JPH01242942A - Method and apparatus for analysis - Google Patents

Method and apparatus for analysis

Info

Publication number
JPH01242942A
JPH01242942A JP6933088A JP6933088A JPH01242942A JP H01242942 A JPH01242942 A JP H01242942A JP 6933088 A JP6933088 A JP 6933088A JP 6933088 A JP6933088 A JP 6933088A JP H01242942 A JPH01242942 A JP H01242942A
Authority
JP
Japan
Prior art keywords
cell
reaction
particulate matter
measuring
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6933088A
Other languages
Japanese (ja)
Inventor
Ushio Hase
長谷 潮
Tsugio Shimono
下野 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6933088A priority Critical patent/JPH01242942A/en
Publication of JPH01242942A publication Critical patent/JPH01242942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the automatic and continuous execution of all operations including collecting of a sample soln., reaction thereof with a reagent, absorbing and thickening of the resultant reaction product to granular materials and measuring of absorbancy by adsorbing and thickening of the chromatic resultant reaction product to the granular material in a measuring cell. CONSTITUTION:The granular materials are captured by a filter 42 provided in the outlet of a cell 41 and are packed into the cell 41 body when the liquid suspended with the granular materials is fed in a specified volume by a pump 23 to the measuring cell 41 side. On the other hand, the chrometic chemical species are formed by mixing the sample soln. and the reaction reagent to bring the same into reaction in a capillary communicated via a selector valve 32 to the cell 41. The measuring cell 41 packed with the granular materials for adsorbing and thickening the chromatic chemical species and the capillary are communicated to thicken the chromatic chemical species in the cell 41. The pump 21 is thereafter stopped and the absorbancy at the cell 41 is measured by an absorptiotometer 53. All of the operations including the collecting of the sample soln., the reaction thereof with the reagent, the absorbing and thickening of the resultant reaction product with the granular materials and measuring of the absorbancy are thereby automatically and continuously executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体試料中に含有される極微量成分の分析方
法および分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for analyzing trace components contained in a liquid sample.

[従来の技術] 各種研究、産業分野において、試料中の超微量成分分析
の高感度化が望まれている。分析装置の感度が分析目的
とする成分の試料中濃度に対して十分でない場合、当該
成分の濃縮により感度の向上を図ることができる。その
濃縮法の1つとして、イオン交換樹脂などの粒状物質に
当該成分を吸着させて濃縮する方法がある。当該成分を
粒状物質に吸着・濃縮させたまま発色させるか、あるい
は当該成分を発色させ、発色した成分を粒状物質に吸着
・濃縮させた後、粒状物質層を溶液層より分離し、粒状
物質層の吸光度を直接測定することにより当該成分の定
量を行う方法が報告されている(タランタ(Talan
ta)、32.5,345.1985)。
[Prior Art] In various research and industrial fields, it is desired to increase the sensitivity of ultratrace component analysis in samples. If the sensitivity of the analyzer is not sufficient for the concentration of the component to be analyzed in the sample, the sensitivity can be improved by concentrating the component. One of the concentration methods is a method of adsorbing the component to a particulate material such as an ion exchange resin and concentrating it. Either the component is adsorbed and concentrated on the granular material and colored, or the component is colored and the colored component is adsorbed and concentrated on the granular material, and then the granular material layer is separated from the solution layer. A method for quantifying the component by directly measuring the absorbance of the component has been reported (Talan
ta), 32.5, 345.1985).

第2〜5図は従来の方法を説明したものでおる。2 to 5 illustrate the conventional method.

第2図に示すように、反応容器81に所定の液体試料を
入れ、これに所定の反応試薬と粒状物質82を1ノロえ
、攪拌子83および磁気式攪拌装置84により攪拌しな
がら反応させることによって吸着・濃縮させる。一定時
間後、反応容器81を静置し、粒状物質を沈降分離させ
る。次いで第3図に示すように、粒状物質と少量の反応
溶液をスポイト96で採取し、吸光光度分析用セル本体
91の試料スペース95に充填する。なお、第4図およ
び第5図は上記吸光光度分析用セル本体91、およびこ
れに粒状物質82を充填したところを示す。図中、92
および93はスペーサ、94は細孔である。吸光光度計
に当該セルを装填することにより粒状物質の吸光度を測
定する。
As shown in FIG. 2, a predetermined liquid sample is placed in a reaction container 81, a predetermined reaction reagent and particulate material 82 are added thereto, and the mixture is reacted while being stirred by a stirrer 83 and a magnetic stirring device 84. It is adsorbed and concentrated by After a certain period of time, the reaction vessel 81 is left still to allow the particulate matter to settle and separate. Next, as shown in FIG. 3, the particulate matter and a small amount of the reaction solution are collected with a dropper 96 and filled into the sample space 95 of the cell body 91 for spectrophotometric analysis. Note that FIGS. 4 and 5 show the above cell body 91 for spectrophotometric analysis and the particulate matter 82 filled therein. In the figure, 92
93 is a spacer, and 94 is a pore. The absorbance of the particulate material is measured by loading the cell into a spectrophotometer.

以上のように行うことにより、粒状物質に吸着濃縮させ
た分析目的成分の定量を行うことができる。
By carrying out the procedure described above, it is possible to quantify the component to be analyzed that has been adsorbed and concentrated on the particulate material.

[発明が解決しようとする課題] しかしながら第2〜5図に示した従来のバッチ法による
分析では試料ごとにセルユニットを吸光光度計から着脱
して試料を入換えなければならないため、操作が煩雑で
分析の迅速化を図ることが困難であり、またセルへの粒
状物質の充填には多少の熟練を要するという欠点を有し
ていた。
[Problems to be Solved by the Invention] However, in the conventional batch method analysis shown in Figures 2 to 5, the cell unit must be attached and detached from the spectrophotometer for each sample and the sample replaced, making the operation complicated. It is difficult to speed up the analysis, and filling the cell with particulate matter requires some skill.

本発明の目的はこのような従来技術の欠点を解消し、試
料溶液の採取、試薬との反応、粒状物質への吸着・濃縮
および吸光度測定をすべて自動で、かつ連続的に行うこ
とのできる分析装置を提供することにある。
The purpose of the present invention is to solve the drawbacks of the conventional technology and to provide an analysis system that can automatically and continuously perform all of the steps of sample solution collection, reaction with reagents, adsorption and concentration on particulate matter, and absorbance measurement. The goal is to provide equipment.

[課題を解決するための手段] 本発明は、配管内を連続的にかつ所定流量で流通する試
料溶液と、別の配管からの反応試薬とを細管内で混合・
反応させて分析成分の有色反応生成物を形成し、次いで
この有色反応生成物を前記細管に連通した測定セル内の
粒状物質に吸着・濃縮させた後、前記粒状物質の吸光度
を測定することにより前記分析成分の定性あるいは定量
を行うことを特徴とする分析方法、およびポンプが配設
された試料溶液配管および反応試薬配管と、前記各配管
からの物質を混合・反応させる細管とを備えた反応ライ
ンと、 出口側にフィルタを設けた測定セルと、該セルに粒状物
質の懸濁液を供給するポンプを備えた粒状物質充填シス
テムと、 前記反応ラインおよび前記粒状物質充填システムを前記
測定セルに連通および断絶する切替えバルブと、 吸光光度計と、 前記各ポンプおよび切替えバルブの動作を制御すると共
に、測定値の処理を行う制御システムとから構成されて
なることを特徴とする分析装置である。
[Means for Solving the Problem] The present invention mixes a sample solution flowing continuously in a pipe at a predetermined flow rate and a reaction reagent from another pipe in a thin tube.
By reacting to form a colored reaction product of the analytical component, and then adsorbing and concentrating this colored reaction product on a particulate material in a measurement cell communicating with the capillary, and then measuring the absorbance of the particulate material. An analysis method characterized by qualitatively or quantitatively determining the analytical components, and a reaction comprising sample solution piping and reaction reagent piping provided with pumps, and thin tubes for mixing and reacting substances from each of the pipings. a particulate material filling system comprising a measuring cell with a filter on the outlet side and a pump for supplying a suspension of particulate material to the cell; and connecting the reaction line and the particulate material filling system to the measuring cell. This analysis device is characterized by comprising: a switching valve that communicates and disconnects; an absorption photometer; and a control system that controls the operation of each of the pumps and switching valves and processes measured values.

[作用] 粒状物質を懸濁させた液をセル側へポンプにより一定容
碩送液すると、粒状物質は測定セルの出口に設けられた
フィルタで捕捉され、セル本体に充填される。
[Operation] When a certain volume of a liquid in which particulate matter is suspended is sent to the cell side by a pump, the particulate matter is captured by a filter provided at the outlet of the measurement cell and filled into the cell body.

一方、測定セルに切替えバルブを介して連通した細管内
で試料溶液と反応試薬とを混合・反応させ、有色化学種
を生成させる。そしてこの有色化学種を吸着・濃縮する
粒状物質を充填した上記の測定セルと当該細管を連通さ
せ、測定セル内で当該有色化学種を濃縮する。濃縮債、
粒状物質の吸光度を測定する。
On the other hand, the sample solution and the reaction reagent are mixed and reacted in a thin tube connected to the measurement cell via a switching valve to generate colored chemical species. The capillary tube is then communicated with the measurement cell filled with particulate matter that adsorbs and concentrates the colored chemical species, and the colored chemical species are concentrated within the measurement cell. enrichment bonds,
Measure the absorbance of particulate matter.

[実施例] 以下、本発明の一実施例について図面を参照して詳細に
説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の概略構成図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

図中、1は試料溶液槽、2は反応試薬槽、3は粒状物質
の懸濁液槽、4はpu調整剤槽、5は洗浄液槽である。
In the figure, 1 is a sample solution tank, 2 is a reaction reagent tank, 3 is a suspension tank for particulate matter, 4 is a PU regulator tank, and 5 is a cleaning liquid tank.

装置の運転開始時、切替えバルブ31〜34は実線状態
になっている。
When the device starts operating, the switching valves 31 to 34 are in the solid line state.

試料溶液槽1からポンプ21により試料溶液を採取し、
ポンプ21からバルブ32までの反応ラインを洗浄する
。一方、所定の時間、粒状物質の懸濁液槽3からポンプ
23により粒状物質の懸濁液がバルブ34.32.31
を通り、測定セル41に送液される。
Collecting a sample solution from the sample solution tank 1 with a pump 21,
The reaction line from pump 21 to valve 32 is cleaned. Meanwhile, for a predetermined period of time, the particulate matter suspension is pumped from the particulate matter suspension tank 3 to the valve 34.32.31 by the pump 23.
The liquid is sent to the measurement cell 41 through the .

粒状物質は測定セル41の出口側に設けたフィルタ42
により捕捉され、測定セル41の光路部分43に充填さ
れる。その後、切替えバルブ34を破線状態に切替え、
pH調整剤槽4からポンプ24によりpH調整剤を送液
し、バルブ34から測定セルの入口までの配管内に残っ
た粒状物質の懸濁液を測定セルに送ると共に、粒状物質
のpHを分析目的成分が吸着するpHに調整する。
Particulate matter is filtered through a filter 42 provided on the outlet side of the measurement cell 41.
, and fills the optical path section 43 of the measurement cell 41. After that, switch the switching valve 34 to the broken line state,
The pH adjuster is sent from the pH adjuster tank 4 by the pump 24, and the suspension of particulate matter remaining in the piping from the valve 34 to the inlet of the measurement cell is sent to the measurement cell, and the pH of the particulate matter is analyzed. Adjust the pH so that the target component is adsorbed.

所定時間後、反応試薬槽2からポンプ22により、分析
成分と選択的に反応し発色する反応試薬を送液し、細管
としての反応コイル52内でポンプ21により送液され
た試料溶液と混合し、反応オーブン51内で加熱反応・
発色を行う。切替えバルブ32を破線状態に切替え、発
色した溶液を測定セル41に導入する。発色した分析成
分は測定セル41の光路部分43に充填した粒状物質に
吸着・濃縮される。
After a predetermined period of time, a reaction reagent that selectively reacts with the analytical component and develops color is fed from the reaction reagent tank 2 by the pump 22, and mixed with the sample solution fed by the pump 21 in the reaction coil 52 as a thin tube. , a heating reaction is carried out in the reaction oven 51.
Performs color development. The switching valve 32 is switched to the broken line state, and the colored solution is introduced into the measurement cell 41. The colored analytical component is adsorbed and concentrated by the particulate material filled in the optical path portion 43 of the measurement cell 41.

所定時間後、ポンプ22を停止し、反応ライン内に残っ
た着色液をポンプ21により送液される試料溶液により
測定セル41に送り込む。その後、ポンプ21を停止し
、測定セル1内の粒状物質の一定の波長における吸光度
を吸光光度計53により測定する。あらかじめ同一条件
で既知濃度の分析成分を含む試料溶液を測定することに
より、作製した検量線をもとに定量を行い、濃度が出力
される。
After a predetermined time, the pump 22 is stopped, and the colored liquid remaining in the reaction line is sent into the measurement cell 41 by the sample solution sent by the pump 21. Thereafter, the pump 21 is stopped, and the absorbance of the particulate matter in the measurement cell 1 at a certain wavelength is measured by the spectrophotometer 53. By measuring a sample solution containing a known concentration of an analytical component under the same conditions in advance, quantification is performed based on a prepared calibration curve, and the concentration is output.

吸光度の測定が終了すると、切替えバルブ31゜33は
破線状態に切替えられる。洗浄液槽5からポンプ25に
より洗浄液が送液され、切替えバルブ33、フィルタ4
2を通って、測定セル41の出口側から入り、測定セル
41内に充填されている粒状物質を測定セル41の入口
側の切替えバルブ31を通って、ドレイン槽11に排出
する。排出が終了すると、ポンプ25は停止し、各切替
えバルブは実線状態に戻る。
When the absorbance measurement is completed, the switching valves 31 and 33 are switched to the broken line state. The cleaning liquid is sent from the cleaning liquid tank 5 by the pump 25, and the switching valve 33 and the filter 4
2 from the outlet side of the measuring cell 41, and the particulate matter filled in the measuring cell 41 is discharged into the drain tank 11 through the switching valve 31 on the inlet side of the measuring cell 41. When the discharge is completed, the pump 25 is stopped and each switching valve returns to the solid line state.

なおポンプの動作およびバルブの切替えは制御システム
(図示せず)により制御される。
Note that the operation of the pump and switching of the valves are controlled by a control system (not shown).

[発明の効果] 以上詳述したように本発明の分析方法および分析装置に
よれば、液体試料中の分析成分を自動的、かつ半連続的
に分析できるので、各種研究、産業分野で用いられてい
る純水、薬液などの液体の品質管理や排水のモニターの
効率化、迅速化、信頼性の向上を図ることができる。
[Effects of the Invention] As detailed above, according to the analysis method and analyzer of the present invention, the analytical components in a liquid sample can be analyzed automatically and semi-continuously, so that they can be used in various research and industrial fields. It is possible to improve the efficiency, speed, and reliability of quality control of liquids such as purified water and chemical solutions and monitoring of wastewater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成図、第2〜5図は
従来例による分析方法の構成図である。 1・・・試料溶液槽    2・・・反応試薬槽   
 。
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIGS. 2 to 5 are diagrams of a conventional analysis method. 1...Sample solution tank 2...Reaction reagent tank
.

Claims (2)

【特許請求の範囲】[Claims] (1)配管内を連続的にかつ所定流量で流通する試料溶
液と、別の配管からの反応試薬とを細管内で混合・反応
させて分析成分の有色反応生成物を形成し、次いでこの
有色反応生成物を前記細管に連通した測定セル内の粒状
物質に吸着・濃縮させた後、前記粒状物質の吸光度を測
定することにより前記分析成分の定性あるいは定量を行
うことを特徴とする分析方法。
(1) A sample solution that flows continuously in a pipe at a predetermined flow rate and a reaction reagent from another pipe are mixed and reacted in a thin tube to form a colored reaction product of an analytical component, and then this colored reaction product is mixed and reacted with a reaction reagent from another pipe. An analysis method characterized in that the reaction product is adsorbed and concentrated on particulate matter in a measurement cell communicating with the capillary, and then the analytical component is qualitatively or quantitatively determined by measuring the absorbance of the particulate matter.
(2)ポンプが配設された試料溶液配管および反応試薬
配管と、前記各配管からの物質を混合・反応させる細管
とを備えた反応ラインと、 出口側にフィルタを設けた測定セルと、 該セルに粒状物質の懸濁液を供給するポンプを備えた粒
状物質充填システムと、 前記反応ラインおよび前記粒状物質充填システムを前記
測定セルに連通および断絶する切替えバルブと、 吸光光度計と、 前記各ポンプおよび切替えバルブの動作を制御すると共
に、測定値の処理を行う制御システムとから構成されて
なることを特徴とする分析装置。
(2) A reaction line equipped with sample solution piping and reaction reagent piping equipped with pumps, thin tubes for mixing and reacting substances from each piping, and a measurement cell equipped with a filter on the outlet side; a particulate matter filling system comprising a pump for supplying a suspension of particulate matter to the cell; a switching valve that connects and disconnects the reaction line and the particulate matter filling system to the measuring cell; an absorptiometer; and each of the above. An analytical device comprising a control system that controls the operations of a pump and a switching valve and processes measured values.
JP6933088A 1988-03-25 1988-03-25 Method and apparatus for analysis Pending JPH01242942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6933088A JPH01242942A (en) 1988-03-25 1988-03-25 Method and apparatus for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6933088A JPH01242942A (en) 1988-03-25 1988-03-25 Method and apparatus for analysis

Publications (1)

Publication Number Publication Date
JPH01242942A true JPH01242942A (en) 1989-09-27

Family

ID=13399430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6933088A Pending JPH01242942A (en) 1988-03-25 1988-03-25 Method and apparatus for analysis

Country Status (1)

Country Link
JP (1) JPH01242942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186163A (en) * 1992-05-11 1994-07-08 Nec Corp Chemically analyzing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186163A (en) * 1992-05-11 1994-07-08 Nec Corp Chemically analyzing method

Similar Documents

Publication Publication Date Title
EP0098550B1 (en) Method and apparatus for conducting flow analysis
JP2902111B2 (en) Disposable reaction vessel for solid-phase immunoassay and method for measuring components detectable by immunoreaction
US9435729B2 (en) Method and apparatus for degassing a liquid and analytical device having the apparatus
US5672319A (en) Device for analyzing a fluid medium
US5783450A (en) Analytical method and instrument for analysis of liquid sample by liquid chromatography
JPH08505477A (en) Fluid medium analyzer
US20210033503A1 (en) Apparatus for automated analysis
EP1437597A1 (en) Protein measurement method in protein production plant by cell culture and apparatus thereof
JPH01242942A (en) Method and apparatus for analysis
JPH03205559A (en) Chromatographic analysis of biosample and liquid chromatograph device
CN214225055U (en) A quick automatic titration device for analytical instrument
AU2001265989B2 (en) Method and device for measuring a component in a liquid sample
KR940002497B1 (en) Method for measuring the non-porous surface area of carbon black
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
van Staden Solving the problems of sequential injection systems as process analyzers
JPH06186163A (en) Chemically analyzing method
JPH01161133A (en) Analyzing device
JP2964521B2 (en) Analysis system and analysis method
JP3254073B2 (en) Automatic analysis system
JP2002296260A (en) Method and device for analyzing organic polymer component, and application thereof
JPH01101464A (en) Analysis apparatus
JPH1183821A (en) Online automatic high-speed liquid chromatograph
Zagatto et al. In-line sample preparation in flow analysis
JPH01161134A (en) Analyzing device
JPS6224129A (en) Concentration analysis method and apparatus