冷媒比例弁自身の流電低下を補い。
In this conventional technology, as shown in line C in Figure 4, when the cooling water temperature drops during "high" operation, the pressure in the condenser drops and the pressure between the condenser 1 and the evaporator 7 decreases. Since the pressure difference becomes smaller, the flow rate of refrigerant flowing through the refrigerant stop valve 5 decreases as shown by the line in FIG. On the other hand, the refrigerant proportional valve 6
When the cooling water temperature decreases and the EVA temperature decreases, E
The valve opening degree is increased as the VA temperature decreases to compensate for the drop in flow in the refrigerant stop valve and the drop in current in the refrigerant proportional valve itself due to the drop in pressure difference between the condenser and the evaporator.

更に液冷媒貯蔵室3の液面位置を必要位置に保持するよ
う制御されるから、冷媒比例弁6を流れる冷媒量は冷却
水温度が低下すると共に増加する。
Furthermore, since the liquid level in the liquid refrigerant storage chamber 3 is controlled to be maintained at a required position, the amount of refrigerant flowing through the refrigerant proportional valve 6 increases as the cooling water temperature decreases.

その結果、冷媒回路全体としては冷却水温度が低下する
に従い、濃溶液の濃度を下げるために液冷媒貯蔵室3の
冷媒量を減少させるように冷媒を流し、第4図線Aに示
される流量特性となるが、これは゛′高高速運転時冷却
水温度の変動に対応するものであって、冷媒の凍結や濃
溶液の晶析の防止に配慮されたものである。
As a result, in the refrigerant circuit as a whole, as the cooling water temperature decreases, the refrigerant is caused to flow so as to reduce the amount of refrigerant in the liquid refrigerant storage chamber 3 in order to lower the concentration of the concentrated solution, and the flow rate shown by the line A in FIG. This characteristic corresponds to fluctuations in cooling water temperature during high-speed operation, and is designed to prevent freezing of the refrigerant and crystallization of concentrated solutions.

一方、冷媒止め弁5を閉じ、冷媒比例弁6のみを開いて
″低″運転を行うと、冷却水温度が変動した場合、冷媒
比例弁6の開度は、″高″運転の場合と同様で、パ低″
運転の場合冷媒の流量に関与していない冷媒止め弁5の
流電補正を含む開度制御が行われるため、冷媒流量は第
4図線Bに示される特性となり、゛′高高速運転時比べ
冷却水温度の変化に対する冷媒流量の変動が大きいと共
に、液冷媒貯蔵室3の液面制御ができず、a?11液感
度の制御ができない。
On the other hand, if the refrigerant stop valve 5 is closed and only the refrigerant proportional valve 6 is opened to perform "low" operation, if the cooling water temperature fluctuates, the opening degree of the refrigerant proportional valve 6 will be the same as in the case of "high" operation. So, pa low”
During operation, the opening degree is controlled including current correction of the refrigerant stop valve 5, which is not involved in the flow rate of the refrigerant, so the refrigerant flow rate has the characteristics shown in line B in Figure 4, which is ``compared to high-speed operation.'' The refrigerant flow rate fluctuates greatly in response to changes in cooling water temperature, and the liquid level in the liquid refrigerant storage chamber 3 cannot be controlled. 11 Liquid sensitivity cannot be controlled.

冷媒比例弁6の開度制御を″低″運転を基準に行った場
合は、″高′″運転時に、冷媒止め弁5を流れる冷媒量
が制御の範囲から外れるため、同様の問題が生ずる。
If the opening degree of the refrigerant proportional valve 6 is controlled based on the "low" operation, the same problem will occur because the amount of refrigerant flowing through the refrigerant stop valve 5 will be out of the control range during the "high" operation.

上述のように、冷却水温度が変動した場合゛′高″蓮転
、″低″運転の双方で冷媒流量及び液冷媒貯蔵室液面の
管理を適正に行うことが困難であり、負荷変動によって
″高″′運転から゛低″運転へ切り換ったとき、液冷媒
貯蔵室3内の冷媒が蒸発器7へ必要以上に流出して無効
冷媒を生じたり、″低″′蓮転から″高′″運転へ切り
換ったとき空状態の液冷媒貯蔵室に冷媒を溜めるため冷
媒効果ができるまでの時間が長くかかる等部分負荷特性
を、′ムくする等の欠点があった。
As mentioned above, when the cooling water temperature fluctuates, it is difficult to properly manage the refrigerant flow rate and the liquid refrigerant storage chamber liquid level in both "high" operation and "low" operation. When switching from "high" operation to "low" operation, the refrigerant in the liquid refrigerant storage chamber 3 may flow out to the evaporator 7 more than necessary, producing ineffective refrigerant, or from "low" operation. When switching to high-speed operation, the refrigerant is stored in the empty liquid refrigerant storage chamber, which has the disadvantage of compromising the equal partial load characteristic, which takes a long time for the refrigerant to produce its effect.

本発明の課題は、冷却水温度が変動しても安定して運転
することのできる吸収冷凍機を提供するにある。
An object of the present invention is to provide an absorption refrigerator that can operate stably even when the cooling water temperature fluctuates.

〔問題点を解決するための手段〕[Means for solving problems]

上記の課題は、凝縮器の下部に設けられた液冷媒溜めと
、該液冷媒溜めに接続して設けられ前記凝縮器と連通ず
る均圧管を有する液冷媒貯蔵室と。
The above-mentioned problem requires a liquid refrigerant reservoir provided at a lower part of a condenser, and a liquid refrigerant storage chamber having a pressure equalization pipe connected to the liquid refrigerant reservoir and communicating with the condenser.

該液冷媒貯蔵室と蒸発器とを冷媒比例弁を介して連通ず
る冷媒比例弁回路とを備えた吸収冷凍機において、前記
液冷媒溜めと液冷媒貯蔵室を接続する連通管に設けられ
たオリフィスと、前記液冷媒溜めと前記蒸発器を連通ず
るU字管を備えた冷媒バイパス回路とを備え、該冷媒バ
イパス回路と前記液冷媒溜めとの接続部は、前記連通管
と前記液冷媒溜めとの接続部よりも上方に設けられてい
ることを特徴とする吸収冷凍機により達成される。
In an absorption refrigerator comprising a refrigerant proportional valve circuit that communicates the liquid refrigerant storage chamber and the evaporator via a refrigerant proportional valve, an orifice provided in a communication pipe connecting the liquid refrigerant reservoir and the liquid refrigerant storage chamber. and a refrigerant bypass circuit including a U-shaped pipe that communicates the liquid refrigerant reservoir with the evaporator, and a connection portion between the refrigerant bypass circuit and the liquid refrigerant reservoir is connected to the communication pipe and the liquid refrigerant reservoir. This is achieved by an absorption refrigerator characterized in that it is provided above the connection part of the.

〔作用〕[Effect]

凝縮器と蒸発器との圧力差の変動により、U字管内での
冷媒の液面高さが変るため、冷却水温度の温度の変動に
よらず、冷媒バイパス回路に流入した液冷媒は全て蒸発
器に流入する。
Fluctuations in the pressure difference between the condenser and evaporator change the liquid level of the refrigerant in the U-shaped tube, so all of the liquid refrigerant that flows into the refrigerant bypass circuit evaporates, regardless of fluctuations in the cooling water temperature. Flow into the vessel.

また、液冷媒溜めと凝縮器との間に均圧管を備えた液冷
媒貯蔵室とを接続して冷媒を流す連通管にオリフィスを
設けたので、オリフィスの大きさと、前記冷媒バイパス
回路の液冷媒溜めへの接続位置とを調節することにより
、″高″運転時と゛′低″′運転時の液冷媒流入板の比
が、液冷媒貯蔵室から冷媒比例弁回路を経て蒸発器へ流
入する″高′″運転時パ低″運転時の冷媒量の比になる
ようにすることにより同一の冷媒比例弁で、″高″運転
時及びパ低′″運転時の冷媒流量が制御される。
In addition, since an orifice is provided in the communication pipe through which the refrigerant flows by connecting the liquid refrigerant storage chamber equipped with a pressure equalization pipe between the liquid refrigerant reservoir and the condenser, the size of the orifice and the liquid refrigerant in the refrigerant bypass circuit are determined. By adjusting the connection position to the reservoir, the ratio of the liquid refrigerant inlet plate during "high" operation and "low" operation is adjusted such that the liquid refrigerant flows from the liquid refrigerant storage chamber to the evaporator via the refrigerant proportional valve circuit. By making the ratio of the amount of refrigerant during the "high" operation and the amount of the refrigerant during the "low" operation, the same refrigerant proportional valve can control the refrigerant flow rate during the "high" operation and the "low" operation.

〔実施例〕〔Example〕

第1図を参照して本発明の詳細な説明する。 The present invention will be described in detail with reference to FIG.

本実施例において、凝縮器1の下部に設けられた液冷媒
溜め2にオリフィス10を備えた連通管11を介して液
冷媒貯蔵室3が接続され、該液冷媒貯蔵室3は、前記凝
縮器1と連通ずる均圧管4を有すると共に冷媒比例弁6
を有する冷媒比例弁回路8を介して蒸発器7と連通して
いる。また前記液冷媒溜め2は、前記連通管11が接続
された位置よりも上方に接続されたU字管をなす冷媒バ
イパス回路9によって蒸発器7に連通されている。
In this embodiment, a liquid refrigerant storage chamber 3 is connected to a liquid refrigerant reservoir 2 provided at the lower part of the condenser 1 via a communication pipe 11 provided with an orifice 10. 1 and a pressure equalizing pipe 4 communicating with the refrigerant proportional valve 6.
It communicates with the evaporator 7 via a refrigerant proportional valve circuit 8 having a refrigerant proportional valve circuit 8 . Further, the liquid refrigerant reservoir 2 is communicated with the evaporator 7 by a refrigerant bypass circuit 9 that is a U-shaped tube connected above the position where the communication pipe 11 is connected.

蒸発器7への冷媒流量が大なる″高″運転の場合、液冷
媒溜め2から液冷媒貯蔵室3へ流れる冷媒量はオリフィ
ス10によって制限されているので、液冷媒貯蔵室3へ
流れ得ない冷媒は、冷媒バイパス回路9を経て、蒸発器
7へ流れる。この冷媒バイパス回路はU字管をなしてい
て、冷媒バイパス回路内の冷媒はU字管両側の圧力でバ
ランスしており、凝縮器1の圧力が蒸発器7の圧力より
も高いから、凝縮器1側の液面12は、第2図に示すよ
うに蒸発器7への接続部よりも低い位置にあり、凝縮器
の圧力変化に従って変動する。たとえば、冷却水温度が
高い時は凝縮器圧力も高いので液面も低い位biBにな
り、冷却水温度が低くなると凝縮器圧力も低くなるので
、液面12は高い位置Aに動いてバランスする。冷媒が
冷媒バイパス回路に流入して液面12がこのバランスし
た液面より高くなると、冷媒は液面12がバランス位置
になるまで蒸発器7へ流入する。このため、液冷媒溜め
2から溢れて冷媒バイパス回路に流れこんだ冷媒量は全
て蒸発器7へ流れる。
In the case of "high" operation where the refrigerant flow rate to the evaporator 7 is large, the amount of refrigerant flowing from the liquid refrigerant reservoir 2 to the liquid refrigerant storage chamber 3 is restricted by the orifice 10, so that it cannot flow to the liquid refrigerant storage chamber 3. The refrigerant flows to the evaporator 7 via the refrigerant bypass circuit 9. This refrigerant bypass circuit has a U-shaped tube, and the refrigerant in the refrigerant bypass circuit is balanced by the pressure on both sides of the U-shaped tube, and since the pressure in the condenser 1 is higher than the pressure in the evaporator 7, the condenser The liquid level 12 on the first side is located at a lower position than the connection to the evaporator 7, as shown in FIG. 2, and fluctuates according to pressure changes in the condenser. For example, when the cooling water temperature is high, the condenser pressure is also high, so the liquid level will be at a low level biB, and when the cooling water temperature is low, the condenser pressure will also be low, so the liquid level 12 will move to a higher position A and balance. . When the refrigerant enters the refrigerant bypass circuit and the liquid level 12 becomes higher than this balanced liquid level, the refrigerant flows into the evaporator 7 until the liquid level 12 reaches the balanced position. Therefore, the entire amount of refrigerant that overflows from the liquid refrigerant reservoir 2 and flows into the refrigerant bypass circuit flows to the evaporator 7.

一方、液冷媒溜め2の液面は、冷媒流量が大である″高
″運転状態では常に冷媒バイパス回路9の接続位置で規
定される一定位置であり、かつ冷媒貯蔵室3の圧力は均
圧管4により凝縮器1と同じであるから、液冷媒溜め2
から液冷媒貯蔵室3へ流れる冷媒量は、連通管11の接
続位置と冷媒バイパス回路の接続位置の差H□とオリフ
ィス10の大きさで決まり、凝縮器圧力の変化に無関係
に一定である。また、この一定流斌値は゛′低″′運転
時の冷媒流量より大きい値に設定されている。
On the other hand, the liquid level in the liquid refrigerant reservoir 2 is always at a constant position defined by the connection position of the refrigerant bypass circuit 9 in the "high" operating state where the refrigerant flow rate is large, and the pressure in the refrigerant storage chamber 3 is 4 is the same as condenser 1, so liquid refrigerant reservoir 2
The amount of refrigerant flowing from the liquid refrigerant storage chamber 3 to the liquid refrigerant storage chamber 3 is determined by the difference H□ between the connection position of the communication pipe 11 and the connection position of the refrigerant bypass circuit and the size of the orifice 10, and is constant regardless of changes in condenser pressure. Further, this constant flow rate value is set to a value larger than the refrigerant flow rate during the ``low'' operation.

従って冷媒比例弁6は常に一定斌流入する冷媒を前記E
VA温度および凝縮器と蒸発器間の圧力差の変動に伴い
、液冷媒貯蔵室3の液面を濃溶液濃度を適正に維持する
位置に保ちつつ、蒸発器へ流入させるように開度制御さ
れる。
Therefore, the refrigerant proportional valve 6 always supplies the refrigerant flowing in at a constant rate to the E
As the VA temperature and the pressure difference between the condenser and the evaporator change, the opening is controlled so that the liquid refrigerant flows into the evaporator while keeping the liquid level in the liquid refrigerant storage chamber 3 at a position that maintains the concentration of the concentrated solution appropriately. Ru.

次にパ低″運転の場合は、冷媒流量が少く、前記H□と
オリフィス10の大きさで定まる一定流量以下であるか
ら、冷媒は全て、液冷媒貯蔵室3及び冷媒比例弁回路8
を経て蒸発器7へ流入する。
Next, in the case of "low-temperature" operation, the refrigerant flow rate is small and is below the constant flow rate determined by the size of the above-mentioned H□ and the orifice 10.
It flows into the evaporator 7 through the.

″低″運転時の冷媒流量が″高′″運転時の冷媒流量よ
り少ないのはこれまで述べた通りであるが、凝縮器冷却
水流電は″高″運転時も″低″運転時も同じであり、そ
の結果、冷却水温度が同一でも、″高″運転時より″低
″運転時の方が凝縮器圧力が低く、凝縮器と蒸発器の差
圧も小さい。このため、冷媒比例弁6がある同じ開度の
とき、″高″運転時と゛′低低連運転時液冷媒貯蔵室3
から凝縮器と蒸発室の差圧により蒸発器7へ送りこまれ
る冷媒量は、゛′高高速運転時方が″低″運転時より多
い。
As mentioned above, the refrigerant flow rate during "low" operation is lower than the refrigerant flow rate during "high" operation, but the condenser cooling water current is the same during "high" and "low" operation. As a result, even if the cooling water temperature is the same, the condenser pressure is lower during "low" operation than during "high" operation, and the differential pressure between the condenser and evaporator is also smaller. Therefore, when the refrigerant proportional valve 6 is at the same opening degree, the liquid refrigerant storage chamber 3 during "high" operation and "low" continuous operation.
The amount of refrigerant sent to the evaporator 7 due to the pressure difference between the condenser and the evaporation chamber is larger during "high speed" operation than during "low" operation.

オリフィス10の大きさ及び冷媒バイパス回路の接続位
置の高さHlとは、凝縮器1と蒸発器7の圧力差により
冷媒比例弁6の同−開度において液冷媒貯蔵室3から蒸
発器7へ送りこまれる″高″″低″運転時の冷媒量の比
と、液冷媒溜め2から液冷媒貯蔵室3に凝縮器圧力と無
関係に流入する′“高″″低″運転時の冷媒量の比とが
同じになるように定められており、冷媒比例弁6の同−
開度によって、パ高″運転時、″低″運転それぞれの液
冷媒貯蔵室3を通る冷媒流れを流すことができる。液冷
媒溜め2から液冷媒貯蔵室3へ流れる冷媒量が上記のよ
うに設定されたので、同一の冷媒比例弁により、″高″
運転時、パ低″運転時の双方において、EVA温度によ
って冷媒比例弁の開度制御を行うことができ、濃溶液濃
度の制御を有効に行うことが可能となった。
The size of the orifice 10 and the height Hl of the connection position of the refrigerant bypass circuit are determined by the pressure difference between the condenser 1 and the evaporator 7, which causes the liquid refrigerant to flow from the liquid refrigerant storage chamber 3 to the evaporator 7 at the same opening degree of the refrigerant proportional valve 6. The ratio of the amount of refrigerant that is sent during "high" and "low" operations and the ratio of the amount of refrigerant that flows from the liquid refrigerant reservoir 2 to the liquid refrigerant storage chamber 3 regardless of the condenser pressure during "high" and "low" operations. are determined to be the same, and the same - of the refrigerant proportional valve 6 is determined to be the same.
Depending on the degree of opening, the refrigerant can flow through the liquid refrigerant storage chamber 3 during high-temperature operation and low-temperature operation. Since the same refrigerant proportional valve is set, the ``high''
The opening degree of the refrigerant proportional valve can be controlled based on the EVA temperature both during operation and during low-temperature operation, making it possible to effectively control the concentration of the concentrated solution.

冷媒バイパス回路9に備えられたU字管の底部から蒸発
器7への接続位置までの高さ1(、は、少くとも、凝縮
器1と蒸発器7の最大の差圧と等しい圧力の水柱高さと
する必要がある。また本実施例においては、冷媒比例弁
回路8と冷媒バイパス回路9がひとつに集合したあと、
蒸発器7に接続されているが、それぞれが単独に蒸発器
7に接続されても効果に変りはない。
The height 1 from the bottom of the U-shaped pipe provided in the refrigerant bypass circuit 9 to the connection point to the evaporator 7 is a water column with a pressure at least equal to the maximum differential pressure between the condenser 1 and the evaporator 7. In this embodiment, after the refrigerant proportional valve circuit 8 and the refrigerant bypass circuit 9 are assembled into one,
Although they are connected to the evaporator 7, the effect remains the same even if each is connected to the evaporator 7 individually.

本実施例によれば、冷却水温度が変動しても、E V 
A温度に基いて、′″高′″運転、″低″運転双方の液
冷媒貯蔵室を通る冷媒量の制御が可能となり、液冷媒貯
蔵室の液面を制御して濃溶液濃度を制御できるので、冷
却水温度が変動しても、吸収冷凍機の運転を安定して行
うことができた。
According to this embodiment, even if the cooling water temperature fluctuates, E V
Based on the A temperature, it is possible to control the amount of refrigerant passing through the liquid refrigerant storage chamber in both ``high'' and ``low'' operations, and the concentration of concentrated solution can be controlled by controlling the liquid level in the liquid refrigerant storage chamber. Therefore, even if the cooling water temperature fluctuated, the absorption chiller could be operated stably.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液冷媒溜めと蒸発器とをU字管を備え
た冷媒バイパス回路で連通したので、′″高高速運転の
冷媒の一部を、凝縮器圧力の変動に関係なく液冷媒溜め
から蒸発器に供給することが可能となり、更に、液冷媒
溜めと液冷媒貯蔵室を接続する連通管にオリフィスを設
けたので、パ高″運転時と″低″運転時に、液冷媒溜め
から液冷媒貯蔵室に流れる冷媒量の比率を、前記オリフ
ィスの大きさと液冷媒溜めに接続される冷媒バイパス回
路の高さとによって所望の値に設定することが可能とな
るので、冷媒比例弁回路に設けられた1個の冷媒比例弁
で、゛′高高側運転パ低″運転双方における液冷媒貯蔵
室から蒸発器へ流れる冷媒量を制御でき、冷却水温度が
変動しても濃溶液濃度の制御を行って、冷媒の凍結防止
、濃溶液の晶析防止、部分負荷時の無効冷媒の減少、及
び立上り時間を短縮する効果がある。
According to the present invention, the liquid refrigerant reservoir and the evaporator are communicated with each other through a refrigerant bypass circuit equipped with a U-shaped tube. It is now possible to supply the evaporator from the reservoir, and since an orifice has been installed in the communication pipe connecting the liquid refrigerant reservoir and the liquid refrigerant storage chamber, the liquid refrigerant can be supplied from the reservoir to the evaporator during high and low power operation. The ratio of the amount of refrigerant flowing into the liquid refrigerant storage chamber can be set to a desired value by the size of the orifice and the height of the refrigerant bypass circuit connected to the liquid refrigerant reservoir. With a single refrigerant proportional valve, it is possible to control the amount of refrigerant flowing from the liquid refrigerant storage chamber to the evaporator in both high and high operation and low operation, and the concentration of concentrated solution can be controlled even when the cooling water temperature fluctuates. This has the effect of preventing freezing of the refrigerant, preventing crystallization of concentrated solutions, reducing the amount of ineffective refrigerant at partial load, and shortening the rise time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図であり、第2図は
第1図の部分拡大図であり、第3図は従来技術の例を示
す系統図であり、第4図は冷却水温度と冷媒流板及び凝
縮器−蒸発器間の圧力差の関係を概念的に示すグラフで
ある。 1・・・凝縮器、2・・・液冷媒溜め、3・・・液冷媒
貯蔵室、4・・・均圧管、6・・・冷媒比例弁、7・・
・蒸発器、8・・冷媒比例弁回路、9・・・冷媒バイパ
ス回路、10・・・オリフィス、11・・・連通管。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, FIG. 3 is a system diagram showing an example of the prior art, and FIG. It is a graph conceptually showing the relationship between water temperature and pressure difference between a refrigerant flow plate and a condenser-evaporator. DESCRIPTION OF SYMBOLS 1...Condenser, 2...Liquid refrigerant reservoir, 3...Liquid refrigerant storage chamber, 4...Pressure equalization pipe, 6...Refrigerant proportional valve, 7...
- Evaporator, 8... Refrigerant proportional valve circuit, 9... Refrigerant bypass circuit, 10... Orifice, 11... Communication pipe.

Claims (1)

【特許請求の範囲】[Claims] 1、凝縮器の下部に設けられた液冷媒溜めと、該液冷媒
溜めに接続して設けられ、前記凝縮器と連通する均圧管
を有する液冷媒貯蔵室と、該液冷媒貯蔵室と蒸発器とを
冷媒比例弁を介して連通する冷媒比例弁回路とを備えた
吸収冷凍機において、前記液冷媒溜めと液冷媒貯蔵室を
接続する連通管に設けられたオリフィスと、前記液冷媒
溜めと前記蒸発器を連通するU字管を備えた冷媒バイパ
ス回路とを備え、該冷媒バイパス回路と前記液冷媒溜め
との接続部は、前記連通管と前記液冷媒溜めとの接続部
よりも上方に設けられていることを特徴とする吸収冷凍
機。
1. A liquid refrigerant reservoir provided at the bottom of the condenser, a liquid refrigerant storage chamber connected to the liquid refrigerant reservoir and having a pressure equalization pipe communicating with the condenser, and the liquid refrigerant storage chamber and an evaporator. and a refrigerant proportional valve circuit that communicates between the liquid refrigerant reservoir and the liquid refrigerant storage chamber through a refrigerant proportional valve, an orifice provided in a communication pipe connecting the liquid refrigerant reservoir and the liquid refrigerant storage chamber; a refrigerant bypass circuit including a U-shaped pipe that communicates with the evaporator, and a connection portion between the refrigerant bypass circuit and the liquid refrigerant reservoir is provided above a connection portion between the communication pipe and the liquid refrigerant reservoir. An absorption refrigerator characterized by:
JP7160588A 1988-03-25 1988-03-25 Absorption refrigerator Expired - Fee Related JPH0656273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160588A JPH0656273B2 (en) 1988-03-25 1988-03-25 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160588A JPH0656273B2 (en) 1988-03-25 1988-03-25 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH01244258A true JPH01244258A (en) 1989-09-28
JPH0656273B2 JPH0656273B2 (en) 1994-07-27

Family

ID=13465453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160588A Expired - Fee Related JPH0656273B2 (en) 1988-03-25 1988-03-25 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0656273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment
US11236931B2 (en) 2016-01-28 2022-02-01 Cool4Sea Aps Absorption refrigeration and air conditioning devices

Also Published As

Publication number Publication date
JPH0656273B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
US4090372A (en) Fuel conservation controller for capacity controlled refrigeration apparatus
EP0978694A1 (en) Absorption type refrigerating machine
JP2000171123A (en) Triple-effect absorption refrigerating machine
JPH01244258A (en) Absorption refrigerating machine
JP3554858B2 (en) Absorption refrigerator
JPS62186178A (en) Absorption refrigerator
JPH0586543B2 (en)
JP3883313B2 (en) Multi-effect absorption refrigerator
JPS6316018B2 (en)
JP2777470B2 (en) Control device for absorption refrigerator
JPH07190537A (en) Absorption type refrigerating machine
JP3163411B2 (en) Absorption chiller / heater and liquid refrigerant controller
JP2883372B2 (en) Absorption chiller / heater
JPH08233392A (en) Absorption type refrigerating machine
JP3081490B2 (en) Absorption refrigerator
JPH0379631B2 (en)
JPH07280384A (en) Double effect absorption chilled and warm water machine
JP2002228291A (en) Absorption refrigerating machine
JP3146408B2 (en) Absorption chiller / heater and concentrated solution controller
JPH0868572A (en) Dual-effect absorption refrigerator
JPS6134058B2 (en)
JPH04254163A (en) Absorption type refrigerator and control method thereof
JPH01107065A (en) Absorption type refrigerator
JPH04161766A (en) Control device for absorption type freezer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees