JPH01243880A - Variable speed induction motor - Google Patents

Variable speed induction motor

Info

Publication number
JPH01243880A
JPH01243880A JP63066971A JP6697188A JPH01243880A JP H01243880 A JPH01243880 A JP H01243880A JP 63066971 A JP63066971 A JP 63066971A JP 6697188 A JP6697188 A JP 6697188A JP H01243880 A JPH01243880 A JP H01243880A
Authority
JP
Japan
Prior art keywords
rotor
stator
conductor
rotor cores
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066971A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Onoki
大野木 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP63066971A priority Critical patent/JPH01243880A/en
Publication of JPH01243880A publication Critical patent/JPH01243880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To protect a resistor material form thermal breakdown, by mounting a conductive coupling member between the resistor material for shortcircuiting a plurality of rotor cores and a conductor placed between the rotor cores. CONSTITUTION:Conductors 5 in rotor cores 2, 3 mounted on a rotor shaft 4 with a predetermined interval are coupled in series and shortcircuited through a resistor material (r) formed into an annular body, thus forming a rotor 8. The resistor material (r) and the conductor 5 are coupled through a conductive coupling member 42 at a non-magnetic core section 9 arranged between the rotor cores 2, 3. On the other hand, stators 24, 25 are juxtaposed on the inner wall face of a machine frame 14 while facing with the rotor cores 2, 3. The stator 25 is rotatable relatively to the fixed stator 24, and the torque of motor is controlled through control of relative phase. By such arrangement, the resistor material can be protected from thermal damage or breakdown.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可変速誘導電動機に関するものであり、より
詳しくは、単一の回転子、複数個の固定子及び電圧移相
装置とを有し、電圧移相装置を調節することにより回転
子の回転速度及び発生トルクを任意に変化させることが
できる所謂複@固定子構成の可変速誘導電動機に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to variable speed induction motors, more particularly having a single rotor, a plurality of stators and a voltage phase shifter; The present invention relates to a variable speed induction motor with a so-called multi-stator configuration, in which the rotational speed of a rotor and the generated torque can be arbitrarily changed by adjusting a voltage phase shift device.

従来技術とその問題点 調心電動機の速度を制御する方法の一つとして電源周波
数を変える方法がある。この方法は連続的かつ広範囲な
速度制御が可能である半面、この方法で必要とする周波
数変換装置を高価とし、また周波数変換装置により交流
を直流に変換して再度交流に変換する過程において一般
に高調波および電波が発生し、これらによってコンピュ
ーター、その地名種電気制mta器の誤動作あるいはコ
ンデンサーの過熱等の障害を招くことがあり、このうち
高調波障害に対しては、フィルターを設置することによ
り対策を講じることもできるが、フィルターの設置には
コストがかかる。また低速時において一般に性能が不十
分となる等の欠点を有するものである。
Prior Art and Its Problems One method of controlling the speed of a centering motor is to change the power supply frequency. Although this method allows for continuous and wide-range speed control, the frequency converter required by this method is expensive, and the process of converting alternating current to direct current and then converting it back to alternating current with the frequency converter generally requires high frequency adjustment. Waves and radio waves are generated, and these can cause problems such as malfunction of computers and their electric controllers, or overheating of capacitors. Among these, harmonic interference can be countered by installing filters. However, installing filters is costly. Additionally, they have drawbacks such as generally insufficient performance at low speeds.

また、電動機の極数を変えて速度を制御する方法は、極
数の変換によって段階的に速度を変えることができても
、無段階的に滑かな速度制御をすることができない欠点
がある。
Furthermore, the method of controlling the speed by changing the number of poles of the electric motor has the disadvantage that even if the speed can be changed stepwise by changing the number of poles, it is not possible to control the speed steplessly and smoothly.

また、電源の電圧を変えて速度を制御する方法では、速
度制御が連続的に行える半面、特に低速度領域において
効率が悪くなる欠点がある。
Furthermore, although the method of controlling the speed by changing the voltage of the power supply allows continuous speed control, it has the disadvantage of poor efficiency, especially in the low speed range.

そして巻線型電動機において二次抵抗を変化させすべり
を変えて速度制御を行う方法は、比較釣部1iに連続的
な速度制御が可能である半面、外部からブラシとスリッ
プリングを介して回転子巻線回路へ抵抗を挿入するため
に、ブラシの消耗による保守点検を必要とし、また、か
ご形誘導雷動改は、二次抵抗を変化させて速度制御を行
うことができない問題点がある。
The method of controlling the speed by changing the secondary resistance and changing the slip in a wire-wound electric motor allows continuous speed control in the comparative fishing section 1i, but it also allows the rotor to be wound from the outside via brushes and slip rings. Inserting a resistor into the line circuit requires maintenance and inspection due to wear of the brushes, and the squirrel-cage induction lightning motion system has the problem that speed control cannot be performed by changing the secondary resistance.

上記問題点に対処するものとして、例えば、特開昭54
−129005号公報にその技術が開示してあり、この
ものは、同軸上に設置された2組の回転子鉄心および回
転子鉄心に対向してそれぞれ独立する固定子巻線を備え
た2組の固定子と、前記各回転子鉄心に跨って共通に設
置されかつ両端にてそれぞれ短絡環を介して相互間を短
絡したかご形導体と、2組の回転子鉄心間におけるかご
形導体の中央箇所にてかご形導体の相互間を短絡する高
抵抗体とを備え、始動時には固定子巻線の相互間の位相
を180°ずらぜ、始動後の運転時には位相を合わせて
給電す−る双鉄心かご形電動機であるが、始動時に固定
子巻線の相互間の位相を180°ずらすことにより始動
トルクを大にして始動特性を向上し、運転時には固定子
巻線の相互間の位相を合わせて通常のトルク特性で運転
できる点に特徴を有するものである。したがって、始動
性を向上する効果は認められたとしても、この電動機は
可変速電動機ではないから変速を必要とする負荷の動力
源として使用することができないものである。
To address the above problems, for example,
The technology is disclosed in Japanese Patent No. 129005, which includes two sets of rotor cores installed coaxially and two sets of independent stator windings facing the rotor cores. a stator, a squirrel-cage conductor that is commonly installed across the rotor cores and short-circuited at both ends via short-circuit rings, and a central location of the squirrel-cage conductor between the two sets of rotor cores; The twin iron core is equipped with a high-resistance element that shorts the squirrel-cage conductors at each other, shifts the phase of the stator windings by 180 degrees at startup, and supplies power while matching the phases during operation after startup. Although it is a squirrel cage electric motor, when starting, the phases of the stator windings are shifted by 180° to increase the starting torque and improve the starting characteristics, and during operation, the phases of the stator windings are adjusted to match each other. The feature is that it can be operated with normal torque characteristics. Therefore, even if the effect of improving startability is recognized, this electric motor is not a variable speed electric motor and cannot be used as a power source for a load that requires speed change.

なお、上記特開昭54−29005号公報において、起
動時から運転時への移行に際し、トルクの急激な変動に
よるショックを緩和する目的により瞬間的に固定子巻線
の相互の給電回路を直列接続の中間ステップを設けるこ
とも1例にあるが、この場合は、回転磁界の位相のずれ
が0°と180°の両時点のみに限定されるもので変速
目的のものではない。しかも直列に切り換えたことによ
り固定子に加わる電圧は半減されるのでトルクは1/4
に減殺されることも相俟って変速制御が全く不可能にな
ることは、この公報に開示する要旨が変速を目的としな
いことからも明白なところである。
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 54-29005, the power supply circuits of the stator windings are momentarily connected in series for the purpose of mitigating the shock caused by sudden fluctuations in torque when transitioning from startup to operation. An example is to provide an intermediate step, but in this case, the phase shift of the rotating magnetic field is limited to only the points at which the phase shift is 0° and 180°, and is not intended for speed change. Moreover, by switching to series, the voltage applied to the stator is halved, so the torque is reduced to 1/4.
It is clear from the fact that the subject matter disclosed in this publication is not aimed at shifting, that this together with the reduction in speed makes it impossible to control the shift at all.

要するに特開昭54−29005号公報のものは、仮に
「固定子巻線を給電回路に対して直列接続と並列接続と
に切り換える中間ステップ」云々とあるが、この直列接
続は変速目的には全く用をなさない接続に過ぎない。
In short, JP-A No. 54-29005 tentatively states that there is an "intermediate step in which the stator windings are switched between series connection and parallel connection with respect to the power supply circuit," but this series connection is not suitable for the purpose of speed change. It's just a useless connection.

そして、特開昭49−86807号公報に提案されてい
るものは、多相巻線とかご形ロータとを備えたステータ
を有する非同期電気モータであって伝導バー、短絡回路
端環および強磁積層からなるものにおいて、ステータは
第一と第二の巻線区分からなり、これらの区分は相互に
およびロータの異る部分に隣接して共軸状に配置され、
かつ同じ周波数の交流を供給されることができ、また第
二巻線区分によりロータの巻線に誘導される起電力を変
化する手段を設けた非同期電気モータであるが、このも
のは、機械的あるいは電気的手段により、2個のステー
ター区分間の位相差を設けて一応回転速度を変えること
ができるものではあるが、2個のステーター区分間の位
相角が同相のときを除いてトルクが小ざく、負荷が掛る
と直ちに運転が停止する欠陥を持つ実用に全く供しない
ものであり、負荷を連結した状態において、起動・停止
を頻繁に反復する動力源として運転することのできない
重大な問題点を未解決とするものであった。
JP-A-49-86807 proposes an asynchronous electric motor having a stator with polyphase windings and a squirrel-cage rotor, including conduction bars, short-circuit end rings, and ferromagnetic laminations. wherein the stator comprises first and second winding sections, the sections being coaxially arranged adjacent to each other and different parts of the rotor;
an asynchronous electric motor which can be supplied with an alternating current of the same frequency and is provided with means for varying the electromotive force induced in the rotor windings by means of a second winding section; Alternatively, although it is possible to change the rotation speed by creating a phase difference between the two stator sections using electrical means, the torque is small unless the phase angle between the two stator sections is in phase. It has a defect that it stops operating immediately when a load is applied, which makes it completely unusable for practical use, and it has a serious problem that it cannot be operated as a power source that repeatedly starts and stops when a load is connected. was left unresolved.

発明の目的 本発明は、上記従来技術の欠点を改善するためのもので
、上記特開昭54−29005号公報および特開昭49
−86807号公報のそれぞれの総和では奏することの
できない特異のトルク特性を求めるものであり、速度制
御領域を広範囲に且つその速度制御を無段階的として任
意の所望速度に設定できると共に、任意のトルクで起動
させることができ、また起動点から最高回転速度までの
全速度領域に亘り、トルク特性と効率の優れた可変速誘
導電動機を提供することにある。
OBJECTS OF THE INVENTION The present invention is intended to improve the drawbacks of the above-mentioned prior art, and is directed to
-86807 Publication seeks a unique torque characteristic that cannot be achieved by the sum of each component, and the speed control range can be widened and the speed control can be set steplessly to any desired speed, and any torque can be set to any desired speed. It is an object of the present invention to provide a variable speed induction motor that can be started at a speed of 100 Hz and has excellent torque characteristics and efficiency over the entire speed range from the starting point to the maximum rotational speed.

なお、本発明の可変速誘導電動機は、単相または3相電
源等に接続して使用され、回転子の形態は、普通かご形
、二重かご形、深溝かご形。
The variable speed induction motor of the present invention is used by being connected to a single-phase or three-phase power supply, and the rotor has a normal squirrel cage type, a double squirrel cage type, or a deep groove cage type.

特殊かご形9巻線形等のいずれの形式のものにも適用で
きるものであり、本発明の説明に用いる導体とは、かご
形回転子コアに装設した導体、および巻線形回転子コア
に巻装した巻線のそれぞれを総称するものである。
It can be applied to any type of special squirrel-cage rotor with 9 windings, etc., and the conductors used in the explanation of the present invention refer to conductors installed in the squirrel-cage rotor core and conductors wound around the wound rotor core. This is a general term for each of the windings installed.

問題点を解決するための手段 上記技術的課題を達成するために、本発明は、複数個の
回転子コアのそれぞれに装設した複数個の導体のそれぞ
れを連結して一体的な回転子に形成し、同一回転軸に任
意の間隔を設けて軸着した前記複数個の回転子コアに対
峙する外周部に複数個の固定子を機枠に並設し、前記複
数個の固定子と対峙しない前記複数個の回転子コア間に
おいて、前記複数個の導体を抵抗材を介して短絡すると
共に、前記複数個の固定子のうち、少なくとも1個の固
定子に関連して前記複数個の固定子のうちのいずれか一
方の固定子に対峙する回転子の導体部分に誘起する電圧
と他方の固定子に対峙する前記回転子の対応する導体部
分に誘起する電圧との間に位相差を生じさせる電圧移相
装置を付設した電動機において、前記抵抗材を前記回転
子コア間の導体の外側に設けるように前記抵抗材と前記
回転子コア間の導体の間に通電性連結材を装着すると共
に、前記回転子コア間の導体または前記連結材の一部ま
たは全部を耐熱材により囲繞したことを問題の解決の手
段とした。
Means for Solving the Problems In order to achieve the above technical problem, the present invention connects each of a plurality of conductors installed in each of a plurality of rotor cores to form an integral rotor. A plurality of stators are arranged in parallel on the machine frame on an outer peripheral portion facing the plurality of rotor cores which are formed and mounted on the same rotating shaft at arbitrary intervals, and are opposed to the plurality of stators. The plurality of conductors are short-circuited through a resistive material between the plurality of rotor cores that are not connected to each other, and the plurality of fixing elements are connected to at least one stator among the plurality of stators. A phase difference is created between a voltage induced in a conductor portion of the rotor facing one of the stators and a voltage induced in a corresponding conductor portion of the rotor facing the other stator. In the electric motor equipped with a voltage phase shifting device, a conductive connecting member is installed between the resistive material and the conductor between the rotor cores so that the resistive material is provided outside the conductor between the rotor cores, and A means for solving the problem is to surround a part or all of the conductor between the rotor cores or the connecting member with a heat-resistant material.

更に本発明の特別の構成として回転子導体を銅材により
形成すると共に抵抗材を銅ニッケル合金により形成した
Furthermore, as a special configuration of the present invention, the rotor conductor is made of a copper material, and the resistance material is made of a copper-nickel alloy.

更に本発明の特別の構成として前記導電性連結材を銅ま
たは銅ニッケル合金により形成した。
Furthermore, as a special feature of the present invention, the conductive connecting material is made of copper or a copper-nickel alloy.

作  用 本発明は、任意手段により、それぞれの固定子間に生起
する回転磁界の磁束に位相のずれを生じさせると、磁束
の位相のずれに応じて回転子導体に誘起する合成電圧が
変化し、回転子導体に誘起する電圧を増減制御して回転
子の回転速度を任意に変えることができる。
Effect of the present invention: When a phase shift is caused in the magnetic flux of the rotating magnetic field generated between the respective stators by an arbitrary means, the combined voltage induced in the rotor conductor changes in accordance with the phase shift of the magnetic flux. , the rotational speed of the rotor can be arbitrarily changed by increasing or decreasing the voltage induced in the rotor conductor.

ところで、前記抵抗材に電流が流れれば当然ながら発熱
し、大きなトルクを得れば得るほど発熱間は大きくなる
。本発明の構成の一つとして回転子コア間において回転
子導体を抵抗材により短絡連結する際に、通電性連結材
によって前記抵抗材を回転子導体の外側に配するように
して抵抗材の長さを大にした。そのために抵抗材の断面
積を大きくしても同等な抵抗値を得られるようになり、
発熱による抵抗材の破壊を防止できるようになった。
By the way, when current flows through the resistive material, it naturally generates heat, and the greater the torque obtained, the longer the period of heat generation becomes. As one of the configurations of the present invention, when the rotor conductors are short-circuited and connected between the rotor cores using a resistive material, the resistive material is disposed outside the rotor conductor using a conductive connecting material, so that the length of the resistive material is long. I made it bigger. Therefore, it is now possible to obtain the same resistance value even if the cross-sectional area of the resistance material is increased.
It is now possible to prevent the resistance material from being destroyed due to heat generation.

本発明においては変速範囲を大きくしようとすれば抵抗
材の抵抗値を大ぎくする必要があり、また大きなトルク
を得ようとすれば大きな電流を抵抗材に流す必要があり
、抵抗材の発熱による破壊の危険性がつきまとっていた
In the present invention, if you want to widen the shifting range, it is necessary to increase the resistance value of the resistance material, and if you want to obtain a large torque, it is necessary to pass a large current through the resistance material, which causes heat generation in the resistance material. There was a constant risk of destruction.

更に本発明の構成においては、前記回転子導体または前
記連結材の一部または全部を耐熱材によって囲繞したこ
とより抵抗材の発熱の影響を受けて導体または連結材が
きわめて高温になリ、表面が酸化して損耗をしてしまう
状況であったが、その問題も前記耐熱材の作用により解
消した。なお「囲繞」にはいゆわるコーティングをも含
む。
Furthermore, in the configuration of the present invention, since a part or all of the rotor conductor or the connecting material is surrounded by a heat-resistant material, the conductor or the connecting material becomes extremely high temperature under the influence of heat generation of the resistive material, and the surface of the conductor or the connecting material becomes extremely high. However, this problem was resolved by the action of the heat-resistant material. Note that "surrounding" also includes so-called coating.

また、本発明の特別構成として回転子導体を銅材により
形成し、抵抗材を銅ニッケル合金により形成したものは
銅材の抵抗を小さくし得るので、最高回転速度を高くで
きて効率も良くすることができると共に、抵抗材を銅ニ
ッケル合金とすることにより、発熱による抵抗値変化を
小さくすることができて速度制御を安定化することがで
きた。
In addition, as a special configuration of the present invention, the rotor conductor is made of a copper material and the resistance material is made of a copper-nickel alloy, which makes it possible to reduce the resistance of the copper material, thereby increasing the maximum rotation speed and improving efficiency. In addition, by using a copper-nickel alloy as the resistance material, changes in resistance value due to heat generation could be reduced, and speed control could be stabilized.

更に前記連結材を銅または銅ニッケル合金としたものは
回転子導体を銅材とした場合または抵抗材を銅ニッケル
合金とした場合に溶接性に優れ高トルクの長時間運転を
も可能とせしめたのである。
Furthermore, when the connecting material is made of copper or a copper-nickel alloy, when the rotor conductor is made of copper material or the resistance material is made of a copper-nickel alloy, it has excellent weldability and enables long-term operation with high torque. It is.

実施例 本発明の実施例を第1図〜第10図に基づき説明する。Example Embodiments of the present invention will be described based on FIGS. 1 to 10.

第1図〜第5図により本発明の一実施例を説明する。(
第1図、第3図参照)符号1は誘導雷1jIJ機であり
、該誘導電動機1は以下のように構成しである。鉄心か
らなる回転子コア2,3を任意の間隔を設けて回転子軸
4に装着し、回転子コア2,3間に非磁性体コア9を介
設しである。回転子コア2.3に装設した複数個の導体
5・・・のそれぞれを直列に連結して一体的な回転子8
を形成し、その直列に連結した複数個の導体5・・・の
両端部を短絡環6,7に連結しである。また回転子コア
2.3.9に回転子8の両側部10.11に連絡する複
数個の通Fgi胴12・・・を設け、通風W412・・
・から直交状に回転子8の外周部に貫通ずる複数個の通
気孔13・・・を穿設しである。(第1図、第2図参照
)円筒状の機枠14の両側部に設けた軸受盤15.16
を連結棒17・・・にナツト18・・・留めして一体的
に組付け、回転子8の両側部に冷却用翼車19゜20を
装着し、回転子軸4の両端部を軸受盤15−16に嵌装
した軸受21.21に軸支し、回転子4を回転自在とし
である。
An embodiment of the present invention will be described with reference to FIGS. 1 to 5. (
(See FIGS. 1 and 3) Reference numeral 1 denotes an induction lightning 1jIJ machine, and the induction motor 1 is constructed as follows. Rotor cores 2 and 3 made of iron cores are mounted on a rotor shaft 4 with an arbitrary spacing between them, and a non-magnetic core 9 is interposed between the rotor cores 2 and 3. A plurality of conductors 5 installed in the rotor core 2.3 are connected in series to form an integrated rotor 8.
A plurality of conductors 5 are connected in series, and both ends of the conductors 5 are connected to short-circuit rings 6 and 7. In addition, a plurality of ventilation Fgi cylinders 12 .
A plurality of ventilation holes 13 are perforated orthogonally through the outer periphery of the rotor 8. (See Figures 1 and 2) Bearing discs 15 and 16 provided on both sides of the cylindrical machine frame 14
are integrally assembled by fastening nuts 18 to connecting rods 17, cooling impellers 19 and 20 are attached to both sides of the rotor 8, and both ends of the rotor shaft 4 are attached to bearing discs. The rotor 4 is rotatably supported by bearings 21 and 21 fitted in the bearings 15-16.

回転子コア2.3に対峙する外側部に巻線22.23を
施した第1固定子24と第2固定子25を機枠14に並
設し、機枠14と第1固定子24.第2固定子25との
間にすべり軸受26.27を装設し、すべり軸受26.
27を機枠14に嵌装したストップリング28・・・に
よって固定し、第1固定子24と第2固定子25の一側
外周面にギヤー33A、33Bを嵌着しである。(第2
図、第3図参照)i枠14の外周部に固設したパルスモ
ータ−35に駆動用歯車36を軸着し、機枠14の外側
部に装着した軸受台32に中継軸29を回転自在に軸架
し、中継軸29の両端部に中継用歯車30と回動用歯車
31とを軸着し、機枠14に設けた開口部37.37か
ら駆動用歯車36と回動用歯車31とを機枠14内に挿
入し、回動用歯車31を第2固定子25に嵌着したギヤ
ー33Bに係合させ、駆動用歯車36を第1固定子24
に嵌着したギヤー33Aに係合させると共に、駆動用歯
車36と一体的に形成した連動歯車34に中継用歯車3
0を係合し、第1固定子24と第2固定子25とを回転
子8と同心的に回動自在に形設し、第1固定子24と第
2固定子25とにより電圧移相装置38に形成し、可変
速誘導電動機としある。39は排風孔、40は、軸受盤
15.16に複数個穿設した通風孔である。
A first stator 24 and a second stator 25, each having a winding 22.23 on the outer side facing the rotor core 2.3, are arranged side by side on the machine frame 14, and the machine frame 14 and the first stator 24. A sliding bearing 26.27 is installed between the second stator 25 and the sliding bearing 26.27.
27 is fixed by a stop ring 28 fitted to the machine frame 14, and gears 33A and 33B are fitted to the outer peripheral surfaces of one side of the first stator 24 and the second stator 25. (Second
(See Figure 3) A driving gear 36 is pivotally attached to a pulse motor 35 fixed to the outer periphery of the i-frame 14, and the relay shaft 29 is rotatable on a bearing stand 32 attached to the outer side of the machine frame 14. The relay gear 30 and the rotation gear 31 are mounted on both ends of the relay shaft 29, and the drive gear 36 and the rotation gear 31 are inserted through the openings 37 and 37 provided in the machine frame 14. It is inserted into the machine frame 14, the rotating gear 31 is engaged with the gear 33B fitted on the second stator 25, and the driving gear 36 is connected to the first stator 24.
The relay gear 3 is engaged with the gear 33A fitted on the drive gear 36, and the interlocking gear 34 is integrally formed with the drive gear 36.
0, the first stator 24 and the second stator 25 are configured to be rotatable concentrically with the rotor 8, and the voltage phase is shifted by the first stator 24 and the second stator 25. The device 38 is formed as a variable speed induction motor. 39 is an exhaust hole, and 40 is a plurality of ventilation holes bored in the bearing plate 15, 16.

次に第1固定子24と第2固定子25のそれぞれに巻装
した巻線22.23の結線について説明する。(第4図
参照)第1.第2固定子24.25のそれぞれにスター
結線を施した巻線22.23とを直列に連結する。即ち
、第1固定子24の巻線22の端子A、B、Cを商用3
相電源A、B、Cに連結すると共に、巻線22の端子a
、b、cを第2固定子25の巻線23の端子A、B、C
に連結し、巻線23の端子a。
Next, the connection of the windings 22 and 23 wound around the first stator 24 and the second stator 25 will be explained. (See Figure 4) 1. Star-connected windings 22, 23 are connected in series to each of the second stators 24, 25. That is, the terminals A, B, and C of the winding 22 of the first stator 24 are
Connected to phase power supplies A, B, and C, and terminal a of winding 22
, b, c are the terminals A, B, C of the winding 23 of the second stator 25.
and terminal a of the winding 23.

b、cを短絡して連結しである。b and c are connected by short-circuiting them.

(第5図参照)回転子8を形成する回転子コア2.3間
に介設した非磁性体コア9部において、複数個の導体5
・・・のそれぞれを短絡する連結材として、銅ニッケル
合金、ニクロム線、炭素混入鋼1通電性セラミック等の
抵抗材rを設け、抵抗材rは第1.第2固定子24.2
5に巻装した巻線22.23よりも外側方に突出する環
状体41に形成し、環状体41と複数個の導体5・・・
とを導電性連結材(銅)42・・・により連結し、複数
個の導体5・・・のそれぞれは環状体41・・・の抵抗
材rによって短絡しである。なお、導電性連結材42は
銅ニッケル合金としてもよい。ただし、銅または銅ニッ
ケル合金に限定されるものではない。
(See FIG. 5) In the non-magnetic core 9 portion interposed between the rotor cores 2 and 3 forming the rotor 8, a plurality of conductors 5
A resistive material r such as a copper nickel alloy, nichrome wire, carbon-containing steel 1, and conductive ceramic is provided as a connecting material to short-circuit each of the first... Second stator 24.2
The annular body 41 is formed into an annular body 41 that protrudes outward from the windings 22, 23 wound around the conductor 5, and the annular body 41 and the plurality of conductors 5...
are connected by a conductive connecting material (copper) 42..., and each of the plurality of conductors 5... is short-circuited by a resistance material r of the annular body 41.... Note that the conductive connecting material 42 may be made of a copper-nickel alloy. However, it is not limited to copper or copper-nickel alloy.

以下に上記構成における作用を説明する。The operation of the above configuration will be explained below.

第1固定子24の巻線22に商用3相電源から通電する
と、固定子24.25に回転磁界が生じて回転子8に電
圧が誘起され、回転子8の導体5・・・に電流が流れて
回転子8は回転する。
When the windings 22 of the first stator 24 are energized from a commercial three-phase power supply, a rotating magnetic field is generated in the stator 24.25, voltage is induced in the rotor 8, and current is generated in the conductors 5 of the rotor 8. The flow causes the rotor 8 to rotate.

第1固定子24に対して第2固定子25それぞれの回動
借をゼロとしたときには、それぞれの固定子24.25
に生じる回転磁界の磁束に位相のずれがなく、その詳細
は後述する如く連結材となず抵抗材r・・・には電流が
流れないので、一般の誘導電動機と同一のトルク特性を
持つものである。
When the rotational borrow of each second stator 25 with respect to the first stator 24 is set to zero, each stator 24.25
There is no phase shift in the magnetic flux of the rotating magnetic field generated in the motor, and as will be explained in detail later, no current flows through the resistive material r..., which is not a connecting material, so it has the same torque characteristics as a general induction motor. It is.

次に、パルスモータ−35を作動して第1固定子24と
第2固定子25のそれぞれを逆方向に回動して位相角で
θだけ回動した場合について説明する。電圧移相装置3
8となす第1固定子24と第2固定子25が作る回転磁
界の磁束φ1.φ2の位相はθだけずれており、そのた
め第1固定子24と第2固定子25により回転子8の導
体5・・・に誘起される電圧61.62の位相はθだけ
ずれている。今、第2固定子25によって回転子8の導
体5・・・に誘起される電圧d2を基準にとし、該電圧
を62= S Eとする。ここでSはすべり、Eはすべ
り 1のときの誘起電圧である。このとき第1固定子2
4によって導体5A GCX起される電圧d1は、Q+
=SEεJQとなる。
Next, a case will be described in which the pulse motor 35 is operated to rotate the first stator 24 and the second stator 25 in opposite directions by a phase angle of θ. Voltage phase shifter 3
The magnetic flux φ1.8 of the rotating magnetic field created by the first stator 24 and the second stator 25. The phase of φ2 is shifted by θ, and therefore the phase of the voltages 61, 62 induced in the conductors 5 of the rotor 8 by the first stator 24 and the second stator 25 is shifted by θ. Now, using the voltage d2 induced by the second stator 25 in the conductor 5 of the rotor 8 as a reference, let this voltage be 62=SE. Here, S is slip and E is the induced voltage when slip is 1. At this time, the first stator 2
The voltage d1 caused by conductor 5A GCX by 4 is Q+
=SEεJQ.

(E=すべり1の時の誘起電圧) 第6図に示すものは、非磁性体コア9部において複数個
の導体5・・・を短絡する抵抗材r・・・が装着されて
いない場合の回転子8のすべりSと回転子入力の有効電
力Pとの関係を示すもので、電圧の位相がθ=0″のと
き有効電力Pは最大となり、O′″〈θ< 180’″
のときはそれよりも小さなものとなる。ここで導体5・
・・の抵抗およびインダクタンスをRおよびLとし、電
源の角周波数をωとすれば、有効電力Pの極大はS= 
(R/ωL) のとき現われる。
(E = induced voltage when slip is 1) What is shown in Fig. 6 is the case where the resistive material r... that short-circuits the plurality of conductors 5... is not installed in the non-magnetic core 9 section. This shows the relationship between the slip S of the rotor 8 and the active power P of the rotor input.When the voltage phase is θ=0'', the active power P is maximum, and O'''<θ<180'''
When , it becomes smaller than that. Here conductor 5・
If the resistance and inductance of ... are R and L, and the angular frequency of the power source is ω, then the maximum active power P is S=
Appears when (R/ωL).

有効電力Pは誘導電動機1の駆動トルクと比例するので
、パルスモータ−35を作動して電圧移相装置38の第
1固定子24と第2固定子25とを回動させることによ
って回転子8に誘起する電圧を調整し、回転子の速度を
無段階的に制御することができる。
Since the active power P is proportional to the driving torque of the induction motor 1, the rotor 8 is rotated by operating the pulse motor 35 to rotate the first stator 24 and the second stator 25 of the voltage phase shifter 38. By adjusting the voltage induced in the rotor, the speed of the rotor can be controlled steplessly.

次に、回転子8の導体5・・・の短絡環6.7hSら連
結材までのそれぞれの抵抗をR1,R2、またインダク
タンスをLl、L2とし、電源の角周波数をωとし、各
導体5・・・のそれぞれを短絡する抵抗材の抵抗をrと
すれば、回転子8の電気的等価回路は第7図のようにな
り、符号I+、12.13は各枝路を流れる電流を示す
ものである。
Next, let R1 and R2 be the respective resistances from the short-circuit ring 6.7hS to the connecting member of the conductor 5 of the rotor 8, let the inductance be Ll and L2, let the angular frequency of the power source be ω, and let each conductor 5 If the resistance of the resistive material that short-circuits each of ... is r, the electrical equivalent circuit of the rotor 8 is as shown in Fig. 7, and the symbols I+ and 12.13 indicate the current flowing through each branch. It is something.

次に、第7図に示すものを両固定子24,25側からみ
た等価回路に変換すると第8図のようになり、R+=R
z、LI=L2でθ= o’のときには13=II−I
2= 0となり抵抗材rには電流が流れないことになる
。このことはθ=0°のときにはトルクTはrがないと
きの値に等しいことを意味している。従って、θ=0°
のときは従来の誘導電動機と同一のトルク特性を持つこ
とになる。
Next, when converting the circuit shown in Fig. 7 into an equivalent circuit seen from both stators 24 and 25 side, it becomes as shown in Fig. 8, and R+=R
z, when LI=L2 and θ= o', 13=II-I
2=0, and no current flows through the resistor material r. This means that when θ=0°, the torque T is equal to the value without r. Therefore, θ=0°
When , it will have the same torque characteristics as a conventional induction motor.

次に、RI=R2,Ll=L2でθ=180゜のときに
は、I+=−12,13=I+−12=2■1となり、
従来の誘導電動機において回転子導体の抵抗をRI=R
2=RとすればRはR+2rに増加したと同様な結果と
なっている。
Next, when RI=R2, Ll=L2 and θ=180°, I+=-12, 13=I+-12=2■1,
In a conventional induction motor, the resistance of the rotor conductor is RI=R
If 2=R, the result is the same as if R were increased to R+2r.

上記回転子8の回転により、軸受盤15,16に穿設し
た通用口40・・・から冷却用翼車19゜20により機
枠14内に外気を吸引し、冷却用翼車19.20により
第1.第2固定子24゜25、巻線22.23に通風し
て冷却し、また通用71412・・・を介し通気孔13
・・・に流通させる風により回転子コア2,3、導体5
・・・、抵抗材r等を冷却してそれぞれの機能を安定的
に作用させる。また、第1.第2固定子24.25の回
動はパルスモータ−35をスイッチにより正・逆回転さ
せて行うが、第1固定子24と第2固定子250回動差
を大きく設け、再固定子24.25それぞれの電圧の位
相のずれを大きくして低速回転に制御すると、冷却用翼
車19゜20の旋回速度の低下により通風冷却作用が減
衰し、また、連結材rの発熱度が高くなるが、抵抗材「
を巻線22.23よりも外側方にも設けであるから、低
速回転でも周速度が大きいために、抵抗材r自身の旋回
による通気によって放熱することができる。第1.第2
固定子24゜25の回vJtjM構としてはパルスモー
タ−35に限定されるものではなく他の正逆転モータで
も、また気体、液体シリンダー等によるサーボ機構等任
意の駆動装置を転用できるものであり、また手動ハンド
ルによって操作する場合と第1固定子24と第2固定子
25のいずれか一方のみを回動する場合もある。そして
、固定子の回動駆動装置の作動に関連して固定子の回動
を任意の作動機構により開放またはロックをする。
As the rotor 8 rotates, outside air is sucked into the machine frame 14 by the cooling impellers 19 and 20 through the communication ports 40 bored in the bearing discs 15 and 16, and the cooling impellers 19 and 20 1st. The second stator 24゜25, the windings 22, 23 are ventilated to cool them, and the ventilation holes 13 are
The rotor cores 2 and 3 and the conductor 5 are
. . . The resistive material r, etc. are cooled to stably perform their respective functions. Also, 1st. The second stator 24.25 is rotated by rotating the pulse motor 35 in forward and reverse directions using a switch, but by providing a large difference in rotation between the first stator 24 and the second stator 250, the re-stator 24. 25 If the phase shift of each voltage is increased and the rotation speed is controlled to be low, the ventilation cooling effect will be attenuated due to the decrease in the rotational speed of the cooling impeller 19°20, and the heat generation of the connecting member r will increase. , resistance material
are also provided on the outer side of the windings 22, 23, and the circumferential speed is high even at low speed rotation, so that heat can be dissipated by ventilation due to the rotation of the resistance material r itself. 1st. Second
The rotating structure of the stator 24° and 25 is not limited to the pulse motor 35, but can be any other forward/reverse motor, or any drive device such as a servo mechanism using a gas or liquid cylinder, etc. Further, there are cases where the operation is performed using a manual handle, and there are cases where only one of the first stator 24 and the second stator 25 is rotated. The rotation of the stator is then released or locked by an arbitrary actuation mechanism in conjunction with the operation of the stator rotation drive device.

次に、第1固定子24と第2固定子25のそれぞれに巻
装した巻線22.23を直列に連結した作用につき説明
する。
Next, the effect of connecting the windings 22 and 23 wound around the first stator 24 and the second stator 25 in series will be explained.

巻線22.23を直列に連結しであるために、巻線22
に商用3相電源から入力して巻線22゜23間に電流は
流れるが、仮に巻線22.23のそれぞれの抵抗の相違
あるいは再固定子24゜25の容量の大きさに相違があ
っても、それとは無関係に、それぞれの巻線22.23
に流れる電流の大きさは等しく、したがって第1固定子
24と第2固定子25のそれぞれから回転子8の導体5
・・・に誘起して流れる電流の大きさは等しくなる作用
と、再固定子24.25間の電圧の位相差に起因するベ
クトル差分の電流は複数個の導体5・・・のそれぞれを
連結材となす抵抗材rを介して必然的に流れるという強
制力が生じる作用との相乗効果により、第9図に示すす
べりとトルク特性のように効率の改善と低速回転領域に
おいて大きなトルクを出すことができ、負荷を連結した
状態においてもそれぞれの速度領域ごとに起動を容易と
し、負荷の起動特性に順応して滑らかな起動とすること
、あるいは高トルクで起動すること等任意に使い分けが
でき、起動・停止を頻繁に反復する動力源に最適に対応
できる。そして回転子8の変速は、電圧移相装置38に
より位相のずれを制御して回転子8の導体5・・・に流
れる電流を増減に変化させ、回転子8の回転速度を任意
に変えることができる。
Since the windings 22 and 23 are connected in series, the windings 22 and 23 are connected in series.
A current is input from a commercial three-phase power source and flows between the windings 22 and 23, but if there is a difference in the resistance of each of the windings 22 and 23 or a difference in the capacitance of the stator 24 and 25. Also, independently of that, each winding 22.23
The magnitude of the current flowing through the conductor 5 of the rotor 8 is equal, therefore, from each of the first stator 24 and the second stator 25 to the conductor 5 of the rotor 8
The magnitude of the current induced in... becomes equal, and the vector difference current caused by the phase difference in the voltage between the re-stators 24 and 25 connects each of the plurality of conductors 5... Due to the synergistic effect of the forced force that inevitably flows through the material and the resistance material r, it is possible to improve efficiency and generate large torque in the low speed rotation region, as shown in the slip and torque characteristics shown in Figure 9. Even when a load is connected, it is easy to start in each speed range, and it can be used as desired, such as smooth starting according to the starting characteristics of the load, or starting with high torque. Optimal support for power sources that frequently start and stop. To change the speed of the rotor 8, the voltage phase shifter 38 controls the phase shift to increase or decrease the current flowing through the conductors 5 of the rotor 8, thereby arbitrarily changing the rotational speed of the rotor 8. Can be done.

なお、巻1122.23を直列に連結した第1固定子2
4と第2固定子25のそれぞれから回転子8の導体5・
・・に流れる電流の大きさに対し、複数個の導体5・・
・間に抵抗材rを介して短絡して流れる電流の比率は、
抵抗材rの抵抗値およびすべりとは無関係にPθ(P=
極対数、θ=位相角)の値によって決定され、(上記比
率は、Pθ=πが最大でPθ=0でゼロとなる)Pθが
一定であれば、一般の巻線形誘導電!l1機の二次挿入
抵抗を一定とした場合と同様のすべりとトルク特性にな
り、Pθが小になると回転子8の導体5・・・に流れる
電流の比率が小となり、Pθを小さくすることは一般の
巻線形誘導電動機の二次挿入抵抗を小さくすることと同
等の作用をすることとなる。そして再固定子24.25
に定格電流を流した場合において、位相差θを任意に変
えてもすべり値の選定と抵抗材の抵抗値の設計次第によ
り、最高速度の持ち定格電流とトルク特性とをそれぞれ
の変速領域においてもほぼ同等に作用させることができ
る。また、第1.第2固定子24.25の巻線22.2
3を直列に連結してあっても、仮に導体5・・・間に連
結材を設けて短絡していない場合は、一方の固定子から
回転子導体5・・・にはほとんど電圧が誘起されない状
態となり、再固定子24.25の巻線22.23それぞ
れを並列に電源に連結しものよりも効率、トルクは低下
する現象となる。
In addition, the first stator 2 in which windings 1122.23 are connected in series
4 and the second stator 25, respectively, of the rotor 8.
For the magnitude of the current flowing in..., multiple conductors 5...
・The ratio of the current flowing through a short circuit through the resistive material r is:
Pθ (P=
The number of pole pairs, θ = phase angle) is determined by the value of (the above ratio is maximum when Pθ = π and becomes zero when Pθ = 0).If Pθ is constant, the general winding induction voltage! The slip and torque characteristics are the same as when the secondary insertion resistance of the l1 machine is constant, and as Pθ becomes smaller, the ratio of current flowing through the conductor 5 of the rotor 8 becomes smaller, and Pθ can be reduced. This has the same effect as reducing the secondary insertion resistance of a general wound induction motor. and re-stator 24.25
Even if the phase difference θ is arbitrarily changed, depending on the selection of the slip value and the design of the resistance value of the resistor material, the maximum speed, rated current and torque characteristics can be maintained even in each speed range. It can be made to work almost equally. Also, 1st. Winding 22.2 of second stator 24.25
3 are connected in series, if a connecting material is provided between the conductors 5 and there is no short circuit, almost no voltage will be induced from one stator to the rotor conductor 5. This results in a phenomenon in which the efficiency and torque are lower than when the windings 22 and 23 of the stator 24 and 25 are connected in parallel to the power supply.

なお、両固定子24.25に巻装した巻線22.23を
電源に並列して連結する場合においては、巻線22.2
3の双方または一方に変流器を連結し、両固定子24.
25に流れる電流を同一にすれば前記した直列連結した
ものと同一作用を得ることができる。
Note that when the windings 22.23 wound around both stators 24.25 are connected in parallel to the power supply, the windings 22.2
A current transformer is connected to both or one of the stators 24.
If the currents flowing through the transistors 25 are the same, the same effect as that of the series connection described above can be obtained.

第10図に示すものは、回転軸4を中空軸とし、回転子
コア263間において内周部43と外周部44に貫通す
る複数個の通気孔45・・・を開設した実施例であり、
回転軸4の両端部から外気を導入して抵抗材rに通気さ
せることができ、抵抗材rの冷却に効果的である。
What is shown in FIG. 10 is an embodiment in which the rotating shaft 4 is a hollow shaft, and a plurality of ventilation holes 45 are provided between the rotor core 263 and penetrating the inner peripheral part 43 and the outer peripheral part 44.
Outside air can be introduced from both ends of the rotating shaft 4 to ventilate the resistance material r, which is effective for cooling the resistance material r.

なお、回転軸4の一側部を閉塞したその反対側に送風機
を連結して通気孔45・・・を介し抵抗材rを冷却する
場合と、軸受盤15.16のいずれか側の通風孔40に
送風機に連通ずる空気管を連結して抵抗材rおよび巻線
22.23を冷却する場合もあり、送風機に空気冷却機
を介設することもある。
In addition, when one side of the rotating shaft 4 is closed and a blower is connected to the opposite side to cool the resistance material r through the ventilation holes 45... 40 may be connected to an air pipe communicating with a blower to cool the resistive material r and the windings 22, 23, or an air cooler may be interposed in the blower.

さらに、電圧位相装置として巻線22.23のいずれか
に位相切換用スイッチを連結づること、あるいは単相変
圧器と結線切換スイッチとにより位相切換器とすること
、誘導電圧調整器等を連結することができる。
Furthermore, a phase switching switch can be connected to either of the windings 22 or 23 as a voltage phase device, or a phase switching device can be formed using a single-phase transformer and a connection switching switch, or an induced voltage regulator can be connected. be able to.

なお、本発明の実施例においては、回転子コア間の回転
子導体または前記導電性連結材はレラミック、ステンレ
ス鋼、樹脂、ゴム、ガラス。
In the embodiment of the present invention, the rotor conductor between the rotor cores or the conductive connecting material is made of reramic, stainless steel, resin, rubber, or glass.

石綿、耐熱性塗料等により囲繞される。前記回転子コア
間の導体または前記導電性連結材のすべての部分が囲繞
されることもあり、抵抗材に近い一部が囲繞されること
もある。本発明の実施例として前記したように磁性体コ
アにより囲繞される例もある。
Surrounded by asbestos, heat-resistant paint, etc. All parts of the conductor between the rotor cores or the conductive coupling material may be surrounded, or a portion close to the resistive material may be surrounded. As an embodiment of the present invention, there is also an example in which the magnetic core is surrounded by a magnetic core as described above.

前記のように構成したことにより回転子コア間の導体お
よび導電性連結材は酸化による損耗を防止できて耐久性
を大きく向上させることができる。なお、前記抵抗材自
身をも前記のように囲繞してもよい。
By configuring as described above, the conductor and the conductive connecting material between the rotor cores can be prevented from being worn out due to oxidation, and the durability can be greatly improved. Note that the resistive material itself may also be surrounded as described above.

さらに本出願の複数固定子誘導電動機は、誘導発電機と
しても使用することができるものであり、回転子軸4に
タービン、ガスタービン。
Furthermore, the multiple stator induction motor of the present application can also be used as an induction generator, and the rotor shaft 4 has a turbine and a gas turbine.

太陽熱発電機等直接連結して発電すれば高価な調速機を
省略することもできる。また内燃機を原動機として連結
した場合に−は、その内燃機の最小燃費の回転数に対応
することができ、風水をエネルギー源とするパワーが弱
く不安定な場合においても、その最高出力を取出せる回
転数で発電することができ、水力発電においては流速に
応じて効率よく発電でき、それぞれ複雑高価な可変ピッ
チ装置あるいは調相機を省略できる。また外部電力に対
しての同期も高価な同期装置なしで行える。また、回転
子軸に他の回転軸を連結すると共に固定子巻線の入力側
の2相を入替えるスイッチを設け、該スイッチにより回
転子軸を正転、逆転自在とすれば、該スイッチと電圧移
相装置との操作より電気制動機としても使用することが
でき、電圧移相装置により回転速度を制御することによ
り、回転子軸に連結した回転軸の制動力を効率よく調整
できる。
If a solar thermal power generator or the like is directly connected to generate electricity, an expensive governor can be omitted. In addition, when an internal combustion engine is connected as a prime mover, it can correspond to the engine speed that achieves the minimum fuel consumption of the internal combustion engine, and even when the power generated from feng shui as an energy source is weak and unstable, the rotation speed that can produce its maximum output. In hydroelectric power generation, power can be generated efficiently according to the flow velocity, and complicated and expensive variable pitch devices or phase adjusters can be omitted. Furthermore, synchronization with external power can be performed without an expensive synchronization device. Furthermore, if a switch is provided that connects another rotating shaft to the rotor shaft and switches the two phases on the input side of the stator winding, and the rotor shaft can be freely rotated in the forward and reverse directions by the switch, the switch By operating with a voltage phase shifter, it can also be used as an electric brake, and by controlling the rotational speed with the voltage phase shifter, the braking force of the rotating shaft connected to the rotor shaft can be efficiently adjusted.

なお、本発明は、始動時には位相差が180゜または大
きく、始動時の運転時には位相差がOoまたは小さくさ
れて運転する始動性改善を目的とした誘導電動機にも応
用できる。
The present invention can also be applied to an induction motor for the purpose of improving startability, which operates with a phase difference of 180 degrees or a large amount at the time of starting, and with a phase difference of Oo or a small amount during operation at the time of starting.

本発明の実施例の構成において、導電性連結材によって
回転子導体と回転子導体の外側に配置された抵抗材を連
結するならば、導体間の連結における抵抗材の長さは導
体間を直接抵抗材により連結する場合よりも大きくなる
。このことは同一の抵抗値を得る場合の抵抗材の断面積
は大きくすることができて同一発熱■を得る場合を考察
すれば抵抗材の熱容tは大きくなる。
In the configuration of the embodiment of the present invention, if the rotor conductor and the resistive material disposed outside the rotor conductor are connected by the conductive connecting material, the length of the resistive material in the connection between the conductors is directly connected between the conductors. It becomes larger than when connecting by resistance material. This means that when obtaining the same resistance value, the cross-sectional area of the resistive material can be increased, and if we consider the case where the same heat generation (2) is obtained, the heat capacity t of the resistive material becomes large.

従って発熱による抵抗材の損傷、破壊を防止することが
できるようになった。
Therefore, it is now possible to prevent damage and destruction of the resistive material due to heat generation.

なお、前記導電性連結材はたとえば銅材により形成して
もよいし銅ニッケル合金により形成してもよい。たとえ
ば銅ニッケル合金により形成ずれば抵抗値が高いので抵
抗材または前記導電性連結材の断面積を更に大きくする
ことができて好都合である。また、銅と銅ニッケル合金
の溶接性は浸れているので、高トルクで長時間運転して
も破壊する可能性は少ない。更に、抵抗材として銅ニッ
ケル合金を使用したものは、発熱による抵抗値の変化が
小さく抵抗材の作用によってトルク特性が大きく影響を
受ける本発明の可変速誘導電動機の性能をきわめて向上
させる。
Note that the conductive connecting material may be formed of, for example, a copper material or a copper-nickel alloy. For example, if it is made of a copper-nickel alloy, it has a high resistance value, so it is advantageous that the cross-sectional area of the resistive material or the conductive connecting material can be further increased. In addition, the weldability of copper and copper-nickel alloy is immersive, so there is little chance of breakage even when operated at high torque for long periods of time. Furthermore, the use of a copper-nickel alloy as a resistive material greatly improves the performance of the variable speed induction motor of the present invention, in which the change in resistance value due to heat generation is small and the torque characteristics are greatly affected by the action of the resistive material.

発明の効果 前記のように構成した本発明においては、抵抗材の作用
により大きなトルクを出すことができ優秀な可変速誘導
電動機とすることができる反面、抵抗材の発熱が大きく
高トルクで長時間運転すれば抵抗材が破壊したり、回転
子コア間の導体が酸化により損耗してしまうが、それら
の問題をすべて解決し、高トルク、長時間の安定運転が
可能な可変速誘導電動機を提供することができる。
Effects of the Invention In the present invention configured as described above, a large torque can be produced by the action of the resistance material, making it possible to create an excellent variable speed induction motor. During operation, the resistance material may be destroyed or the conductor between the rotor cores may be worn out due to oxidation, but we solve all of these problems and provide a variable speed induction motor that is capable of high torque and stable operation for long periods of time. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第10図は、本出願の実施例図である。第1図
は誘導電動機の側断面図、第2図は固定子の回動機構を
示す側面図、第3図は固定子の回動機構を示す一部を破
断した側面図、第4図は固定子に巻装した巻線のそれぞ
れを直列に連結した結線図、第5図は複数個の導体それ
ぞれを巻線の外側方に突設した連結材により短絡した部
分断面図、第6図は回転子のすべりと有効電力の関係を
示す図、第7図は回転子の電気的等価回路図、第8図は
固定子側からみた電気均等III回路図、第9図は複数
個の導体のそれぞれを抵抗材により短絡すると共に固定
子に巻装した巻線を直列に連結した場合の速度とトルク
の関係を示す図、第10図は回転子軸に通気孔を開設し
た斜視図である。 1・・・誘導電動1    2.3・・・回転子コア4
・・・回転子軸     5・・・導体6.7・・・短
絡環   8,8A〜8C・・・回転子9・・・非磁性
コア   10.11・・・側部12・・・通風11i
      13・・・通気孔14・・・軸     
  15,16・・・軸受盤17・・・連結棒    
 18・・・ナツト1’9.20・・・冷却用翼車 2
1・・・軸受22.23・・・巻線   24・・・第
1固定子25・・・第2固定子   26.27・・・
すべり軸28・・・ストップリング 29・・・中継軸
30・・・中継用歯車   31・・・回動用歯車32
・・・軸受台     33A、33B・・・ギヤー3
4・・・ボルト     35・・・パルスモータ−3
6・・・駆動用歯車   37・・・開口部38・・・
電圧移相装置  39・・・排風孔40・・・通風孔 
    41・・・環状体42・・・導電性連結材  
43・・・内周部44・・・外周部     45・・
・通気孔r・・・抵抗材
1 to 10 are illustrations of embodiments of the present application. Figure 1 is a side sectional view of the induction motor, Figure 2 is a side view showing the stator rotation mechanism, Figure 3 is a partially cutaway side view showing the stator rotation mechanism, and Figure 4 is a side view showing the stator rotation mechanism. Figure 5 is a wiring diagram in which the windings wound around the stator are connected in series, Figure 5 is a partial sectional view in which a plurality of conductors are short-circuited by connecting members protruding outward from the windings, and Figure 6 is Figure 7 shows the relationship between rotor slip and active power. Figure 7 is an electrical equivalent circuit diagram of the rotor. Figure 8 is an electrical equivalent III circuit diagram seen from the stator side. Figure 9 is an electrical equivalent circuit diagram of the rotor. A diagram showing the relationship between speed and torque when the windings wound around the stator are connected in series, each short-circuited by a resistive material, and FIG. 10 is a perspective view of a rotor shaft with ventilation holes. 1... Induction motor 1 2.3... Rotor core 4
...Rotor shaft 5...Conductor 6.7...Short-circuit ring 8,8A-8C...Rotor 9...Non-magnetic core 10.11...Side part 12...Ventilation 11i
13...Vent hole 14...Shaft
15, 16... Bearing plate 17... Connecting rod
18... Nut 1'9.20... Cooling impeller 2
1... Bearing 22.23... Winding 24... First stator 25... Second stator 26.27...
Sliding shaft 28...stop ring 29...relay shaft 30...relay gear 31...rotation gear 32
...Bearing stand 33A, 33B...Gear 3
4... Bolt 35... Pulse motor 3
6... Drive gear 37... Opening 38...
Voltage phase shift device 39...Exhaust hole 40...Ventilation hole
41... Annular body 42... Conductive connecting material
43...Inner peripheral part 44...Outer peripheral part 45...
・Vent hole r...resistance material

Claims (3)

【特許請求の範囲】[Claims] (1)、複数個の回転子コアのそれぞれに装設した複数
個の導体のそれぞれを連通状に連結して一体的な回転子
に形成し、同一回転軸に任意の間隔を設けて軸着した前
記複数個の回転子コアに対峙する外周部に複数個の固定
子を機枠に並設し、前記複数個の固定子と対峙しない前
記複数個の回転子コア間において、前記複数子の導体を
抵抗材を介し短絡すると共に、前記複数個の固定子のう
ち少なくとも1個の固定子に関連して前記複数個の固定
子のうちいずれか一方の固定子に対峙する回転子の導体
部分に誘起する電圧と他方の固定に対峙する前記回転子
の対応する導体部分に誘起する電圧との間に位相差を生
じさせる電圧移相装置を付設した電動機において、前記
抵抗材を前記回転子コア間の導体の外側に設けるように
前記抵抗材と前記回転子コア間の導体の間に通電性連結
材を装着すると共に、前記回転子コア間の導体または前
記連結材の一部または全部を耐熱材により囲繞したこと
を特徴とする可変速誘導電動機。
(1) A plurality of conductors installed in each of a plurality of rotor cores are connected in a continuous manner to form an integral rotor, and the rotor is attached to the same rotating shaft at arbitrary intervals. A plurality of stators are arranged in parallel on the machine frame on the outer periphery facing the plurality of rotor cores, and between the plurality of rotor cores that do not face the plurality of stators, A conductor portion of the rotor that short-circuits the conductor via a resistive material and that faces one of the plurality of stators in relation to at least one stator among the plurality of stators. In a motor equipped with a voltage phase shift device that creates a phase difference between a voltage induced in a conductor portion of the rotor and a voltage induced in a corresponding conductor portion of the rotor facing the other fixation, the resistive material is attached to the rotor core. A conductive connecting material is installed between the conductor between the resistive material and the rotor core so as to be provided on the outside of the conductor between the rotor cores, and a part or all of the conductor between the rotor cores or the connecting material is heat-resistant. A variable speed induction motor characterized by being surrounded by a material.
(2)、前記導体は銅材により形成されたものであり、
前記抵抗材は銅ニッケル合金により形成されたものであ
る請求項(1)記載の可変速誘導電動機。
(2), the conductor is made of copper material,
The variable speed induction motor according to claim 1, wherein the resistance material is made of a copper-nickel alloy.
(3)、前記導電性連結材は銅材または銅ニッケル合金
により形成されたものである請求項(2)記載の可変速
誘導電動機。
(3) The variable speed induction motor according to claim (2), wherein the conductive connecting member is made of a copper material or a copper-nickel alloy.
JP63066971A 1988-03-18 1988-03-18 Variable speed induction motor Pending JPH01243880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066971A JPH01243880A (en) 1988-03-18 1988-03-18 Variable speed induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066971A JPH01243880A (en) 1988-03-18 1988-03-18 Variable speed induction motor

Publications (1)

Publication Number Publication Date
JPH01243880A true JPH01243880A (en) 1989-09-28

Family

ID=13331419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066971A Pending JPH01243880A (en) 1988-03-18 1988-03-18 Variable speed induction motor

Country Status (1)

Country Link
JP (1) JPH01243880A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296791A (en) * 1986-06-13 1987-12-24 Satake Eng Co Ltd Variable speed induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296791A (en) * 1986-06-13 1987-12-24 Satake Eng Co Ltd Variable speed induction motor

Similar Documents

Publication Publication Date Title
CA1292764C (en) Variable speed controllable induction motor
KR930010166B1 (en) Adjustable speed induction motor
JP2571367B2 (en) Variable speed induction motor
JPH01243880A (en) Variable speed induction motor
JPH01243881A (en) Variable speed induction motor
JPH01248940A (en) Variable speed induction motor
JPH01243832A (en) Variable-speed induction motor
JPH01243831A (en) Variable-speed induction motor
JPS6318985A (en) Variable speed induction motor
JP2937321B2 (en) Variable speed induction motor
JPH01234092A (en) Variable-speed induction motor
JPS6311089A (en) Adjust speed induction motor
JPH01227691A (en) Variable speed induction motor
JPH01248991A (en) Variable speed induction motor
JPH01248993A (en) Variable speed induction motor
JPH01248992A (en) Variable speed induction motor
JPH01248994A (en) Variable speed induction motor
JPH01227689A (en) Variable speed induction motor
JPH01227688A (en) Variable speed induction motor
JP2739210B2 (en) Rotor of variable speed induction motor
JPH01238446A (en) Variable-speed induction motor
JP2627783B2 (en) Rotor of variable speed induction motor
JPH01243879A (en) Variable-speed induction motor
JPS637157A (en) Variable speed induction motor
JP2627780B2 (en) Rotor of variable speed induction motor