JPH01243256A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH01243256A
JPH01243256A JP6938788A JP6938788A JPH01243256A JP H01243256 A JPH01243256 A JP H01243256A JP 6938788 A JP6938788 A JP 6938788A JP 6938788 A JP6938788 A JP 6938788A JP H01243256 A JPH01243256 A JP H01243256A
Authority
JP
Japan
Prior art keywords
magneto
film
ammonia
sputtering
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6938788A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Kirino
文良 桐野
Norio Ota
憲雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6938788A priority Critical patent/JPH01243256A/en
Publication of JPH01243256A publication Critical patent/JPH01243256A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the formation of a chemically stable nitride and to enhance mass productivity by using ammonia as a nitrogen source and using the same after the ammonia is converted to plasma. CONSTITUTION:An underlying film 2 consisting of silicon nitride is formed on a disk substrate 1 having guide grooves and a magneto-optical recording film 4 having a nitrided layer 3 is formed by sputtering thereon. The sputtering is executed in a gaseous argon atmosphere contg. the ammonia to form the film 3 and thereafter an electric discharge is executed in the atmosphere consisting of only the gaseous argon to form the recording film 4 in this forming stage. The sputtering is again executed in the argon atmosphere contg. the ammonia to form a nitride layer 3 on the recording film 3 and finally a protective film 5 consisting of silicon nitride is formed, by which the magneto-optical disk is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザー光を用いて記録・再生・消去を行う
光磁気記録において、特にディスク等の記録媒体の長寿
命化・高信頼性化に好適な光磁気記録媒体の製造方法に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to magneto-optical recording in which recording, reproduction, and erasing are performed using laser light, and in particular to extending the lifespan and increasing reliability of recording media such as disks. The present invention relates to a method of manufacturing a magneto-optical recording medium suitable for.

〔従来の技術〕[Conventional technology]

高度情報化社会の進展にともない、高密度でかつ大容量
のファイルメモリに対するニーズが高まっている。これ
に応えるファイルとして、光メモリーが注目されており
、中でも光磁気記録は最も実用化に近い段階にある。
2. Description of the Related Art With the development of an advanced information society, the need for high-density and large-capacity file memory is increasing. Optical memory is attracting attention as a file that can meet this demand, and magneto-optical recording is at the closest stage to practical application.

現在、光磁気記録材料として最も有望なものに希土類−
鉄族元素よりなる非晶質合金があり、中でもT b −
F e −Co系非晶質合金はその中心にある。しかし
ながら、これら希土類−鉄族非晶質合金は耐候性に問題
があり、空気中の水や酸素と容易に反応して酸化物や水
酸化物を形成する。そのため、磁気特性の変動ひいては
ディスク特性の低下をきたしていた。それに対する処置
として、腐食抑制効果のある元素を添加したり、保護膜
で覆う等が行なわれており、これに関する公知例として
特開昭61−188760 、特開昭62−11225
7をあげることができる。
Currently, rare earths are the most promising materials for magneto-optical recording materials.
There are amorphous alloys made of iron group elements, among which T b -
The Fe--Co amorphous alloy is at its core. However, these rare earth-iron group amorphous alloys have problems in weather resistance and easily react with water and oxygen in the air to form oxides and hydroxides. This has resulted in fluctuations in magnetic properties and, in turn, deterioration in disk properties. As countermeasures against this, there have been measures such as adding elements with a corrosion inhibiting effect or covering with a protective film.Known examples of this are JP-A No. 61-188760 and JP-A No. 62-11225.
I can give you a 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光磁気記録膜に窒化層を設ける場合、保護効果は窒化度
に依存していることから、従来技術ではイオンビーム等
を用い窒素の活性を高めて上記窒化層の形成を行なって
いた。この方法は量産性を考慮すると必ずしも好ましい
方法であるとはいえなかった。
When a nitride layer is provided on a magneto-optical recording film, the protective effect depends on the degree of nitridation, so in the prior art, the nitride layer was formed by increasing the activity of nitrogen using an ion beam or the like. This method could not necessarily be said to be a preferable method in consideration of mass productivity.

本発明の目的は、化学的に安定な窒化物を容易に形成で
き、量産性に適した光磁気記録媒体の製造方法を提供す
ることにある。
An object of the present invention is to provide a method for manufacturing a magneto-optical recording medium that can easily form a chemically stable nitride and is suitable for mass production.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、窒素源にアンモニアを用い、好ましくはこ
れをプラズマ化して用いることにより達成される。
The above object is achieved by using ammonia as a nitrogen source, preferably by converting it into plasma.

〔作用〕[Effect]

窒素源にN2ガスを用いたとき、これをプラズマ化或い
はイオンビーム化しても、最も活性なN+イオンになる
確率は著しく低く、多くはNa+イオンとなる。しかし
、窒素源としてアンモニアを用いると、容易に分解して
N+イオンとなり、金属と反応して窒化物を形成する。
When N2 gas is used as a nitrogen source, even if it is turned into plasma or an ion beam, the probability of it becoming the most active N+ ion is extremely low, and most of it becomes Na+ ions. However, when ammonia is used as a nitrogen source, it easily decomposes into N+ ions, which react with metals to form nitrides.

窒化度が上ると得られる窒化層は緻密になり、保護効果
が上昇する。
As the degree of nitridation increases, the resulting nitrided layer becomes denser and the protective effect increases.

〔実施例〕〔Example〕

以下、本発明の詳細を実施例を説明する。 Hereinafter, the details of the present invention will be explained with reference to examples.

[実施例1] 第1図は本発明の実施例により作成した光磁気ディスク
の断面構造模式図である。このディスクは、インライン
型スパッタ装置を用い、次に述べる手順で作成した。
[Example 1] FIG. 1 is a schematic cross-sectional structural diagram of a magneto-optical disk prepared according to an example of the present invention. This disk was produced using an in-line sputtering device according to the procedure described below.

案内溝を有するディスク基板]上に先ず、窒化シリコン
下地膜2を形成した。引き続き窒化層3を有する光磁気
記録膜4を上記スパッタリングによって形成した。
First, a silicon nitride base film 2 was formed on a disk substrate having guide grooves. Subsequently, a magneto-optical recording film 4 having a nitride layer 3 was formed by the above sputtering.

スパッタターゲットには、希土類−鉄金糸の非晶質合金
、例えばTbFeCoのような合金、あるいは上記合金
に耐食性を向上させるための添加物を含む合金を用いた
The sputter target used was an amorphous rare earth-iron-gold thread alloy, such as TbFeCo, or an alloy containing additives to improve corrosion resistance.

この記録膜形成工程において、スパッタリング時のガス
雰囲気を時間の経過とともに変化させた。
In this recording film forming step, the gas atmosphere during sputtering was changed over time.

最初はアンモニアを5%含むアルゴンガス雰囲気中で約
40秒間スパッタ行い、約100人の窒化膜3の形成を
行った。引き続き、雰囲気をアルゴンガスのみにして約
3分間放電を継続し、800人の記録膜4を形成した。
At first, sputtering was performed for about 40 seconds in an argon gas atmosphere containing 5% ammonia, and about 100 people formed the nitride film 3. Subsequently, the atmosphere was changed to argon gas only, and discharge was continued for about 3 minutes to form recording films 4 for 800 people.

そして角びアンモニアを5%含有せしめたアルゴン雰囲
気のもとてスパッタリングを続行し、記録膜4上に窒素
化物層3を形成した。そして、最後に再び窒化シリコン
保護膜5を100人の膜厚で形成し、光磁気ディスクと
した。
Then, sputtering was continued in an argon atmosphere containing 5% ammonia chloride to form a nitride layer 3 on the recording film 4. Finally, a silicon nitride protective film 5 was formed again to a thickness of 100 mm to obtain a magneto-optical disk.

このディスクの寿命試験を行なった。手法は、80’C
−95%RH(気温80℃、相対湿度95%)中にディ
スクを放置したときの欠陥レー1〜の経時変化を測定し
た。その結果は第2図に示すとおりである。比較例とし
て、この窒化物層(3)を形成しないで作製したディス
クを用いた。その結果、゛本発明を用いたディスクの欠
陥レートは、3000時間放置後もまったく増加しない
のに対して、比較例では約4倍に増加した。この欠陥レ
ートの増加の原因は、記録膜に発生する孔食であった。
A life test was conducted on this disk. The method is 80'C
When the disks were left in -95% RH (temperature: 80° C., relative humidity: 95%), changes over time in defective lines 1 to 1 were measured. The results are shown in Figure 2. As a comparative example, a disk manufactured without forming this nitride layer (3) was used. As a result, the defect rate of the disk using the present invention did not increase at all even after being left for 3000 hours, whereas it increased about four times in the comparative example. The cause of this increase in defect rate was pitting corrosion occurring in the recording film.

一方、窒化物層3の形成をN2ガスを含むガスを放電ガ
スに用いて、スパッタした窒化膜と比較した。その結果
、基板側から下地膜及び窒化膜を介して測定したカー回
転角は、本発明の手法を用いて作製した場合が0h=0
.57°であったが、窒素を放電ガスに用いて作製する
とB k=0.41− ’と約70%に低下していた。
On the other hand, the formation of the nitride layer 3 was compared with a nitride film sputtered using a gas containing N2 gas as a discharge gas. As a result, the Kerr rotation angle measured from the substrate side through the base film and nitride film was 0 h = 0 when fabricated using the method of the present invention.
.. However, when nitrogen was used as the discharge gas, B k was 0.41-', which was about 70%.

これは、窒素膜による光吸収が生じたためであると考え
られる。これは、窒素を含むガスを放電ガスに用いると
発光スペクトル分析においてN2+のスペクトルが中心
となっているが、アンモニアを用いた場合にはNまたは
N+のスペクトルが観測されたことによっても説明でき
る。以上の如く窒化度を上げるためには窒素原子イオン
もしくは窒素原子が有効であり、これにより光学的に透
明度の高い金属窒化膜を得ることができた。
This is considered to be due to light absorption by the nitrogen film. This can also be explained by the fact that when a gas containing nitrogen is used as the discharge gas, the spectrum of N2+ is centered in the emission spectrum analysis, but when ammonia is used, the spectrum of N or N+ is observed. As described above, nitrogen atom ions or nitrogen atoms are effective for increasing the degree of nitridation, and it has been possible to obtain a metal nitride film with high optical transparency.

[実施例2] 第3図は第2の実施例により作製した光磁気ディスクの
断面構造を示す模式図である。まず、案内溝を有するデ
ィスク基板1上に、窒化シリコン下地膜2屈折率:n=
=2.30.膜厚:t=650人)をスパッタ法により
形成した。ターゲットにSi、放電ガスにA r / 
N 2 = 95 / 5混合ガスを使用した。スパッ
タの条件は、ガス圧=1×10”−2(Torr)、投
入RF電カニ 4.5 (W/cnY)基板回転数2O
rpmで15分である。ひきつづき、光磁気記録膜4を
スパッタ法により形成した。ターゲラ1〜はT bza
F e4x、5c 02ON b8.5P t7合金を
用い、放電ガスにはA、 rを使用した。まず800人
の記録膜層を形成したところで、放電を停止することな
く放電ガスをN H5を5%含むArガスに切り換えて
窒化物層6のスパッタを行ない、200人の膜厚に窒化
物層を積層した。
[Example 2] FIG. 3 is a schematic diagram showing the cross-sectional structure of a magneto-optical disk manufactured according to the second example. First, a silicon nitride base film 2 with refractive index: n=
=2.30. Film thickness: t=650 persons) was formed by sputtering method. Si target, Ar/discharge gas
A N2=95/5 mixed gas was used. The sputtering conditions are: gas pressure = 1 x 10"-2 (Torr), input RF electric crab 4.5 (W/cnY), substrate rotation speed 20
15 minutes at rpm. Subsequently, a magneto-optical recording film 4 was formed by sputtering. Tagera 1~ is T bza
Fe4x, 5c02ON b8.5Pt7 alloy was used, and A and r were used as discharge gases. First, when a recording film layer of 800 layers was formed, the discharge gas was switched to Ar gas containing 5% NH5 without stopping the discharge, and the nitride layer 6 was sputtered to form a nitride layer 6 with a thickness of 200 layers. were laminated.

このように作製した光磁気ディスクの再生出力のレーザ
ーパワー依存性は、第4図に示すとおりである。4.0
mWから記録可能であり、著しく記録感度の高いディス
クであることがわかる。比較のために、本実施例で作製
した記録膜上にさらに51gNa保護膜1500人形成
したディスクの特性を第4図の点線で示した。この時の
記録条件は半径45mn上で回転数:1800rpm、
記録層波数: 2.22MHz  、レンズのNA=0
.53゜パルス幅110 n sである。その結果、記
録できる立上りのレーザー出力をみると、本実施例によ
り作製したディスクは4. 、5 m Wであり、比較
例の6.0mW と比べ著しく記録感度が向上している
ことがわかる。
The laser power dependence of the reproduction output of the magneto-optical disk produced in this manner is as shown in FIG. 4.0
It can be seen that the disc can record from mW and has extremely high recording sensitivity. For comparison, the characteristics of a disk in which 1,500 51 g Na protective films were further formed on the recording film prepared in this example are shown by dotted lines in FIG. The recording conditions at this time were a radius of 45 mm, rotation speed: 1800 rpm,
Recording layer wave number: 2.22MHz, lens NA=0
.. The 53° pulse width was 110 ns. As a result, when we look at the laser output at the rising edge that can be recorded, the disc manufactured according to this example was 4. , 5 mW, which shows that the recording sensitivity is significantly improved compared to 6.0 mW in the comparative example.

また、このディスクの寿命試験を実施例1と同様の方法
にて行なった。比較例として、N Hsの代わりにN2
ガスを用いて作製した窒化層を用いたディスクを示す。
Further, a life test of this disk was conducted in the same manner as in Example 1. As a comparative example, N2 instead of N Hs
A disk using a nitride layer fabricated using a gas is shown.

80℃−95%RH中にディスクを放置したときの欠陥
レートの経時変化を測定した。結果は第5図に示すとお
りで、本発明の実施例ではこの環境中に3000時間デ
ィスクを放置しても欠陥レートの増加はみられなかった
The change in defect rate over time was measured when the disk was left at 80° C. and 95% RH. The results are as shown in FIG. 5, and in the example of the present invention, no increase in the defect rate was observed even if the disk was left in this environment for 3000 hours.

これに対して、比較例のディスクでは、3000時間後
の欠陥レートが作製直後の約2倍に増大した。これは、
表面に形成した窒化物層の緻密さに違いがあるためで、
窒素を用いるよりN Haを用いた方が、化学量論組成
に近くしかも緻密な窒化膜が形成できるため、保護性能
を著るしく高めることができたものである。
On the other hand, in the disk of the comparative example, the defect rate after 3000 hours increased to about twice that immediately after fabrication. this is,
This is due to the difference in the density of the nitride layer formed on the surface.
By using N 2 Ha, a dense nitride film having a composition closer to the stoichiometric composition can be formed than by using nitrogen, so that the protective performance can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明により形成した窒化物層は、化学量論組成でかつ
緻密な金属窒化物層を形成できるので、光磁気記録膜の
腐食を効果的に抑制でき、高信頼性の光磁気ディスク等
光磁気記録媒体を得ることができる。
Since the nitride layer formed according to the present invention has a stoichiometric composition and can form a dense metal nitride layer, it can effectively suppress corrosion of the magneto-optical recording film, and can be used for highly reliable magneto-optical disks, etc. A recording medium can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明の実施例になる光磁気ディス
クの断面構造模式図、第2図及び第5図は本発明の実施
例と従来例のディスクの曲線図、第4図は光磁気ディス
クのレーザ出力依存性を示す特性図である。
1 and 3 are schematic cross-sectional structural diagrams of magneto-optical disks according to embodiments of the present invention, FIGS. 2 and 5 are curve diagrams of disks according to the embodiment of the present invention and conventional disks, and FIG. FIG. 3 is a characteristic diagram showing the laser output dependence of a magneto-optical disk.

Claims (1)

【特許請求の範囲】 1、垂直磁気異方性を有する合金を情報記録膜に用いた
光磁気記録媒体の製造方法において、情報記録膜のいず
れか一方あるいは両方の界面の近傍に窒素含有層を設け
るのに、アンモニアを含有する雰囲気にて、さらに優位
にはプラズマ化或いはイオン化した雰囲気にて作製した
ことを特徴とする光磁気記録媒体の製造方法。 2、作製雰囲気を制御することにより多層構造の情報記
録媒体を形成したことを特徴とする請求項第1項記載の
光磁気記録媒体の製造方法。
[Claims] 1. In a method for manufacturing a magneto-optical recording medium using an alloy having perpendicular magnetic anisotropy as an information recording film, a nitrogen-containing layer is provided near the interface of one or both of the information recording films. 1. A method for producing a magneto-optical recording medium, characterized in that the production is carried out in an atmosphere containing ammonia, more preferably in a plasma or ionized atmosphere. 2. The method for manufacturing a magneto-optical recording medium according to claim 1, wherein the information recording medium having a multilayer structure is formed by controlling the manufacturing atmosphere.
JP6938788A 1988-03-25 1988-03-25 Production of magneto-optical recording medium Pending JPH01243256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6938788A JPH01243256A (en) 1988-03-25 1988-03-25 Production of magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6938788A JPH01243256A (en) 1988-03-25 1988-03-25 Production of magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH01243256A true JPH01243256A (en) 1989-09-27

Family

ID=13401130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6938788A Pending JPH01243256A (en) 1988-03-25 1988-03-25 Production of magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH01243256A (en)

Similar Documents

Publication Publication Date Title
JPH0335734B2 (en)
US5476713A (en) Magneto-optical recording medium
JPH01243256A (en) Production of magneto-optical recording medium
JP2629062B2 (en) Medium for magneto-optical memory
JPH05258361A (en) Magneto-optical recording medium and its production
JP2559432B2 (en) Magneto-optical disk
JPS62281139A (en) Magneto-optical disk
JPS6316439A (en) Production of magneto-optical recording medium
KR100304864B1 (en) Method of manufacturing optical recording medium
JP2548704B2 (en) Magneto-optical disk and its manufacturing method
JPS63291234A (en) Magneto-optical recording medium
JPH03273543A (en) Magneto-optical recording medium
JPS62293538A (en) Production of magneto-optical recording medium
JPH03268249A (en) Magneto-optical recording medium
JPH01169758A (en) Magneto-optical recording medium
JP2740814B2 (en) Magneto-optical recording medium
JPH0766582B2 (en) Magneto-optical recording element
JPS62109247A (en) Optical magnetic recording medium
JPH02108254A (en) Magneto-optical recording medium and production thereof
JPH03273544A (en) Magneto-optical recording medium
JPH07311988A (en) Manufacture of magneto-optical recording medium
JPS6358641A (en) Magneto-optical recording medium
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPH01296446A (en) Member for magneto-optical recording and its production
JPH06139638A (en) Production of magneto-optical recording medium