JPH01161134A - Analyzing device - Google Patents

Analyzing device

Info

Publication number
JPH01161134A
JPH01161134A JP62318563A JP31856387A JPH01161134A JP H01161134 A JPH01161134 A JP H01161134A JP 62318563 A JP62318563 A JP 62318563A JP 31856387 A JP31856387 A JP 31856387A JP H01161134 A JPH01161134 A JP H01161134A
Authority
JP
Japan
Prior art keywords
reaction
container
particulate matter
light
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62318563A
Other languages
Japanese (ja)
Inventor
Ushio Hase
長谷 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62318563A priority Critical patent/JPH01161134A/en
Publication of JPH01161134A publication Critical patent/JPH01161134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To perform absorbance measurement such as the sampling of a sample solution fully automatically and semicontinuously by providing a reaction container, a light source, a photodetecting element, etc. CONSTITUTION:A prescribed amount of a liquid sample is fed from a liquid sample tank 2 to the reaction container 21 by a pump 12. Further, a suspension of a granular material 82 is supplied from a granular material tank 1 by a pump 11, and a reaction reagent is supplied from a reaction reagent tank 3 by a pump 13 to a container 21 to a constant amount respectively; and they are stirred by a stirring machine 25 for a constant time to allow to react with each other and a component to be analyzed is adsorbed and condensed in the material 82, which colors. Then the stirring is stopped and the material is left as it is to precipitate said material 82. This material 82 gathers at the tip part of the conic part 22 of the container 21. Light from the light source 52 of this photometer 51 passes through an optical fiber 41 and exits from the fiber 41 to illuminate the deposited material 82. Light which is absorbed and dimmed by the material 82 is reflected by a mirror surface part 24 to enter an optical fiber 42 from its end part and then enters a photodetecting element 53 through the fiber 42, so that the absorbance is measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分析装置に関し、特に液体試料中に含有される
極微量成分の定量を自動的に行う分析装置に関−リ−る
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an analytical device, and particularly to an analytical device that automatically quantifies trace components contained in a liquid sample. .

[従来の技術] 各種細穴、産業分野においで、試料中の超微量成分分析
の高感度化が望まれている。分析装置の感度が分析目的
とする成分の試料中濃度に対して十分でない場合、当該
成分の濃縮により感度の向上を図ることができる。その
濃縮法の1つとしで、イオン交換樹脂などの粒状物質に
当該成分を吸着させで濃縮する方法かおる。当該成分を
粒状物質に吸着・濃縮させたまま発色させる、あるいは
当該成分を発色させ、発色した成分を粒状物質に吸着・
濃縮させた後、粒状物質層を溶液層より分離し、粒状物
質層の吸光度を直接測定覆ることにより当該成分の定量
を行う方法が報告されている(タランタ(Talant
a)、 32.5.345 、1985)。
[Prior Art] High sensitivity in analyzing ultratrace components in samples is desired in various small holes and in the industrial field. If the sensitivity of the analyzer is not sufficient for the concentration of the component to be analyzed in the sample, the sensitivity can be improved by concentrating the component. One of the concentration methods is to concentrate the components by adsorbing them onto particulate materials such as ion exchange resins. The component can be adsorbed and concentrated on the particulate material to develop color, or the component can be colored and the colored component can be adsorbed and concentrated on the particulate material.
A method has been reported in which the component is quantified by separating the particulate matter layer from the solution layer after concentration and directly measuring the absorbance of the particulate matter layer (Talanta et al.
a), 32.5.345, 1985).

第2〜5図は従来の方法を説明したものでおる。2 to 5 illustrate the conventional method.

第2図に示すように、反応容器81に所定の液体試料を
入れ、これに所定の反応試薬と粒状物質82を加え、攪
拌子83および磁気式攪拌装置84によって攪拌しなが
ら反応させることにより吸着・濃縮させる。一定時間後
、反応容器81を静置し、粒状物質を沈降分離させる。
As shown in FIG. 2, a predetermined liquid sample is placed in a reaction container 81, a predetermined reaction reagent and a particulate material 82 are added thereto, and the mixture is reacted while being stirred by a stirrer 83 and a magnetic stirring device 84, thereby causing adsorption.・Concentrate. After a certain period of time, the reaction vessel 81 is left still to allow the particulate matter to settle and separate.

次いで第3図に示すように、粒状物質と少量の反応溶液
をスポイト96で採取し、吸光光度分析用セル本体91
の試料スペース95に充填する。なお第4図および第5
図は上記吸光光度分析用セル本体91、およびこれに粒
状物質82を充填したところを示す。図中、92および
93はスペーリ、94は細孔である。吸光光度h1に当
該セルを装填することにより粒状物質の吸光度を測定覆
る。
Next, as shown in FIG. 3, the particulate matter and a small amount of the reaction solution are collected with a dropper 96 and transferred to the cell body 91 for spectrophotometric analysis.
The sample space 95 is filled. In addition, Figures 4 and 5
The figure shows the cell body 91 for spectrophotometric analysis and the particulate matter 82 filled therein. In the figure, 92 and 93 are spacers, and 94 is a pore. The absorbance of the particulate material is measured by loading the cell to absorbance h1.

以上のように行うことにより、粒状物質に吸着・濃縮さ
せた分析目的成分の定量を行うことができる。
By carrying out the procedure described above, it is possible to quantify the component to be analyzed that has been adsorbed and concentrated on the particulate material.

[発明が解決しようとする問題点] しかしながら第2〜5図に示した従来のバッチ法による
分析では試料ごとにセルユニッ1〜を吸光光度計から着
脱して試料を入れ換えなCブればならないため、操作か
煩雑で分析の迅速化を図ることが困難でおり、またセル
への粒状物質の充填には多少の熟練を要するという欠点
を有していた。
[Problems to be Solved by the Invention] However, in the conventional batch method analysis shown in FIGS. 2 to 5, it is necessary to attach and detach the cell unit 1 to the spectrophotometer for each sample and replace the sample. However, the operation is complicated and it is difficult to speed up the analysis, and filling the cell with particulate matter requires some skill.

本発明の目的はこのような従来技術の欠点を解消し、試
料溶液の採取、試薬との反応、粒状物質への吸着・濃縮
および吸光度測定を全て自動で、かつ半連続的に行うこ
とのできる分析装置を提供することにある。
The purpose of the present invention is to overcome these drawbacks of the conventional technology, and to make it possible to automatically and semi-continuously perform sampling of a sample solution, reaction with a reagent, adsorption/concentration to particulate matter, and absorbance measurement. Our objective is to provide analytical equipment.

[問題点を解決するだめの手段] 本発明は、分析対象成分を含む液体試料、前記成分の吸
着・濃縮を行う粒状物質および反応試薬を反応させる、
底部の少なくとも一部が鏡面である反応容器と、前記各
物質を前記反応容器に供給する供給システムと、反応後
、前記粒状物質の吸光度を測定する光源、受光素子およ
び光の導波路を備えた光学測定システムとから構成され
ていることを特徴とする分析装置であり、その反応容器
は、錐状の底部を有していることを好適とするものであ
る。また分析装置には、反応容器への各物質の送液量お
」:び反応時間を制御する制御システムか設(プられて
いることか望ましい。
[Means for solving the problem] The present invention involves reacting a liquid sample containing a component to be analyzed, a particulate material that adsorbs and concentrates the component, and a reaction reagent.
A reaction container having at least a part of the bottom having a mirror surface, a supply system for supplying each of the substances to the reaction container, and a light source, a light receiving element, and a light waveguide for measuring the absorbance of the particulate material after the reaction. and an optical measurement system, and the reaction vessel preferably has a conical bottom. It is also desirable that the analyzer be equipped with a control system that controls the amount of each substance sent to the reaction vessel and the reaction time.

1作用コ 本発明ではポンプにより液体試料、反応試薬および分析
成分の吸着・濃縮を行う粒状物質の懸濁液を所定量、反
応容器に送液し、反応容器内で反応させる。反応後、静
置して粒状物質を沈降させ、この粒状物質に光源からの
入射光を反応容器内の光の導波路を経由して入射させる
。粒状物質により減光した光は鏡面になっている反応容
器の底面に反射する。その後、光は別の導波路に入則し
、さらに受光素子に到り、吸光度の測定が行われる。
1. In the present invention, a predetermined amount of a suspension of particulate matter for adsorbing and concentrating a liquid sample, a reaction reagent, and an analytical component is delivered to a reaction container by a pump, and reacted within the reaction container. After the reaction, the particulate matter is left to settle, and incident light from a light source is made to enter the particulate matter via a light waveguide in the reaction vessel. The light attenuated by the particulate matter is reflected on the mirrored bottom of the reaction vessel. After that, the light enters another waveguide and reaches a light receiving element, where the absorbance is measured.

また、反応容器の底部を錐状にすると、静置により沈降
した粒状物質は錐状部分に集まり、吸光度の測定か容易
になる。
Furthermore, if the bottom of the reaction container is shaped like a cone, the particulate matter that settles out during standing will collect in the cone, making it easier to measure the absorbance.

[実施例] 以下、本発明の実施例について図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の概略構成図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

図中、1は粒状物質82を収容する粒状物質槽、2は液
体試料槽、3は反応試薬槽、4はトレイン槽である。
In the figure, 1 is a particulate matter tank containing particulate matter 82, 2 is a liquid sample tank, 3 is a reaction reagent tank, and 4 is a train tank.

装置の運転開始時、バルブ31は閉状態にする。When the device starts operating, the valve 31 is closed.

−5= 液体試料槽2から所定量の液体試料をポンプ12により
反応容器21に送液する。粒状物質槽1から粒状物質8
2の懸濁液をポンプ11により、反応試薬槽3から反応
試薬をポンプ13によりそれぞれ一定量を反応容器21
に供給し、攪拌機25により一定時間攪拌反応させ、分
析成分を粒状物質82に吸着・濃縮させると共に、吸着
・濃縮した粒状物質82を発色させる。なお、液体試料
、粒状物質および反応試薬の反応容器への送液量ならび
に反応時間は制御装置(図示せf)により制御される。
-5= A predetermined amount of liquid sample is sent from the liquid sample tank 2 to the reaction container 21 by the pump 12. Particulate matter tank 1 to particulate matter 8
The suspension of No. 2 is pumped into the reaction container 21 using the pump 11, and the reaction reagent from the reaction reagent tank 3 is pumped into the reaction container 21 using the pump 13.
The sample is supplied to the granular material 82, stirred and reacted for a certain period of time by the stirrer 25, and the analytical components are adsorbed and concentrated in the granular material 82, and the adsorbed and concentrated granular material 82 is colored. Note that the amounts of the liquid sample, particulate matter, and reaction reagent sent to the reaction container and the reaction time are controlled by a control device (f in the figure).

次いで瞳拌を停止し、静置することにより粒状物質82
を沈降させる。粒状物質82は反応容器21の錐状部分
22の先端部に集まる。
Next, the pupil agitation is stopped and the particulate matter 82 is left standing.
to precipitate. The particulate matter 82 collects at the tip of the conical portion 22 of the reaction vessel 21 .

一方、光度計51の光源52からの光は光ファイバー4
1を通り、光ファイバー41の端部から出て、沈降した
粒状物質82に当てられる。粒状物質82により吸光、
減光された光は鏡面部分24により反則され、光ファイ
バー42の端部より入射し、光ファイバー42を通って
受光素子53に入り、吸光度か測定される。
On the other hand, the light from the light source 52 of the photometer 51 is transmitted through the optical fiber 4.
1 and exits from the end of the optical fiber 41 and is applied to the settled particulate matter 82. Light absorption by particulate matter 82,
The attenuated light is reflected by the mirror portion 24, enters the end of the optical fiber 42, passes through the optical fiber 42, enters the light receiving element 53, and its absorbance is measured.

−6= 測定後は、バルブ31を開状態にし、ポンプ14により
反応容器21内の反応溶液の残液を排出口23がらトレ
イン槽4に排出覆る。
-6= After the measurement, the valve 31 is opened, and the residual liquid of the reaction solution in the reaction container 21 is discharged into the train tank 4 through the discharge port 23 by the pump 14 and covered.

バルブ31を閉じ、ポンプ12により次の液体試料を供
給し、反応容器を満たし、再びバルブ31を開き排出す
る。この操作を2〜3度繰り返し、反応容器を洗浄した
後、次の液体試料の測定を上記と同様にして行う。
The valve 31 is closed, the pump 12 supplies the next liquid sample to fill the reaction vessel, and the valve 31 is opened again to discharge. After repeating this operation two or three times to wash the reaction vessel, the next liquid sample is measured in the same manner as above.

[発明の効果] 以十詳述したように本発明の分析装置によれば、液体試
料中の分析成分を高感度に分析可能であると共に、自動
的に、かつ半連続的に分析てぎるので、各種研究、産業
分野で用いられている純水、薬液などの液体の晶質管μ
Pやυ1水の−Eニターの効率化、迅速化および信頼性
の向」−を図ることかできる。
[Effects of the Invention] As described in detail above, according to the analyzer of the present invention, the analytical components in a liquid sample can be analyzed with high sensitivity, and can be analyzed automatically and semi-continuously. , crystalloid tubes for liquids such as pure water and chemical solutions used in various research and industrial fields
It is possible to improve the efficiency, speed, and reliability of P and υ1 water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略構成図、第2〜・5図
は従来の分析方式の一例を示づ概818構成説明図であ
る、。 1・・・粒状物質槽   2・・・液体試料櫓3・・・
反応試薬槽   4・・・トレイン槽11〜14・・・
ポンプ   21.81・・・反応容器22・・・皿状
部分    ?3・・・排出口?4・・・鏡面部分  
  25・・・攪拌機31・・・バルブ     旧、
42・・・光ファイバー51・・・光度h」52・・・
光源 53・・・受光素子    82・・・粒状物質83・
・・攪拌子     84・・・磁気式攪拌装置91・
・・セル本体    92.93・・・スペー1ノ94
・・・細孔      95・・・試料スペース96・
・・スポイト
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, and FIGS. 2 to 5 are schematic diagrams illustrating an 818 configuration showing an example of a conventional analysis method. 1... Particulate matter tank 2... Liquid sample tower 3...
Reaction reagent tank 4...Train tank 11-14...
Pump 21.81...Reaction vessel 22...Dish-shaped part? 3...Exhaust port? 4... Mirror surface part
25... Stirrer 31... Valve old,
42...Optical fiber 51...Luminous intensity h'52...
Light source 53... Light receiving element 82... Particulate matter 83.
...Stirrer 84...Magnetic stirrer 91.
... Cell body 92.93 ... Space 1 no 94
... Pore 95 ... Sample space 96.
・・Dropper

Claims (3)

【特許請求の範囲】[Claims] (1)分析対象成分を含む液体試料、前記成分の吸着・
濃縮を行う粒状物質および反応試薬を反応させる、底部
の少なくとも一部が鏡面である反応容器と、前記各物質
を前記反応容器に供給する供給システムと、反応後、前
記粒状物質の吸光度を測定する光源、受光素子および光
の導波路を備えた光学測定システムとから構成されてい
ることを特徴とする分析装置。
(1) Liquid sample containing the component to be analyzed, adsorption and
A reaction vessel having at least a portion of the bottom having a mirror surface, in which particulate matter to be concentrated and a reaction reagent are reacted; a supply system for supplying each of the substances to the reaction vessel; and after the reaction, measuring the absorbance of the particulate matter. An analysis device comprising an optical measurement system including a light source, a light receiving element, and a light waveguide.
(2)反応容器は、錐状の底部を有している特許請求の
範囲第1項記載の分析装置。
(2) The analyzer according to claim 1, wherein the reaction container has a conical bottom.
(3)分析装置には、反応容器への各物質の送液量およ
び反応時間を制御する制御システムか設けられている特
許請求の範囲第1項記載の分析装置。
(3) The analyzer according to claim 1, wherein the analyzer is provided with a control system that controls the amount of each substance sent to the reaction container and the reaction time.
JP62318563A 1987-12-18 1987-12-18 Analyzing device Pending JPH01161134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318563A JPH01161134A (en) 1987-12-18 1987-12-18 Analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318563A JPH01161134A (en) 1987-12-18 1987-12-18 Analyzing device

Publications (1)

Publication Number Publication Date
JPH01161134A true JPH01161134A (en) 1989-06-23

Family

ID=18100529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318563A Pending JPH01161134A (en) 1987-12-18 1987-12-18 Analyzing device

Country Status (1)

Country Link
JP (1) JPH01161134A (en)

Similar Documents

Publication Publication Date Title
US5508200A (en) Method and apparatus for conducting multiple chemical assays
US4837159A (en) Method and apparatus for effecting immunological analysis
US3932131A (en) Method and device (analysis machine) for simultaneous performance of a number of analyses, especially microanalyses, of standard type on chemical objects
US4483927A (en) Method of automatically analyzing chemical substances and an automatic chemical analyzer
AU759239B2 (en) Device and apparatus for conducting an assay
US5844686A (en) System for pipetting and photometrically evaluating samples
JPS60238760A (en) Processor-card for centrifugal separator
JPH07506184A (en) Automatic continuous random access analysis system
JPH07505473A (en) Automatic continuous random access analysis system and its components
JPS61182556A (en) Non-segment continuous fluid analysis method on basis of interaction of fixing material positioned in flow cell and radiation
WO1997035189A1 (en) Fluorescent reporter beads for fluid analysis
AU2005276346A1 (en) Multidisciplinary automatic analyser for in vitro diagnosis
US20210033503A1 (en) Apparatus for automated analysis
CN205426779U (en) On --spot autoanalyzer of sulphion
JPS6438636A (en) Fluorescent analyzer
US8367000B2 (en) Cassette and measuring apparatus
CN207866718U (en) A kind of fully-automatic intelligent urine iodine analyzer
JPH01161134A (en) Analyzing device
JPH06186163A (en) Chemically analyzing method
JPH04323562A (en) Optical automatic analysis device
JPH01101464A (en) Analysis apparatus
JPH01161133A (en) Analyzing device
JPH05172828A (en) Automatic analyser
EP0474607B1 (en) Apparatus for the discontinuous on-line field or process colorimetric chemical monitoring of liquid samples
JPS58628B2 (en) automatic fractionator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061110

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees