JPH01243831A - Variable-speed induction motor - Google Patents

Variable-speed induction motor

Info

Publication number
JPH01243831A
JPH01243831A JP63070385A JP7038588A JPH01243831A JP H01243831 A JPH01243831 A JP H01243831A JP 63070385 A JP63070385 A JP 63070385A JP 7038588 A JP7038588 A JP 7038588A JP H01243831 A JPH01243831 A JP H01243831A
Authority
JP
Japan
Prior art keywords
rotor
stator
stators
conductor
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070385A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Onoki
大野木 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP63070385A priority Critical patent/JPH01243831A/en
Publication of JPH01243831A publication Critical patent/JPH01243831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Induction Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To enable operation which is stable extending for a long time with high torque by cooling and heat-radiating, with wind sucked through a ventilation hole, a resistor material provided outside the conductor between rotor cores. CONSTITUTION:In a non-magnetic substance core 9 part laid between rotor cores 3 and 3 which form a rotor 8 is provided a resistor material r made of conductive ceramics, etc., as a connecting material which short-circuits each of a plurality of conductors 5. The resistor material r is formed in a circular substance 41 projecting outward from windings 22 and 23 wound round first and second stators 24 and 25, and the annular body 41 and the plurality of conductors 5 are linked by a conductive connecting material (copper) 42, and each of plural conductors 5 is short-circuited by the resistor material r of the circular substance 41. By the rotation of the rotor 8 outside air is sucked into inside of a frame 14 from a ventilation port 40 by cooling impellers 19 and 20, and the wind is introduced to the first and second stators 24 and 25 and windings 22 and 23 for cooling and also, rotor cores 2 and 3, and resistor material r, etc., are cooled by the wind communicating to a ventilation hole through a ventilation drum 12 so as to work each function stably.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可変速誘導電動機に関するものであり、より
詳しくは、単一の回転子、複数個の固定子及び電圧移相
装置とを有し、電圧移相装置を調節することにより回転
子の回転速度及び発生トルクを任意に変化させることが
できる所謂複数固定子構成の可変速誘導電動機に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to variable speed induction motors, more particularly having a single rotor, a plurality of stators and a voltage phase shifter; The present invention relates to a variable speed induction motor having a so-called multiple stator configuration, in which the rotational speed of a rotor and the generated torque can be arbitrarily changed by adjusting a voltage phase shift device.

従来技術とその問題点 誘導電動機の速度を制御する方法の一つとして電源周波
数を変える方法がある。この方法は連続的かつ広範囲な
速度制御が可能である半面、この方法で必要とする周波
数変換装置を高価とし、また周波数変換装置により交流
を直流に変換して再度交流に変換する過程において一般
に高調波および電波が発生し、これらによってコンピュ
ーター、その仙台種電気制御機器の誤動作あるいはコン
デンサーの過熱等の障害を招くことがあり、このうち高
調波障害に対しては、フィルターを設置することにより
対策を講じることもできるが、フィルターの設置にはコ
ストがかかる。また低速時において一般に性能が不十分
となる等の欠点を有するものである。
Prior art and its problems One method of controlling the speed of an induction motor is to change the power supply frequency. Although this method allows for continuous and wide-range speed control, the frequency converter required by this method is expensive, and the process of converting alternating current to direct current and then converting it back to alternating current with the frequency converter generally requires high frequency adjustment. Waves and radio waves are generated, and these can cause problems such as malfunction of computers and their Sendai type electrical control equipment or overheating of capacitors. Among these, measures against harmonic interference can be taken by installing filters. However, installing filters is costly. Additionally, they have drawbacks such as generally insufficient performance at low speeds.

また、電動機の極数を変えて速度を制御する方法は、極
数の変換によって段階的に速度を変えることができても
、無段階的に滑かな速度制御をすることができない欠点
がある。
Furthermore, the method of controlling the speed by changing the number of poles of the electric motor has the disadvantage that even if the speed can be changed stepwise by changing the number of poles, it is not possible to control the speed steplessly and smoothly.

また、電源の電圧を変えて速度を制御する方法では、速
度制御が連続的に行える半面、特に低速度領域において
効率が悪くなる欠点がある。
Furthermore, although the method of controlling the speed by changing the voltage of the power supply allows continuous speed control, it has the disadvantage of poor efficiency, especially in the low speed region.

そして巻線型電動機において二次抵抗を変化させすべり
を変えて速度制御を行う方法は、比較的簡単に連続的な
速度制御が可能であ゛る半面、外部からブラシとスリッ
プリングを介して回転子巻線回路へ抵抗を挿入するため
に、ブラシの消耗による保守点検を必要とし、また、か
ご形誘導電動機は、二次抵抗を変化させて速度制御を行
うことができない問題点がある。
In wire-wound electric motors, the method of controlling the speed by changing the secondary resistance and changing the slip allows continuous speed control relatively easily, but it is also possible to control the rotor from the outside via brushes and slip rings. Inserting a resistor into the winding circuit requires maintenance and inspection due to brush wear, and the squirrel cage induction motor has the problem that speed control cannot be performed by changing the secondary resistance.

上記問題点に対処するものとして、例えば、特開昭54
−29005号公報にその技術が開示してあり、このも
のは、同軸上に設置された2組の回転子鉄心および回転
子鉄心に対向してそれぞれ独立する固定子巻線を備えた
2組の固定子と、前記各回転子鉄心に跨って共通に設置
されかつ両端にてそれぞれ短絡環を介して相互間を短絡
したかご形導体と、2組の回転子鉄心間におけるかご形
導体の中央箇所にてかご形導体の相互間を短絡する高抵
抗体とを備え、始動時には固定子巻線の相互間の位相を
180°ずらせ、始動後の運転時には位相を合わせて給
電する双鉄心かご形電動機であるが、始動時に固定子巻
線の相互間の位相を180°ずらすことにより始動トル
クを大にして始動特性を向上し、運転時には固定子巻線
の相互間の位相を合わせて通常のトルク特性で運転でき
る点に特徴を有するものである。したがって、始動性を
向上する効果は認められたとしても、この電動機は可変
速電動機ではないから変速を必要とする負荷の動力源と
して使用することはできない。
To address the above problems, for example,
The technology is disclosed in Publication No. 29005, which includes two sets of rotor cores installed coaxially and two sets of independent stator windings facing the rotor cores. a stator, a squirrel-cage conductor that is commonly installed across the rotor cores and short-circuited at both ends via short-circuit rings, and a central location of the squirrel-cage conductor between the two sets of rotor cores; A twin-iron-core squirrel-cage electric motor that is equipped with a high-resistance element that shorts the squirrel-cage conductors at the same time, shifts the phase of the stator windings by 180 degrees at startup, and matches the phase when operating after startup. However, by shifting the phase of the stator windings by 180 degrees during startup, the starting torque is increased and the starting characteristics are improved, and during operation, the phases of the stator windings are matched to achieve normal torque. It is characterized by the fact that it can be operated according to its characteristics. Therefore, even if the effect of improving startability is recognized, this electric motor is not a variable speed electric motor and cannot be used as a power source for a load that requires speed change.

なお、上記特開昭54−29005号公報において、起
動時から運転時への移行に際し、トルクの急激な変動に
よるショックを緩和する目的により瞬間的に固定子巻線
の相互の給電回路を直列接続の中間ステップを設けるこ
とも1例にあるが、この場合は、回転磁界の位相のずれ
が0°と180°の両時点のみに限定されるもので変速
目的のものではない。しかも直列に切り換えたことによ
り固定子に加わる電圧は半減されるのでトルクは1/4
に減殺されることも相俟って変速制御が全く不可能にな
ることは、この公報に開示する要旨が変速を目的としな
いことからも明白なところである。
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 54-29005, the power supply circuits of the stator windings are momentarily connected in series for the purpose of mitigating the shock caused by sudden fluctuations in torque when transitioning from startup to operation. An example is to provide an intermediate step, but in this case, the phase shift of the rotating magnetic field is limited to only the points at which the phase shift is 0° and 180°, and is not intended for speed change. Moreover, by switching to series, the voltage applied to the stator is halved, so the torque is reduced to 1/4.
It is clear from the fact that the subject matter disclosed in this publication is not aimed at shifting, that this together with the reduction in speed makes it impossible to control the shift at all.

要するに特開昭54−29005号公報のものは、仮に
「固定子巻線を給電回路に対して直列接続と並列接続と
に切り換える中間ステップ」云々とあるが、この直列接
続は変速目的には全く用をなさない接続に過ぎない。
In short, JP-A No. 54-29005 tentatively states that there is an "intermediate step in which the stator windings are switched between series connection and parallel connection with respect to the power supply circuit," but this series connection is not suitable for the purpose of speed change. It's just a useless connection.

そして、特開昭49−86807号公報に提案されてい
るものは、多相巻線とかご形〇−タとを備えたステータ
を有する非同期電気モータであって伝導バー、短絡回路
端環および強磁積層からなるものにおいて、ステータは
第一と第二の巻線区分からなり、これらの区分は相互に
およびロータの異る部分に隣接して共軸状に配置され、
かつ同じ周波数の交流を供給されることができ、また第
二巻線区分によりロータの巻線に誘導される起電力を変
化する手段を設けた非同期電気モータであるが、このも
のは、機械的あるいは電気的手段により、2個のステー
ター区分間の位相差を設けて一応回転速度を変えること
ができるものではあるが、2個のステーター区分間の位
相角が同相のときを除いてトルクが小さく、負荷が掛る
と直ちに運転が停止する欠陥を持つ実用に全(供しない
ものであり、負荷を連結した状態において、起動・停止
を頻繁に反復する必要のある動力源としては運転するこ
とのできない重大な問題点を未解決とするものであった
What is proposed in JP-A-49-86807 is an asynchronous electric motor having a stator equipped with polyphase windings and a squirrel-cage type rotor, including a conduction bar, a short-circuit end ring, and a strong In those consisting of magnetic laminations, the stator consists of first and second winding sections that are coaxially arranged adjacent to each other and to different parts of the rotor;
an asynchronous electric motor which can be supplied with an alternating current of the same frequency and is provided with means for varying the electromotive force induced in the rotor windings by means of a second winding section; Alternatively, it is possible to change the rotational speed by creating a phase difference between the two stator sections using electrical means, but the torque is small unless the phase angle between the two stator sections is the same. It is not suitable for practical use due to the defect that it stops operating immediately when a load is applied, and it cannot be operated as a power source that requires frequent starting and stopping when a load is connected. This left important issues unresolved.

発明の目的 本発明は、上記従来技術の欠点を改善するためのもので
、上記特開昭54−29005号公報および特開昭49
−86807号公報のそれぞれの総和では奏することの
できない特異のトルク特性を求めるものであり、速度制
御領域を広範囲に且つその速度制御を無段階的として任
意の所望速度に設定できると共に、任意のトルクで起動
させることができ、また起動点から最高回転速度までの
全速度領域に亘り、トルク特性と効率の優れた可変速誘
導電動機を提供することにある。
OBJECTS OF THE INVENTION The present invention is intended to improve the drawbacks of the above-mentioned prior art, and is directed to
-86807 Publication seeks a unique torque characteristic that cannot be achieved by the sum of each component, and the speed control range can be widened and the speed control can be set steplessly to any desired speed, and any torque can be set to any desired speed. It is an object of the present invention to provide a variable speed induction motor that can be started at a speed of 100 Hz and has excellent torque characteristics and efficiency over the entire speed range from the starting point to the maximum rotational speed.

なお、本発明の可変速誘導電動機は、単相または3相電
源等に接続して使用され、回転子の形態は、普通かご形
、二重かご形、深溝かご形。
The variable speed induction motor of the present invention is used by being connected to a single-phase or three-phase power supply, and the rotor has a normal squirrel cage type, a double squirrel cage type, or a deep groove cage type.

特殊かご形1巻線形等のいずれの形式のものにも適用で
きるものであり、本発明の説明に用いる導体とは、かご
形回転子コアに装設した導体、および巻線形回転子コア
に巻装した巻線のそれぞれを総称するものである。
It can be applied to any type of special squirrel-cage rotor core, etc., and the conductors used in the explanation of the present invention refer to conductors installed in the squirrel-cage rotor core and conductors wound around the wound rotor core. This is a general term for each of the windings installed.

問題点を解決するための手段 上記技術的課題を達成するために、本発明は、複数個の
回転子コアのそれぞれに装設した複数個の導体のそれぞ
れを連通状に連結して一体的な回転子に形成し、同一回
転軸に任意の間隔を設けて軸1着した前記複数個の回転
子コアに対峙する外周部に複数個の固定子を機枠に並設
し、前記複数個の固定子と対峙しない前記複数個の回転
子コア間において、前記複数個の導体を抵抗材を介し短
絡すると共に、前記複数個の固定子のうち、少なくとも
1個の固定子に関連して前記複数個の固定子のうちのい
ずれか一方の固定子に対峙する回転子の導体部分に誘起
する電圧と他方の固定子に対峙する前記回転子の対応す
る導体部分に誘起する電圧との間に位相差を生じさせる
電圧移相装置を付設した電動機において、前記抵抗材を
前記回転子コア間の導体の外側に設けるように成し、前
記複数個の固定子間と前記複数個の回転子コア間と前記
機枠で形成する空間部を通風胴に形成し、導入した外気
により前記抵抗材を冷却放熱して前記機枠外に排気する
ように前記機枠に開口部を設けて前記通風胴に連通ずる
と共に、前記複数個の回転子コアのそれぞれに両端面に
貫通する通風孔を開設するか、または前記回転軸を中空
とし、前記複数個の回転子コア間において、前記回転軸
の内周部と外周部に貫通する通風孔を開設するか、また
は前記複数個の固定子の外周部に、両端面に貫通する通
風孔を開設するか、または前記の各通風孔を組み合わせ
て開設することにより解決の手段とした。
Means for Solving the Problems In order to achieve the above-mentioned technical problem, the present invention connects each of a plurality of conductors installed in each of a plurality of rotor cores in a continuous manner to form an integrated structure. A plurality of stators are arranged in parallel on the machine frame on the outer periphery facing the plurality of rotor cores formed on the rotor and mounted on the same rotating shaft at arbitrary intervals, The plurality of conductors are short-circuited via a resistive material between the plurality of rotor cores that do not face the stator, and the plurality of conductors are A potential exists between the voltage induced in the conductor portion of the rotor facing one of the stators and the voltage induced in the corresponding conductor portion of the rotor facing the other stator. In an electric motor equipped with a voltage phase shift device that generates a phase difference, the resistive material is provided outside the conductor between the rotor cores, and the resistance material is provided between the plurality of stators and between the plurality of rotor cores. A space formed by the machine frame is formed in the ventilation shell, and an opening is provided in the machine frame to communicate with the ventilation shell so that the introduced outside air cools the resistance material, radiates heat, and exhausts it outside the machine frame. At the same time, a ventilation hole passing through both end faces of each of the plurality of rotor cores is provided, or the rotating shaft is hollow, and an inner circumferential portion of the rotating shaft is formed between the plurality of rotor cores. By opening ventilation holes penetrating through the outer periphery of the plurality of stators, or by opening ventilation holes penetrating through both end faces of the plurality of stators, or by opening a combination of the above-mentioned ventilation holes. It was used as a solution.

また、本発明の特別の構成としては、前記抵抗材を回転
子コア間の導体より外側に出すために前記抵抗材と前記
回転子コア間の導体を導電性連結材により連結したもの
もあり、前記抵抗材の一方側を前記回転子コア間の導体
に連結し、他方側を導電性連結材に連結することにより
抵抗材を回転子コア間の導体の外側に設けるように成し
、また前記抵抗材または前記導電性連結材を翼状に形成
して発熱処理性を向上させると共に、前記抵抗材を回転
子コア間の導体の外側に設けるように成し、また、回転
子導体は銅材により形成し、前記抵抗材は銅ニッケル合
金により形成し、前記導電性連結材は銅材または銅ニッ
ケル合金により形成したものもあり、問題点解決の手段
とした。
In addition, as a special configuration of the present invention, the resistive material and the conductor between the rotor cores are connected by a conductive connecting material in order to bring the resistive material outside the conductor between the rotor cores, One side of the resistive material is connected to the conductor between the rotor cores, and the other side is connected to the conductive connecting material, so that the resistive material is provided outside the conductor between the rotor cores, and the resistive material is provided outside the conductor between the rotor cores. The resistive material or the conductive connecting material is formed into a wing shape to improve heat treatment properties, and the resistive material is provided outside the conductor between the rotor cores, and the rotor conductor is made of copper material. The resistive material is made of a copper-nickel alloy, and the conductive connecting material is made of a copper material or a copper-nickel alloy, which solves the problem.

作  用 本発明は、任意手段により、それぞれの固定子間に生起
する回転磁界の磁束に位相のずれを生じさせると、磁束
の位相のずれに応じて回転子導体に誘起する合成電圧が
変化し、回転子導体に誘起する電圧を増減制御して回転
子の回転速度を任意に変えることができる。
Effect of the present invention: When a phase shift is caused in the magnetic flux of the rotating magnetic field generated between the respective stators by an arbitrary means, the combined voltage induced in the rotor conductor changes in accordance with the phase shift of the magnetic flux. , the rotational speed of the rotor can be arbitrarily changed by increasing or decreasing the voltage induced in the rotor conductor.

ところで、位相のずれを設ければ前記抵抗材に電流が流
れるが、前記抵抗材に電流が流れれば当然ながら発熱し
、大きなトルクを得れば得るほど発熱量は大きくなる。
By the way, if a phase shift is provided, a current will flow through the resistive material, but if a current flows through the resistive material, it will naturally generate heat, and the greater the torque obtained, the greater the amount of heat generated.

本発明の構成の一つとして回転子コア間において回転子
導体を抵抗材を介して短絡連結する際に前記抵抗材を回
転子導体の外側に配するようにして抵抗材の長さを大に
した。そのために抵抗材の断面積を大きくしても同等な
抵抗値を得られるようになり、発熱による抵抗材の破壊
を防止できるようになった。
As one of the configurations of the present invention, when the rotor conductors are short-circuited via the resistive material between the rotor cores, the length of the resistive material is increased by disposing the resistive material on the outside of the rotor conductor. did. Therefore, it is now possible to obtain the same resistance value even if the cross-sectional area of the resistive material is increased, and it is now possible to prevent the resistive material from being destroyed due to heat generation.

本発明においては変速範囲を大きくしようとすれば抵抗
材の抵抗値を大きくする必要があり、また大きなトルク
を得ようとすれば大きな電流を抵抗材に流す必要があり
、抵抗材の発熱による破壊の危険性がつきまとっていた
In the present invention, in order to widen the shifting range, it is necessary to increase the resistance value of the resistor material, and in order to obtain a large torque, it is necessary to flow a large current through the resistor material, which may cause damage to the resistor material due to heat generation. There was a danger of

更に本発明の構成においては、前記抵抗材を冷却放熱す
る特別の構成を加えたことにより抵抗材の発熱の影響を
受けて抵抗材または導体がきわめて高温になり、表面が
酸化して損耗をしてしまったり、回転子の強度が低下し
てしまう状況であったが、その問題が解決した。゛また
、本発明の特別構成として回転子導体を銅材により形成
し、抵抗材を銅ニッケル合金により形成したものは回転
子導体の抵抗を小さくし得るので、最高回転速度を高く
できて効率も良くすることができると共に、抵抗材を銅
ニッケル合金とすることにより、発熱による抵抗値変化
を小さくすることができて速度制御を安定化することが
できた。
Furthermore, in the configuration of the present invention, a special configuration for cooling and dissipating heat from the resistive material is added, so that the resistive material or the conductor becomes extremely high temperature under the influence of the heat generated by the resistive material, and the surface oxidizes and wears out. However, this problem has been resolved.゛In addition, as a special feature of the present invention, the rotor conductor is made of a copper material and the resistance material is made of a copper-nickel alloy, which makes it possible to reduce the resistance of the rotor conductor, thereby increasing the maximum rotation speed and improving efficiency. In addition, by using a copper-nickel alloy as the resistance material, changes in resistance value due to heat generation could be reduced, and speed control could be stabilized.

更に前記連結材または前記抵抗材を銅または銅ニッケル
合金としたものは回転子導体を銅材とした場合に溶接性
に優れ高トルクの長時間運転をも可能とせしめたのであ
る。
Furthermore, when the connecting material or the resistive material is made of copper or a copper-nickel alloy, when the rotor conductor is made of copper, it has excellent weldability and enables long-term operation at high torque.

実施例 本発明の実施例を第1図〜第10図に基づき説明する。Example Embodiments of the present invention will be described based on FIGS. 1 to 10.

第1図〜第5図により本発明の一実施例を説明する。(
第1図、第3図参照)符号1は誘導電動機であり、該誘
導電動機1は以下のように構成しである。鉄心からなる
回転子コア2,3を任意の間隔を設けて回転子軸4に装
着し、回転子コア2,3間に非磁性体コア9を介設しで
ある。回転子コア2.3に装設した複数個の導体5(銅
)・・・のそれぞれを直列に連結して一体的な回転子8
を形成し、その直列に連結した複数個の導体5・・・の
両端部を短絡環6,7に連結しである。また回転子コア
2.3.9に回転子8の両側部10.11に連絡する複
数個の通風胴12・・・を設け、通風胴12・・・から
直交状に回転子8の外周部に貫通する複数個の通気孔1
3・・・を穿設しである。(第1図、第2図参照)円筒
状の機枠14のi側部に設けた軸受盤15゜16を連結
棒17・・・にナツト18・・・留めして一体的に組付
け、回転子8の両側部に冷却用翼車19.20を装着し
、回転子軸4の両端部を軸受盤15.16に嵌装した軸
受21.21に軸支し、回転子4を回転自在としである
An embodiment of the present invention will be described with reference to FIGS. 1 to 5. (
(See FIGS. 1 and 3) Reference numeral 1 denotes an induction motor, and the induction motor 1 is constructed as follows. Rotor cores 2 and 3 made of iron cores are mounted on a rotor shaft 4 with an arbitrary spacing between them, and a non-magnetic core 9 is interposed between the rotor cores 2 and 3. A plurality of conductors 5 (copper) installed in the rotor core 2.3 are connected in series to form an integrated rotor 8.
A plurality of conductors 5 are connected in series, and both ends of the conductors 5 are connected to short-circuit rings 6 and 7. In addition, a plurality of ventilation cylinders 12 . Multiple ventilation holes 1 that penetrate through the
3... is drilled. (See Figures 1 and 2) Bearing discs 15 and 16 provided on the i side of the cylindrical machine frame 14 are fixed to connecting rods 17 with nuts 18 and assembled integrally. Cooling impellers 19.20 are mounted on both sides of the rotor 8, and both ends of the rotor shaft 4 are supported by bearings 21.21 fitted in bearing discs 15.16, allowing the rotor 4 to rotate freely. It's Toshide.

回転子コア2−23に対峙する外側部に巻線22.23
を施した第1固定子24と第2固定子25を機枠14に
並設し、機枠14と第1固定子24.第2固定子25と
の間にすべり軸受26.27を装設し、すべり軸受26
.27を機枠14に嵌装したストップリング28・・・
によって固定し、第1固定子24と第2固定子25の一
側外周面にギヤー33A、33Bを嵌着しである。(第
2図、第3図参照)機枠14の外周部に固設したパルス
モータ−35に駆動用歯車36を軸着し、機枠14の外
側部に装着した軸受台32に中継軸29を回転自在に軸
架し、中継軸29の両端部に中継用歯車30と回動用歯
車31とを軸着し、機枠14に設けた開口部37.37
から駆動用歯車36と回動用歯車31とを機枠14内に
挿入し、回動用歯車31を第2固定子25にv!着した
ギヤー33Bに係合させ、駆動用歯車36を第1固定子
24に嵌着したギヤー33Aに係合させると共に、駆動
用歯車36と一体的に形成した連動歯車34に中継用歯
車30を係合し、第1固定子24と第2固定子25とを
回転子8と同心的に回動自在に形設し、第1固定子24
と第2固定子25とにより電圧移相装置38に形成し、
可変速誘導電動機としある。39は排風孔、40は、軸
受盤15.16に複数個穿設した通風孔である。
Windings 22 and 23 are installed on the outer side facing the rotor core 2-23.
A first stator 24 and a second stator 25, which have been subjected to Slide bearings 26 and 27 are installed between the second stator 25 and the slide bearings 26 and 27.
.. Stop ring 28 with 27 fitted into the machine frame 14...
gears 33A and 33B are fitted onto the outer peripheral surfaces of one side of the first stator 24 and the second stator 25. (See Figures 2 and 3) A driving gear 36 is pivotally attached to a pulse motor 35 fixed to the outer periphery of the machine frame 14, and a relay shaft 29 is attached to a bearing stand 32 attached to the outer side of the machine frame 14. A relay gear 30 and a rotation gear 31 are mounted on both ends of the relay shaft 29, and an opening 37.37 is provided in the machine frame 14.
Insert the drive gear 36 and the rotation gear 31 into the machine frame 14 from the v! At the same time, the driving gear 36 is engaged with the gear 33A fitted on the first stator 24, and the relay gear 30 is connected to the interlocking gear 34 formed integrally with the driving gear 36. The first stator 24 and the second stator 25 are configured to be rotatable concentrically with the rotor 8.
and the second stator 25 form a voltage phase shifter 38,
It is called a variable speed induction motor. 39 is an exhaust hole, and 40 is a plurality of ventilation holes bored in the bearing plate 15, 16.

次に第1固定子24と第2固定子25のそれぞれに巻装
した巻線22.23の結線について説明する。(第4図
参照)第1.第2固定子24.25のそれぞれにスター
結線を施した巻線22.23とを直列に連結する。即ち
、第1固定子24の巻線22の端子A、B、Cを商用3
相電源A、B、Cに連結すると共に、巻線22の端子a
、b、cを第2固定子25の巻線23の端子A、B、C
に連結し、巻線23の端子a。
Next, the connection of the windings 22 and 23 wound around the first stator 24 and the second stator 25 will be explained. (See Figure 4) 1. Star-connected windings 22, 23 are connected in series to each of the second stators 24, 25. That is, the terminals A, B, and C of the winding 22 of the first stator 24 are
Connected to phase power supplies A, B, and C, and terminal a of winding 22
, b, c are the terminals A, B, C of the winding 23 of the second stator 25.
and terminal a of the winding 23.

b、cを短絡して連結しである。b and c are connected by short-circuiting them.

(第5図参照)回転子8を形成する回転子コア2.3間
に介設した非磁性体コア9部において、複数個の導体5
・・・のそれぞれを短絡する連結材として、銅ニッケル
合金、ニクロム線、炭素混入鋼1通電性セラミック等の
抵抗材rを設。
(See FIG. 5) In the non-magnetic core 9 portion interposed between the rotor cores 2 and 3 forming the rotor 8, a plurality of conductors 5
A resistive material such as copper nickel alloy, nichrome wire, carbon-containing steel 1, and conductive ceramic is provided as a connecting material to short-circuit each of the...

け、抵抗材rは第1.第2固定子24.25に巻装した
巻線22.23よりも外側方に突出する環状体41に形
成し、環状体41と複数個の導体5・・・とを導電性連
結材(銅)42・・・により連結し、複数個の導体5・
・・のそれぞれは環状体41・・・の抵抗材rによって
短絡しである。なお、導電性連結材42は銅ニッケル合
金としてもよい。ただし、銅または銅ニッケル合金に限
定されるものではない。
The resistance material r is the first. The annular body 41 is formed to protrude outward from the windings 22.23 wound around the second stator 24.25, and the annular body 41 and the plurality of conductors 5 are connected to a conductive connecting material (copper). ) 42..., and the plurality of conductors 5.
. . are short-circuited by the resistance material r of the annular body 41 . Note that the conductive connecting material 42 may be made of a copper-nickel alloy. However, it is not limited to copper or copper-nickel alloy.

導電性連結材42を翼状に形成してもよいし、抵抗材r
を翼状に形成してもよい。また本実施例図における導電
性連結材42を抵抗材に代えて抵抗材rを導電性連結材
に代えてもよい。その場合にも抵抗材または導電性連結
材を翼状にしてもよい。また、抵抗材が回転子コア間の
導体の外側にくるように抵抗材を介して回転子コア間の
導体を直接短絡してもよい。そしてその場合にも抵抗材
を翼状に形成してもよい。
The conductive connecting material 42 may be formed into a wing shape, or the resistive material r
may be formed into a wing shape. Furthermore, the conductive connecting material 42 in the drawings of this embodiment may be replaced with a resistive material, and the resistive material r may be replaced with a conductive connecting material. In that case as well, the resistive material or the conductive connecting material may be shaped like wings. Alternatively, the conductors between the rotor cores may be directly short-circuited via the resistive material so that the resistive material is located outside the conductor between the rotor cores. In that case as well, the resistance material may be formed into a wing shape.

以下に上記構成における作用を説明する。The operation of the above configuration will be explained below.

第1固定子24の巻線22に商用3相電源から通電する
と、固定子24.25に回転磁界が生じて回転子8に電
圧が誘起され、回転子8の導体5・・・に電流が流れて
回転子8は回転する。
When the windings 22 of the first stator 24 are energized from a commercial three-phase power supply, a rotating magnetic field is generated in the stator 24.25, voltage is induced in the rotor 8, and current is generated in the conductors 5 of the rotor 8. The flow causes the rotor 8 to rotate.

第1固定子24に対して第2固定子25それぞれの回動
量をゼロとしたときには、それぞれの固定子24.25
に生じる回転磁界の磁束に位相のずれがなく、その詳細
は後述する如く連結材となす抵抗材r・・・には電流が
流れないので、一般の誘導電動機と同一のトルク特性を
持つものである。
When the amount of rotation of each second stator 25 with respect to the first stator 24 is set to zero, each stator 24.25
There is no phase shift in the magnetic flux of the rotating magnetic field generated by the motor, and as will be detailed later, no current flows through the resistive material r... which serves as the connecting member, so it has the same torque characteristics as a general induction motor. be.

次に、パルスモータ−35を作動して第1固定子24と
第2固定子25のそれぞれを逆方向に回動して位相角で
θだけ回動した場合について説明する。電圧移相装置3
8となす第1固定子24と第2固定子25が作る回転磁
界の磁束φ1.φ2の位相はθだけずれており、そのた
め第1固定子24と第2固定子25により回転子8の導
体5・・・に誘起される電圧I:3+ 、白の位相はθ
だけずれている。今、第2固定子25によって回転子8
の導体5・・・に誘起される電圧ωを基準にとし、該電
圧を02=SEとする。ここでSはすべり、Eはすべり
 1のときの誘起電圧である。このとき第1固定子24
によって導体5Aに誘起される電圧d1は、6+=SE
εjOとなる。
Next, a case will be described in which the pulse motor 35 is operated to rotate the first stator 24 and the second stator 25 in opposite directions by a phase angle of θ. Voltage phase shifter 3
The magnetic flux φ1.8 of the rotating magnetic field created by the first stator 24 and the second stator 25. The phase of φ2 is shifted by θ, so the voltage I:3+ induced in the conductor 5 of the rotor 8 by the first stator 24 and the second stator 25, and the phase of white is θ
It's off by just that. Now, the rotor 8 is controlled by the second stator 25.
The voltage ω induced in the conductor 5 is taken as a reference, and the voltage is set to 02=SE. Here, S is slip and E is the induced voltage when slip is 1. At this time, the first stator 24
The voltage d1 induced in the conductor 5A by 6+=SE
εjO.

(E=すべり1の時の誘起電圧) 第6図に示すものは、非磁性体コア9部において複数個
の導体5・・・を短絡する抵抗材r・・・が装着されて
いない場合の回転子8のすべりSと回転子入力の有効電
力Pとの関係を示すもので、電圧の位相がθ=0°のと
き有効電力Pは最大となり、0°〈θ〈180°のとき
はそれよりも小さなものとなる。ここで導体5・・・の
抵抗およびインダクタンスをRおよびLとし、電源の角
周波数をωとすれば、有効電力Pの極大はS= (R/
ωL) のとき現われる。
(E = induced voltage when slip is 1) What is shown in Fig. 6 is the case where the resistive material r... that short-circuits the plurality of conductors 5... is not installed in the non-magnetic core 9 section. This shows the relationship between the slip S of the rotor 8 and the active power P input to the rotor. When the voltage phase is θ = 0°, the active power P is maximum, and when 0° < θ < 180°, it is It will be smaller than. Here, if the resistance and inductance of the conductor 5 are R and L, and the angular frequency of the power source is ω, then the maximum active power P is S = (R/
It appears when ωL).

有効電力Pは誘導電動機1の駆動トルクと比例するので
、パルスモータ−35を作動して電圧移相装置38の第
1固定子24と第2固定子25とを回動させることによ
って回転子8に誘起する電圧を調整し、回転子の速度を
無段階的に制御することができる。
Since the active power P is proportional to the driving torque of the induction motor 1, the rotor 8 is rotated by operating the pulse motor 35 to rotate the first stator 24 and the second stator 25 of the voltage phase shifter 38. By adjusting the voltage induced in the rotor, the speed of the rotor can be controlled steplessly.

次に、回転子8の導体5・・・の短絡環6,7から連結
材までのそれぞれの抵抗をR1,R2、またインダクタ
ンスをLl、L2とし、電源の角周波数をωとし、各導
体5・・・のそれぞれを短絡する抵抗材の抵抗をrとず
れば、回転子8の電気的等価回路は第7図のようになり
、符号11.12.13は各枝路を流れる電流を示すも
のである。
Next, let R1 and R2 be the respective resistances from the short-circuit rings 6 and 7 of the conductors 5 of the rotor 8 to the connecting material, let Ll and L2 be the inductances, let ω be the angular frequency of the power supply, and let each conductor 5 If the resistance of the resistive material that short-circuits each of ... is set to r, the electrical equivalent circuit of the rotor 8 becomes as shown in Fig. 7, and the symbols 11, 12, and 13 indicate the current flowing through each branch. It is something.

次に、第7図に示すものを内固定子24,25側からみ
た等価回路に変換すると第8図のようになり、RI=R
2,Ll=L2でθ= o’のときにはl3=II−I
2= 0となり抵抗材rには電流が流れないことになる
。このことはθ=0″のときにはトルクTはrがないと
きの値に等しいことを意味している。従って、θ=0°
のときは従来の誘導電動機と同一のトルク特性を持つこ
とになる。
Next, when converting the circuit shown in FIG. 7 into an equivalent circuit viewed from the inner stators 24 and 25 side, it becomes as shown in FIG. 8, and RI=R
2, When Ll=L2 and θ=o', l3=II-I
2=0, and no current flows through the resistor material r. This means that when θ=0'', the torque T is equal to the value without r. Therefore, θ=0°
When , it will have the same torque characteristics as a conventional induction motor.

次に、R+ =R2、Ll =L2でθ−180゜のと
きには、II=−12,l3=Il−I2゜=211と
なり、従来の誘導電動機において回転子導体の抵抗をR
I=R2=RとすればRはR+2rに増加したと同様な
結果となっている。
Next, when R+ = R2, Ll = L2 and θ-180°, II = -12, l3 = Il - I2° = 211, and in the conventional induction motor, the resistance of the rotor conductor is R.
If I=R2=R, the result is the same as if R were increased to R+2r.

上記回転子8の回転により、軸受115,16に穿設し
た通風口40・・・から冷却用翼車19゜20により機
枠14内に外気を吸引し、冷却用翼車19.20により
第1.第2固定子24゜25、巻線22.23に通風し
て冷却し、また通風胴12・・・を介し通気孔13・・
・に流通させる風により回転子コア2,3、導体5・・
・、抵抗材r等を冷却してそれぞれの機能を安定的に作
用させる。また、第1.第2固定子24.25の回動は
パルスモータ−35をスイッチにより正・逆回転させて
行うが、第1固定子24と第2固定子25の回動差を大
きく設け、内固定子24.25それぞれの電圧の位相の
ずれを大きくして低速回転に制御すると、冷却用翼車1
9゜20の旋回速度の低下により通風冷却作用が減衰し
、また、連結材rの発熱度が高くなるが、抵抗材rを巻
線22.23よりも外側方にも設けであるから、低速回
転でも周速度が大ぎいために、抵抗材r自身の旋回によ
る通気によって放熱することができる。第1.第2固定
子24゜25の回動機構としてはパルスモータ−35に
限定されるものではなく他の正逆転モータでも、また軍
体、液体シリンダー等によるサーボ機構等任意の駆動装
置を転用できるものであり、また手動ハンドルによって
操作する場合と第1固定子24と第2固定子25のいず
れか一方のみを回動する場合もある。そして、固定子の
回動駆動装置の作動に関連して固定子の回動を任意の作
動機構により開放またはロックをする。
As the rotor 8 rotates, outside air is sucked into the machine frame 14 by the cooling impellers 19 and 20 through the ventilation holes 40 formed in the bearings 115 and 16, and 1. The second stator 24° 25 and the windings 22, 23 are ventilated and cooled, and the ventilation holes 13...
・Rotor cores 2, 3, conductor 5...
・Cool the resistive material r, etc. so that their respective functions function stably. Also, 1st. The rotation of the second stator 24, 25 is performed by rotating the pulse motor 35 in forward and reverse directions using a switch. .25 When the phase shift of each voltage is increased and the rotation speed is controlled to be low, the cooling impeller 1
As the rotation speed of 9°20 decreases, the ventilation cooling effect is attenuated, and the heat generation of the connecting member r increases. However, since the resistive member r is also provided outside the windings 22 and 23, the low speed Since the circumferential speed is high even during rotation, heat can be dissipated by ventilation due to the rotation of the resistance material r itself. 1st. The rotation mechanism for the second stator 24°25 is not limited to the pulse motor 35, but can be any other forward/reverse motor, or any drive device such as a servo mechanism using a military body, a liquid cylinder, etc. In addition, there are cases where the operation is performed using a manual handle, and cases where only one of the first stator 24 and the second stator 25 is rotated. The rotation of the stator is then released or locked by an arbitrary actuation mechanism in conjunction with the operation of the stator rotation drive device.

次に、第1固定子24と第2固定子25のそれぞれに巻
装した巻線22.23を直列に連結した作用につき説明
する。
Next, the effect of connecting the windings 22 and 23 wound around the first stator 24 and the second stator 25 in series will be explained.

巻線22.23を直列に連結しであるために、巻線22
に商用3相電源から入力して巻線22゜23間に電流は
流れるが、仮に巻線22.23のそれぞれの抵抗の相違
あるいは内固定子24゜25の8世の大きさに相違があ
っても、それとは無関係に、それぞれの巻線22.23
に流れる電流の大きさは等しく、したがって第1固定子
24と第2固定子25のそれぞれから゛回転子8の導体
5・・・に誘起して流れる電流の大きさは等しくなる作
用と、両固定子24.25間の電圧の位相差に起因する
ベクトル差分の電流は複数個の導体5・・・のそれぞれ
を連結材となす抵抗材rを介して必然的に流れるという
強制力が生じる作用との相乗効果により、第9図に示す
すべりとトルク特性のように効率の改善と低速回転領域
において大きなトルクを出すことができ、負荷を連結し
た状態においてもそれぞれの速度領域ごとに起動を容易
とし、負荷の起動特性に順応して滑らかな起動とするこ
と、あるいは高トルクで起動すること等任意に使い分け
ができ、起動・停止を頻繁に反復する動力源に最適に対
応できる。そして回転子8の変速は、電圧移相装置38
により位相のずれを制御して回転子8の導体5・・・に
流れる電流を増減に変化させ、回転子8の回転速度を任
意に変えることができる。
Since the windings 22 and 23 are connected in series, the windings 22 and 23 are connected in series.
A current flows between the windings 22 and 23 when input from a commercial 3-phase power source, but if there is a difference in the resistance of each of the windings 22 and 23 or a difference in the size of the 8th coil of the inner stator 24 and 25. However, independently of that, each winding 22.23
The magnitude of the current flowing through the rotor 8 is the same, and therefore the magnitude of the current induced from each of the first stator 24 and the second stator 25 to the conductor 5 of the rotor 8 is equal. A force is generated in which the current of the vector difference caused by the phase difference of the voltage between the stators 24 and 25 inevitably flows through the resistive material r that connects each of the plurality of conductors 5... Due to the synergistic effect of the slip and torque characteristics shown in Figure 9, it is possible to improve efficiency and generate large torque in the low speed rotation range, and it is easy to start up in each speed range even when a load is connected. This allows for smooth startup or high-torque startup depending on the startup characteristics of the load, making it ideal for power sources that are frequently started and stopped. The speed of the rotor 8 is controlled by a voltage phase shifter 38.
By controlling the phase shift, the current flowing through the conductors 5 of the rotor 8 can be increased or decreased, and the rotational speed of the rotor 8 can be arbitrarily changed.

なお、巻線22.23を直列に連結した第1固定子24
と第2固定子25のそれぞれから回転子8の導体5・・
・に流れる電流の大きさに対し、複数個の導体5・・・
間に抵抗材rを介して短絡して流れる電流の比率は、抵
抗材rの抵抗値およびすべりとは無関係にPθ(P=極
対数、θ−位相角)の値によって決定され、(上記比率
は、Pθ=πが最大でPθ=0でゼロとなる)Pθが一
定であれば、一般の巻線形誘導電動機の二次挿入抵抗を
一定とした場合と同様のすべりとトルク特性になり、P
θが小になると回転子8の導体5・・・に流れる電流の
比率が小となり、Pθを小さくすることは一般の巻線形
誘導電動機の二次挿入抵抗を小さくすることと同等の作
用をすることとなる。そして両固定子24.25に定格
電流を流した場合において、位相差θを任意に変えても
すべり値の選定と抵抗材の抵抗値の設計次第により、最
高速度の持ち定格電流とトルク特性とをそれぞれの変速
領域においてもほぼ同等に作用させることができる。ま
た、第1.第2固定子24.25の巻線22.23を直
列に連結してあっても、仮に導体5・・・間に連結材を
設けて短絡していない場合は、一方の固定子から回転子
導体5・・・にはほとんど電圧が誘起されない状態とな
り、両固定子24.25の巻線22.23それぞれを並
列に電源に連結しものよりも効率、トルクは低下する現
象となる。
Note that the first stator 24 has windings 22 and 23 connected in series.
and the second stator 25 to the conductor 5 of the rotor 8, respectively.
・For the magnitude of the current flowing in ・, multiple conductors 5...
The ratio of the short-circuited current flowing through the resistive material r between them is determined by the value of Pθ (P = number of pole pairs, θ - phase angle), regardless of the resistance value and slip of the resistive material r, and (the above ratio is the maximum when Pθ=π and becomes zero when Pθ=0) If Pθ is constant, the slip and torque characteristics will be similar to those when the secondary insertion resistance of a general wound induction motor is constant, and P
When θ becomes smaller, the ratio of current flowing through the conductor 5 of the rotor 8 becomes smaller, and reducing Pθ has the same effect as reducing the secondary insertion resistance of a general wound induction motor. That will happen. When the rated current is passed through both stators 24 and 25, even if the phase difference θ is arbitrarily changed, depending on the selection of the slip value and the design of the resistance value of the resistor material, the maximum speed, rated current, and torque characteristics will vary. can be applied almost equally in each shift range. Also, 1st. Even if the windings 22, 23 of the second stator 24, 25 are connected in series, if a connecting material is provided between the conductors 5 and the short circuit is not established, one stator will connect to the rotor. Almost no voltage is induced in the conductors 5, and the efficiency and torque are lower than when the windings 22, 23 of both stators 24, 25 are connected in parallel to the power supply.

なお、両固定子24.25に巻装した巻線22.23を
電源に並列して連結する場合においては、巻線22.2
3の双方または一方に変流器を連結し、両固定子24.
25に流れる電流を同一にすれば前記した直列連結した
ものと同一作用を得ることができる。
Note that when the windings 22.23 wound around both stators 24.25 are connected in parallel to the power supply, the windings 22.2
A current transformer is connected to both or one of the stators 24.
If the currents flowing through the transistors 25 are the same, the same effect as that of the series connection described above can be obtained.

第10図に示すものは、回転軸4を中空軸とし、回転子
コア2,3間において内周部43と外周部44に貫通す
る複数個の通気孔45・・・を開設した実施例であり、
回転軸4の両端部から外気を導入して抵抗材rに通気さ
せることができ、抵抗材rの冷却に効果的である。
The embodiment shown in FIG. 10 is an embodiment in which the rotary shaft 4 is a hollow shaft, and a plurality of ventilation holes 45 are provided between the rotor cores 2 and 3, penetrating the inner peripheral part 43 and the outer peripheral part 44. can be,
Outside air can be introduced from both ends of the rotating shaft 4 to ventilate the resistance material r, which is effective for cooling the resistance material r.

なお、回転軸4の一側部を閉塞したその反対側に送風機
を連結して通気孔45・・・を介し抵抗材rを冷却する
場合と、軸受盤15.16のいずれか側の通風孔40に
送風機に連通ずる空気管を連結して抵抗材rおよび巻線
22.23を冷却する場合もあり、送ff1tiに空気
冷却機を介設することもある。
In addition, when one side of the rotating shaft 4 is closed and a blower is connected to the opposite side to cool the resistance material r through the ventilation holes 45... In some cases, an air pipe communicating with an air blower is connected to 40 to cool the resistive material r and the windings 22, 23, and in some cases, an air cooler is interposed in the blower ff1ti.

固定子の外周部に通風孔を開設する構成もあるが、固定
子コア自身に通風孔が開設される場合のみならず固定子
の外側と機枠との間に通運孔が開設されることが要旨で
あり、それを含むものである。
Although there is a configuration in which ventilation holes are provided on the outer periphery of the stator, there are cases where ventilation holes are provided not only in the stator core itself but also between the outside of the stator and the machine frame. It is the gist and contains it.

なお、本発明においては抵抗材の発熱の効果的処理が重
要で、前記各通風孔から吸引された風が抵抗材を冷却放
熱して通風胴から機枠の開口部に通ずる風路によって排
出されることがポイントで、風の流れがこの逆になれれ
ば抵抗材により加熱された風が各通風孔を通して排出さ
れることになり、冷却効果は激減する。
In addition, in the present invention, it is important to effectively treat the heat generated by the resistive material, and the wind sucked through each of the ventilation holes cools the resistive material, radiates heat, and is discharged through the air passage leading from the ventilation shell to the opening of the machine frame. The key point is that if the air flow is reversed, the air heated by the resistance material will be exhausted through each ventilation hole, and the cooling effect will be drastically reduced.

なお、本発明においては、前記通風胴と機枠の開口部を
つなぐ風路の抵抗が前記各通気孔を通じて前記通風胴と
機外をつなぐ風路の抵抗よりも一般的に小さくなること
と回転子コア間の抵抗材、連結材、導体等の作用により
、抵抗材連結材等を特に貿状にしなくても風は前記各通
風孔から通風用へ吸引されて機枠の開口部から排出され
る傾向にはある。
In addition, in the present invention, the resistance of the air passage connecting the ventilation shell and the opening of the machine frame is generally smaller than the resistance of the air passage connecting the ventilation shell and the outside of the machine through each of the ventilation holes, and rotation. Due to the action of the resistive material, connecting material, conductor, etc. between the child cores, the wind is sucked into the ventilation hole from each of the ventilation holes and discharged from the opening of the machine frame without making any special arrangement of the resistive material connecting material, etc. There is a tendency to

そして、抵抗材、連結材を翼状に形成したものはこの冷
却放熱効果が更に大きくなる。
When the resistance material and the connecting material are formed into wing shapes, this cooling and heat dissipation effect becomes even greater.

本発明の可変速誘導電動機は抵抗材の発熱の影響を小さ
くするため、抵抗材の設は方および冷却放熱の仕方が極
めて重要である。
In the variable speed induction motor of the present invention, in order to reduce the influence of heat generated by the resistive material, the manner in which the resistive material is arranged and the method of cooling and heat dissipation are extremely important.

さらに、電圧移相装置として巻線22.23のいずれか
に位相切換用スイッチを連結すること、あるいは単相変
圧器と結線切換スイッチとにより位相切換器とすること
、誘導電圧調整器等を連結することができる。
Furthermore, a phase switching switch can be connected to either of the windings 22 or 23 as a voltage phase shifting device, or a phase switching device can be formed using a single-phase transformer and a connection switching switch, or an induced voltage regulator can be connected. can do.

なお、本発明の実施例においては、回転子コア間の回転
子導体または前記導電性連結材はセラミック、ステンレ
ス鋼、樹脂、ゴム、ガラス。
In the embodiments of the present invention, the rotor conductor between the rotor cores or the conductive connecting material is ceramic, stainless steel, resin, rubber, or glass.

石綿、耐熱性塗料等により囲繞されることもある。前記
回転子コア間の導体または前記導電性連結材のすべての
部分が囲繞されることもあり、抵抗材に近い一部が囲繞
されることもある。本発明の実施例として前記したよう
に磁性体コアにより囲繞される例もある。
It may be surrounded by asbestos, heat-resistant paint, etc. All parts of the conductor between the rotor cores or the conductive coupling material may be surrounded, or a portion close to the resistive material may be surrounded. As an embodiment of the present invention, there is also an example in which the magnetic core is surrounded by a magnetic core as described above.

前記のように構成したことにより抵抗材2回転子導体お
よび本可変速誘導電動機の性能および耐久性は著しく向
上した。
By configuring as described above, the performance and durability of the resistance material two-rotor conductor and the present variable speed induction motor were significantly improved.

さらに本出願の複数固定子誘導電動機は、誘導発電機と
しても使用することができるものであり、回転子軸4に
タービン、ガスタービン。
Furthermore, the multiple stator induction motor of the present application can also be used as an induction generator, and the rotor shaft 4 has a turbine and a gas turbine.

太陽熱発電機等直接連結して発電すれば高価な調速機を
省略することもできる。また内燃機を原動機として連結
した場合には、その内燃機の最小燃費の回転数に対応す
ることができ、風水をエネルギー源とするパワーが弱く
不安定な場合においても、その最高出力を取出せる回転
数で発電することができ、水力発電においては流速に応
じて効率よく発電でき、それぞれ複雑高価な可変ピッチ
装置あるいは調相機を省略できる。また外部電力に対し
ての同期も高価な同期装置なしで行える。また、回転子
軸に′他の回転軸を連結すると共に固定子巻線の入力側
の2相を入替えるスイッチを設け、該スイッチにより回
転子軸を正転、逆転自在とすれば、該スイッチと電圧移
相装置との操作より電気制動機としても使用することが
でき、電圧移相装置により回転速度を制御することによ
り、回転子軸に連結した回転軸の制動力を効率よく調整
できる。
If a solar thermal power generator or the like is directly connected to generate electricity, an expensive governor can be omitted. In addition, when an internal combustion engine is connected as a prime mover, it can correspond to the rotational speed that achieves the minimum fuel consumption of the internal combustion engine, and even when the power from feng shui as an energy source is weak and unstable, the rotational speed can produce its maximum output. In hydroelectric power generation, power can be generated efficiently according to the flow velocity, and complicated and expensive variable pitch devices or phase adjusters can be omitted. Furthermore, synchronization with external power can be performed without an expensive synchronization device. Furthermore, if a switch is provided that connects another rotating shaft to the rotor shaft and switches the two phases on the input side of the stator winding, and the rotor shaft can freely rotate forward or reverse, the switch It can also be used as an electric brake by operating the voltage phase shifter and the voltage phase shifter, and by controlling the rotational speed with the voltage phase shifter, the braking force of the rotating shaft connected to the rotor shaft can be efficiently adjusted.

なお、本発明は、始動時には位相差が180゜または大
きく、始動後の運転時には位相差が0°または小さくさ
れて運転する始動性改善を目的とした誘導電動機にも応
用できる。
The present invention can also be applied to an induction motor for the purpose of improving startability, which operates with a phase difference of 180 degrees or a large amount at the time of startup and with a phase difference of 0 degrees or a small amount during operation after startup.

本発明の実施例の構成において、導電性連結材によって
回転子導体と回転子導体の外側に配置された抵抗材を連
結するならば、導体間の連結における抵抗材の長さは導
体間を直接抵抗材により連結する場合よりも大きくなる
。このことは同一の抵抗値を得る場合の抵抗材の断面積
は大きくすることができて同一発熱量を得る場合を考察
すれば抵抗材の熱容量は大きくなる。
In the configuration of the embodiment of the present invention, if the rotor conductor and the resistive material disposed outside the rotor conductor are connected by the conductive connecting material, the length of the resistive material in the connection between the conductors is directly connected between the conductors. It becomes larger than when connecting by resistance material. This means that when obtaining the same resistance value, the cross-sectional area of the resistive material can be increased, and when considering the case when obtaining the same amount of heat generation, the heat capacity of the resistive material becomes large.

従って発熱による抵抗材の損傷、破壊を防止することが
できるようになった。
Therefore, it is now possible to prevent damage and destruction of the resistive material due to heat generation.

なお、前記導電性連結材はたとえば銅材により形成して
もよいし銅ニッケル合金により形成してもよい。たとえ
ば銅ニッケル合金により形成すれば抵抗値が高いので抵
抗材または前記導電性連結材の断面積を更に大きくする
ことができて好都合である。また、銅と銅ニッケル合金
の溶接性は優れているので、高トルクで長時間運転して
も破壊する可能性は少ない。更に、抵抗材として銅ニッ
ケル合金を使用したものは、発熱による抵抗値の変化が
小さく抵抗材の作用によってトルク特性が大きく影響を
受ける本発明の可変速誘導電動機の性能をきわめて向上
させる。
Note that the conductive connecting material may be formed of, for example, a copper material or a copper-nickel alloy. For example, if it is made of a copper-nickel alloy, it has a high resistance value, so it is advantageous that the cross-sectional area of the resistive material or the conductive connecting material can be further increased. Additionally, copper and copper-nickel alloy have excellent weldability, so there is little chance of breakage even when operated at high torque for long periods of time. Furthermore, the use of a copper-nickel alloy as a resistive material greatly improves the performance of the variable speed induction motor of the present invention, in which the change in resistance value due to heat generation is small and the torque characteristics are greatly affected by the action of the resistive material.

発明の効果 前記のように構成した本発明においては、抵抗材の作用
により大きなトルクを出すことができ優秀な可変速誘導
電動機とすることができる反面、抵抗材の発熱が大きく
高トルクで長時間運転すれば抵抗や回転子導体が破壊し
たり、回転子コア間の導体が酸化により損耗してしまう
が、それらの問題をすべて解決し、高トルク。
Effects of the Invention In the present invention configured as described above, a large torque can be produced by the action of the resistance material, making it possible to create an excellent variable speed induction motor. When operated, the resistor and rotor conductor may be destroyed, and the conductor between the rotor cores may be worn out due to oxidation, but these problems have been solved and high torque is achieved.

長時間の安定運転が可能な可変速誘導電動機を提供する
ことができる。
A variable speed induction motor capable of stable operation for a long time can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第10図は、本出願の実施例図である。第1図
は誘導電動機の側断面図、第2図は固定子の回動機構を
示す側面図、第3図は固定子の回動機構を示す一部を破
断した側面図、第4図は固定子に巻装した巻線のそれぞ
れを直列に連結した結線図、第5図は複数個の導体それ
ぞれを巻線の外側方に突設した連結材により短絡した部
分断面図、第6図は回転子のすべりと有効電力の関係を
示す図、第7図は回転子の電気的等価回路図、第8図は
固定子側からみた電気的等価回路図、第9図は複数個の
導体のそれぞれを抵抗材により短絡すると共に固定子に
巻装した巻線を直列に連結した場合の速度とトルクの関
係を示す図、第10図は回転子軸に通気孔を開設−した
斜視図である。 1・・・誘導電動機    2.3・・・回転子コア4
・・・回転子軸     5・・・導体6.7・・・短
絡環   8,8A〜8C・・・回転子9・・・非磁性
コア   10.11・・・側部12・・・通風胴  
   13・・・通気孔14・・・軸       1
5.16・・・軸受盤17・・・連結棒     18
・・・ナツト19.20・・・冷却用翼車 21・・・
軸受22.23・・・巻線   24・・・第1固定子
25・・・第2固定子   26.27・・・すべり軸
28・・・ストップリング 2つ・・・中継軸30・・
・中継用歯車   31・・・回動用歯車32・・・軸
受台     33A、33B・・・ギヤー34・・・
ボルト     35・・・パルスモータ−36・・・
駆動用歯車   37・・・開口部38・・・電圧移相
装置  39・・・排風孔40・・・通風孔     
41・・・環状体42・・・導電性連結材  43・・
・内周部44・・・外周部     45・・・通気孔
r・・・抵抗材 特許出願人 株式会社佐竹製作所 甑旺川;暖9容 第7図 第8図 第9図 穴 第10図
1 to 10 are illustrations of embodiments of the present application. Figure 1 is a side sectional view of the induction motor, Figure 2 is a side view showing the stator rotation mechanism, Figure 3 is a partially cutaway side view showing the stator rotation mechanism, and Figure 4 is a side view showing the stator rotation mechanism. Figure 5 is a wiring diagram in which the windings wound around the stator are connected in series, Figure 5 is a partial sectional view in which a plurality of conductors are short-circuited by connecting members protruding outward from the windings, and Figure 6 is A diagram showing the relationship between rotor slip and active power. Figure 7 is an electrical equivalent circuit diagram of the rotor. Figure 8 is an electrical equivalent circuit diagram seen from the stator side. Figure 9 is an electrical equivalent circuit diagram of the rotor. A diagram showing the relationship between speed and torque when the windings wound around the stator are connected in series, each short-circuited by a resistive material, and Figure 10 is a perspective view with ventilation holes opened in the rotor shaft. . 1... Induction motor 2.3... Rotor core 4
... Rotor shaft 5 ... Conductor 6.7 ... Short circuit ring 8,8A-8C ... Rotor 9 ... Non-magnetic core 10.11 ... Side part 12 ... Ventilation barrel
13...Vent hole 14...Shaft 1
5.16...Bearing plate 17...Connecting rod 18
... Nut 19.20 ... Cooling impeller 21 ...
Bearing 22.23...Winding 24...First stator 25...Second stator 26.27...Sliding shaft 28...Two stop rings...Relay shaft 30...
・Relay gear 31...Rotation gear 32...Bearing stand 33A, 33B...Gear 34...
Bolt 35... Pulse motor 36...
Drive gear 37... Opening 38... Voltage phase shifter 39... Ventilation hole 40... Ventilation hole
41... Annular body 42... Conductive connecting material 43...
・Inner peripheral part 44...Outer peripheral part 45...Vent hole r...Resistance material Patent applicant Satake Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)、複数個の回転子コアのそれぞれに装設した複数
個の導体のそれぞれを連通状に連結して一体的な回転子
に形成し、同一回転軸に任意の間隔を設けて軸着した前
記複数個の回転子コアに対峙する外周部に複数個の固定
子を機枠に並設し、前記複数個の固定子と対峙しない前
記複数個の回転子コア間において、前記複数個の導体を
抵抗材を介し短絡すると共に、前記複数個の固定子のう
ち少なくとも1個の固定子に関連して前記複数個の固定
子のうちいずれか一方の固定子に対峙する回転子の導体
部分に誘起する電圧と他方の固定子に対峙する前記回転
子の対応する導体部分に誘起する電圧との間に位相差を
生じさせる電圧移相装置を付設した電動機において、前
記抵抗材を前記回転子コア間の導体の外側に設けるよう
に成し、前記複数個の固定子間と前記複数個の回転子コ
ア間と前記機枠で形成する空間部を通風胴に形成し、導
入した外気により前記抵抗材を冷却放熱して前記機枠外
に排気するように前記機枠に開口部を設けて前記通風胴
に連通すると共に、前記複数個の回転子コアのそれぞれ
に両端面に貫通する通風孔を開設するか、または前記回
転軸を中空とし、前記複数個の回転子コア間において、
前記回転軸の内周部と外周部に貫通する通風孔を開設す
るか、または前記複数個の固定子の外周部に、両端面に
貫通する通風孔を開設するか、または前記各通風孔を組
み合わせて開設したことを特徴とする可変速誘導電動機
(1) A plurality of conductors installed in each of a plurality of rotor cores are connected in a continuous manner to form an integral rotor, and the rotor is attached to the same rotating shaft at arbitrary intervals. A plurality of stators are arranged in parallel on the machine frame on the outer periphery facing the plurality of rotor cores, and between the plurality of rotor cores that do not face the plurality of stators, the plurality of stators A conductor portion of the rotor that short-circuits the conductor via a resistive material and that faces one of the plurality of stators in relation to at least one stator among the plurality of stators. In an electric motor equipped with a voltage phase shift device that creates a phase difference between a voltage induced in the rotor and a voltage induced in a corresponding conductor portion of the rotor facing the other stator, the resistive material is attached to the rotor. A space formed between the plurality of stators, between the plurality of rotor cores, and the machine frame is formed in the ventilation shell so that the introduced outside air causes the An opening is provided in the machine frame to communicate with the ventilation shell so as to cool and dissipate heat from the resistance material and exhaust the heat to the outside of the machine frame, and each of the plurality of rotor cores is provided with a ventilation hole penetrating both end faces thereof. or the rotating shaft is hollow, and between the plurality of rotor cores,
Ventilation holes penetrating the inner and outer circumferences of the rotating shaft are provided, or ventilation holes penetrating both end surfaces are provided in the outer circumferences of the plurality of stators, or each of the ventilation holes is A variable speed induction motor characterized by being created in combination.
(2)、前記抵抗材と前記回転子コア間の導体を導電性
連結材により連結した請求項(1)記載の可変速誘導電
動機。
(2) The variable speed induction motor according to claim (1), wherein the conductor between the resistive material and the rotor core is connected by a conductive connecting material.
(3)、前記抵抗材の一方側を前記回転子コア間の導体
に連結し、他方側を導電性連結材に連結した請求項(1
)に記載の可変速誘導電動機。
(3) Claim (1), wherein one side of the resistive material is connected to a conductor between the rotor cores, and the other side is connected to a conductive connecting material.
) Variable speed induction motor as described in ).
(4)、前記抵抗材または前記導電性連結材を翼状に形
成した請求項(1)〜(3)のいずれかに記載の可変速
誘導電動機。
(4) The variable speed induction motor according to any one of claims (1) to (3), wherein the resistive material or the conductive connecting material is formed into a wing shape.
(5)、前記回転子導体は銅材により形成し、前記抵抗
材は銅ニッケル合金により形成し、前記導電性連結材は
銅材または銅ニッケル合金により形成した請求項(1)
〜(4)のいずれかに記載の可変速誘導電動機。
(5) Claim (1) wherein the rotor conductor is made of a copper material, the resistor material is made of a copper-nickel alloy, and the conductive connecting material is made of a copper material or a copper-nickel alloy.
The variable speed induction motor according to any one of (4) to (4).
JP63070385A 1988-03-23 1988-03-23 Variable-speed induction motor Pending JPH01243831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070385A JPH01243831A (en) 1988-03-23 1988-03-23 Variable-speed induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070385A JPH01243831A (en) 1988-03-23 1988-03-23 Variable-speed induction motor

Publications (1)

Publication Number Publication Date
JPH01243831A true JPH01243831A (en) 1989-09-28

Family

ID=13429924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070385A Pending JPH01243831A (en) 1988-03-23 1988-03-23 Variable-speed induction motor

Country Status (1)

Country Link
JP (1) JPH01243831A (en)

Similar Documents

Publication Publication Date Title
KR920000683B1 (en) Variable speed induction motor
KR930010166B1 (en) Adjustable speed induction motor
JP2571367B2 (en) Variable speed induction motor
JPH01248940A (en) Variable speed induction motor
JPS62268391A (en) Induction motor
JPH01243831A (en) Variable-speed induction motor
JPH01243832A (en) Variable-speed induction motor
JPS6318985A (en) Variable speed induction motor
JPH01243881A (en) Variable speed induction motor
JPH01234092A (en) Variable-speed induction motor
JPH01243880A (en) Variable speed induction motor
JP2937321B2 (en) Variable speed induction motor
JPH01227691A (en) Variable speed induction motor
JP2627783B2 (en) Rotor of variable speed induction motor
JP2739210B2 (en) Rotor of variable speed induction motor
JPS6311089A (en) Adjust speed induction motor
JP2627780B2 (en) Rotor of variable speed induction motor
JPH01238446A (en) Variable-speed induction motor
JPH01248991A (en) Variable speed induction motor
JPS637157A (en) Variable speed induction motor
JPH01248993A (en) Variable speed induction motor
JPH01248992A (en) Variable speed induction motor
JPH01227688A (en) Variable speed induction motor
JPS631353A (en) Variable speed induction motor
JPH01227689A (en) Variable speed induction motor