JPH0124272B2 - - Google Patents

Info

Publication number
JPH0124272B2
JPH0124272B2 JP56177763A JP17776381A JPH0124272B2 JP H0124272 B2 JPH0124272 B2 JP H0124272B2 JP 56177763 A JP56177763 A JP 56177763A JP 17776381 A JP17776381 A JP 17776381A JP H0124272 B2 JPH0124272 B2 JP H0124272B2
Authority
JP
Japan
Prior art keywords
phase
circuit
voltage
measurement signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177763A
Other languages
Japanese (ja)
Other versions
JPS5879168A (en
Inventor
Tomoyoshi Mochizuki
Koichi Endo
Genshiro Kaneda
Yosuke Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP56177763A priority Critical patent/JPS5879168A/en
Publication of JPS5879168A publication Critical patent/JPS5879168A/en
Publication of JPH0124272B2 publication Critical patent/JPH0124272B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism

Description

【発明の詳細な説明】 本発明は、配電線のある区間の両端の相が一致
していることを活線状態で判別する相判別方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase determination method for determining whether phases at both ends of a certain section of a distribution line match in a live line state.

従来、配電線区間の両端で、色別表示された各
相は、端子ごとに、その端子における位相順(あ
るいは相回転)により決められており、一端側
(送信側)における色別表示すなわち黒相、赤相、
白相は他端側(受信側)における色別表示すなわ
ち黒相、赤相、白相とは相順については一致して
いるが、一端側の黒相と他端側の黒相、一端側の
赤相と他端側の赤相、一端側白相と他端側の白相
とは必ずしも一致していない場合があつた。しか
し配電線運用上、一端側における色別表示つまり
黒相、赤相、白相に一致して他端側の色別表示を
決定したい場合があり、そのために相判別装置が
必要となる。
Conventionally, each phase, which is displayed in different colors at both ends of a distribution line section, is determined by the phase order (or phase rotation) at that terminal for each terminal. phase, red phase,
The white phase corresponds to the color-coded display on the other end (receiving side), that is, black phase, red phase, and white phase, but the black phase on one end side, the black phase on the other end side, and the red phase on one end side match. There were cases in which the phase and the red phase on the other end side did not necessarily match, and the white phase on one end side and the white phase on the other end side did not necessarily match. However, when operating a power distribution line, there are cases where it is desired to determine the color display at the other end in accordance with the color display at one end, that is, the black phase, red phase, and white phase, and a phase discrimination device is required for this purpose.

従来、この種の相判別装置は、第1図に示すよ
うに、配電線に電圧を印加しない状態(死線時)
で、たとえば他端側(受信側)に異なる抵抗値の
抵抗R1、R2、R3を各相に挿入し、一端側(送信
側)で、各相の抵抗値を抵抗計によつて測定する
ことにより、その両端の相の抵抗値が一致してい
る相を検出して、相判別を行なつていた。
Conventionally, this type of phase discrimination device has been used when no voltage is applied to the distribution line (dead line), as shown in Figure 1.
For example, insert resistors R 1 , R 2 , and R 3 with different resistance values into each phase at the other end (receiving side), and measure the resistance value of each phase with a resistance meter at one end (transmitting side). By measuring, a phase in which the resistance values of the phases at both ends are the same is detected and phase discrimination is performed.

しかしながら、このような相判別方式では、相
判別を行なうために、一旦、配電線を停止する必
要があり、かつ両端間で抵抗値確認のための情報
交換が必要となり、繁雑であつた。
However, in such a phase determination method, it is necessary to temporarily stop the power distribution line in order to perform phase determination, and information exchange for checking the resistance value is required between both ends, which is complicated.

本発明は、配電線を活線のままで、かつ相判別
を行なう一方の端側の情報のみで相判別が可能な
相判別方式を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a phase discrimination method that allows phase discrimination to be performed while a power distribution line remains live and only based on information from one end of the distribution line.

次に本発明の一実施例を図面に基づいて詳細に
説明する。
Next, one embodiment of the present invention will be described in detail based on the drawings.

第2図には、配電線のある区間A−B間におい
てA地点の(送信側)黒相、赤相、白相がB地点
(受信側)のどの相と一致しているかを判別する
場合の実施例が示されている。この第2図におい
て、1は特定の相電圧(たとえば黒相電圧)をと
りだす電圧変成器(分圧器または変成器)であ
る。電圧変成器1の出力a(第3図参照)は、波
形整形回路2に与えられ、短形波に整形される。
波形整形回路2の出力b及び測定用信号発生器3
の出力cは同期回路4に与えられ、測定用信号d
は波形整理回路2の出力の相電圧の特定位相(例
えば0゜)に同期して出力される。同期回路4の出
力dは信号結合器5に与えられ、相電圧(黒相電
圧)に重畳される。測定用信号dの重畳している
黒相電圧は第3図において波形図eで示されてい
る。従つて、電圧変圧器1、波形整形回路2、測
定用信号発生器3、同期回路4および信号結合器
5によつて、測定用信号発生装置が構成される。
Figure 2 shows how to determine which phase of the black, red, and white phases at point A (on the transmitting side) match the phases at point B (on the receiving side) between a certain section of the distribution line A and B. An example is shown. In FIG. 2, 1 is a voltage transformer (voltage divider or transformer) that takes out a specific phase voltage (for example, black phase voltage). The output a (see FIG. 3) of the voltage transformer 1 is applied to a waveform shaping circuit 2 and shaped into a rectangular wave.
Output b of waveform shaping circuit 2 and measurement signal generator 3
The output c is given to the synchronization circuit 4, and the measurement signal d
is output in synchronization with a specific phase (for example, 0°) of the phase voltage output from the waveform organizing circuit 2. The output d of the synchronous circuit 4 is given to the signal combiner 5 and superimposed on the phase voltage (black phase voltage). The black phase voltage on which the measurement signal d is superimposed is shown by a waveform diagram e in FIG. Therefore, the voltage transformer 1, the waveform shaping circuit 2, the measurement signal generator 3, the synchronization circuit 4, and the signal combiner 5 constitute a measurement signal generation device.

相判別を行なうB地点(受信側)においては、
以下に説明する電圧変成器6、信号電圧分離回路
7、波形整形回路8および相判別回路9から成る
測定用信号検出装置が設けられている。すなわ
ち、まず、3つの相電圧U1、V1、W1を取出す電
圧変成器6が各相に接続されている。各相電圧
U1、V1、W1には、第4図に示すように、測定用
信号dが重畳されている。なお、A地点(送信
側)では黒相電圧一相しか測定用信号dを重畳さ
せていないにもかかわらず、B地点(受信側)で
は3つの相電圧U1、V1、W1に測定用信号dが重
畳された形になつているが、これは、主として配
電用変圧器を通した電源側における回り込み現象
のためである。電圧変成器6の出力U2、V2、W2
は各相電圧U1、V1、W1と同じ波形の信号とな
り、その出力U2、V2、W2は信号電圧分離回路7
に与えられる。この信号電圧分離回路7からは、
3つの相電圧U3、V3、W3と1つの測定用信号x1
とが出される。3つの相電圧U3、V3、W3は相電
圧U1、V1、W1から測定信号dを除去した信号波
形となる。この相電圧U3、V3、W3は波形整形回
路8に与えられ、波形整形される。この波形整形
回路8は、たとえば各相電圧U3、V3、W3波形が
0゜を横切る時点でそれぞれ出力パルスを発生し、
たとえば120゜経過後そのパルスを終了させる3個
の単安定マルチバイブレータから成る。測定用信
号x2の取出しも別の単安定マルチバイブレータに
よつて行なわれる。波形整形回路8の出力x2
U4、V4、W4は相判別回路9に与えられる。この
相判別回路9は、たとえば、出力U4、V4、W4
それぞれ第1入力とし、出力x2を第2入力とする
3つのAND回路から成る。従つて、3つのAND
回路をそれぞれU相、V相、W相用と決めておく
ことにより、この場合には、第4図から理解でき
るように、出力U4とx2が導かれるAND回路つま
りU相用AND回路から出力信号が出される。従
つて、このU相がA地点(送信側)における黒相
に対応していることが判る。この相判別回路9で
は、測定用信号とB地点の各相電圧の同期を検出
しており測定用信号と同期した相がA地点の特定
の相と一致していることになる。
At point B (receiving side) where phase discrimination is performed,
A measurement signal detection device is provided which includes a voltage transformer 6, a signal voltage separation circuit 7, a waveform shaping circuit 8, and a phase discrimination circuit 9, which will be described below. That is, first, a voltage transformer 6 that takes out three phase voltages U 1 , V 1 , and W 1 is connected to each phase. Each phase voltage
As shown in FIG. 4, a measurement signal d is superimposed on U 1 , V 1 , and W 1 . Note that although only one phase of the black phase voltage is superimposed with the measurement signal d at point A (transmitting side), three phase voltages U 1 , V 1 , and W 1 are measured at point B (receiving side). The signal d is superimposed, but this is mainly due to a wrap-around phenomenon on the power supply side through the distribution transformer. Outputs of voltage transformer 6 U 2 , V 2 , W 2
becomes a signal with the same waveform as each phase voltage U 1 , V 1 , W 1 , and its output U 2 , V 2 , W 2 is sent to the signal voltage separation circuit 7.
given to. From this signal voltage separation circuit 7,
3 phase voltages U 3 , V 3 , W 3 and 1 measurement signal x 1
is issued. The three phase voltages U 3 , V 3 , W 3 have signal waveforms obtained by removing the measurement signal d from the phase voltages U 1 , V 1 , W 1 . These phase voltages U 3 , V 3 , W 3 are given to a waveform shaping circuit 8 and waveform shaped. This waveform shaping circuit 8 has, for example, a waveform of each phase voltage U 3 , V 3 , W 3 .
Generates an output pulse each time it crosses 0°,
It consists of three monostable multivibrators that terminate their pulse after eg 120°. The extraction of the measurement signal x 2 is also carried out by another monostable multivibrator. Output x 2 of waveform shaping circuit 8,
U 4 , V 4 , and W 4 are applied to the phase discrimination circuit 9. This phase discrimination circuit 9 is composed of, for example, three AND circuits having outputs U 4 , V 4 , and W 4 as first inputs, and output x 2 as a second input. Therefore, three AND
By determining the circuits for the U phase, V phase, and W phase, respectively, in this case, as can be understood from Figure 4, an AND circuit from which the outputs U 4 and x 2 are derived, that is, an AND circuit for the U phase. An output signal is output from. Therefore, it can be seen that this U phase corresponds to the black phase at point A (transmission side). This phase determination circuit 9 detects synchronization between the measurement signal and each phase voltage at point B, and the phase synchronized with the measurement signal matches the specific phase at point A.

一方、B地点の相回転方向は公知の手段で判別
できるので、B地点の他の2つの相判別は容易に
出来る。
On the other hand, since the phase rotation direction at point B can be determined by known means, the other two phases at point B can be easily determined.

なお、相回転が未知の場合には、B地点で測定
用信号x2を120゜毎回転させて(つまり、遅延素子
により120゜遅られて)、それぞれその信号x2と同
期した相電圧を検出することにより他の2つの相
の相判別ができる。つまり、測定用信号x2を120゜
遅らせると、これは信号V4と同期し、さらに120゜
遅らせるとW4と同期することになる。
If the phase rotation is unknown, rotate the measurement signal x 2 every 120 degrees at point B (that is, delayed by 120 degrees by the delay element), and obtain the phase voltages that are synchronized with each signal x 2 . By detecting this, it is possible to distinguish between the other two phases. That is, if the measuring signal x 2 is delayed by 120°, it will be synchronized with the signal V 4 , and if it is delayed by a further 120°, it will be synchronized with W 4 .

第2図に示した実施例においては、相判別回路
9を3つのAND回路で構成し、各AND回路の第
1入力に波形整形回路8の出力U4、V4、W4を導
くことについて説明したが、たとえば相判別回路
9を1つのAND回路より構成し、そのAND回路
の第1入力に切換スイツチを接続し、この切換ス
イツチを波形整形回路8の出力U4、V4、W4に切
換接続できるようにし、その出力U4、V4、W4
切換スイツチを介してそのAND回路に切換導入
するようにしてもよい。
In the embodiment shown in FIG. 2, the phase discrimination circuit 9 is composed of three AND circuits, and the outputs U 4 , V 4 , W 4 of the waveform shaping circuit 8 are guided to the first input of each AND circuit. As explained above, for example, the phase discrimination circuit 9 is composed of one AND circuit, a changeover switch is connected to the first input of the AND circuit, and this changeover switch is connected to the outputs U 4 , V 4 , W 4 of the waveform shaping circuit 8. Alternatively, the outputs U 4 , V 4 , and W 4 may be selectively connected to the AND circuit via a changeover switch.

以上に説明したように、本発明によれば、配電
線区間の両端の情報交換を行なわずかつ活線のま
まで、一端側の相に一致した相を他端側において
判別することが可能となる。
As explained above, according to the present invention, it is possible to exchange information between both ends of a distribution line section and determine a phase that matches the phase at one end at the other end while the line remains live. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相判別装置のブロツク図、第2
図は本発明による相判別方式を実施するための相
判別装置の一例を示すブロツク図、第3図および
第4図はそれぞれ第2図における各構成要素の一
部の出力波形を示す波形図である。 1:電圧変成器、2:波形整形回路、3:測定
用信号発生器、4:同期回路、5:信号結合器、
6:電圧変成器、7:信号電圧分離回路、8:波
形整形回路、9:相判別回路。
Figure 1 is a block diagram of a conventional phase discrimination device, Figure 2 is a block diagram of a conventional phase discrimination device.
The figure is a block diagram showing an example of a phase discrimination device for carrying out the phase discrimination method according to the present invention, and FIGS. 3 and 4 are waveform diagrams showing the output waveforms of some of the components in FIG. 2, respectively. be. 1: Voltage transformer, 2: Waveform shaping circuit, 3: Measurement signal generator, 4: Synchronous circuit, 5: Signal combiner,
6: Voltage transformer, 7: Signal voltage separation circuit, 8: Waveform shaping circuit, 9: Phase discrimination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 配電線区間の一端側(送信側)に、その一端
側の、ある特定相の相電圧に同期して、特定周波
数の測定用信号を配電線に重畳させる測定用信号
発生装置を設け、他端側(受信側)に、前記測定
用信号を検出し、その信号がその他端側のどの相
電圧に重畳されているかを検出する検出装置を設
け、この検出装置の出力に基づいて、前記一端側
のある特定相に対応する前記他端側の相を判別す
るようにしたことを特徴とする相判別方式。
1. A measurement signal generator is provided on one end (transmission side) of the distribution line section to superimpose a measurement signal of a specific frequency onto the distribution line in synchronization with the phase voltage of a specific phase on that one end, and A detection device is provided on the end side (receiving side) to detect the measurement signal and detect which phase voltage on the other end side the signal is superimposed on, and based on the output of this detection device, the one end A phase discrimination method characterized in that a phase on the other end side corresponding to a certain specific phase on the side is discriminated.
JP56177763A 1981-11-05 1981-11-05 Phase discrimination system Granted JPS5879168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177763A JPS5879168A (en) 1981-11-05 1981-11-05 Phase discrimination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177763A JPS5879168A (en) 1981-11-05 1981-11-05 Phase discrimination system

Publications (2)

Publication Number Publication Date
JPS5879168A JPS5879168A (en) 1983-05-12
JPH0124272B2 true JPH0124272B2 (en) 1989-05-10

Family

ID=16036696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177763A Granted JPS5879168A (en) 1981-11-05 1981-11-05 Phase discrimination system

Country Status (1)

Country Link
JP (1) JPS5879168A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285382A1 (en) * 2010-05-18 2011-11-24 General Electric Company Power meter phase identification

Also Published As

Publication number Publication date
JPS5879168A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US8217640B2 (en) Method and device for determining the phases in a multi-phase electrical system
US5652505A (en) Power consumption measurement device for a multiphase alternating current system
EP0684678A1 (en) Methods and apparatus for identifying faulted phases on an electric power transmission line
JPH0124272B2 (en)
EP0020047B1 (en) Method and apparatus for fault identification in electric power transmission systems
JPH0249472B2 (en)
US4587551A (en) Measurement of SC/H phase
JPH0345343B2 (en)
JPH0345344B2 (en)
JPH0367228B2 (en)
JPS59230175A (en) Spotting method of short-circuited point of three-phase high-voltage distribution line
JPS5847425Y2 (en) AC electrical equipment characteristics testing equipment
JPS58219462A (en) Fault point location system
SU1506394A1 (en) Phase indicator
JP3183957B2 (en) Fault location device
JP2654795B2 (en) Partial discharge detection device
SU879522A1 (en) Method and device for determination dc electrical machine magnetic field curve
JPS62181630A (en) Distribution line phase difference detection
JPH0862265A (en) Measuring method and device for electricity in cable line
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
KR910005700B1 (en) Wire phase detector of super high earth wire
JPH03160376A (en) Phase discriminating apparatus for distributing line
CN110095689A (en) A kind of method of discrimination of fault direction, system and equipment
JPH0580106A (en) Failure point identifying device
JPS60233573A (en) Detecting method of short-circuited part in circuit board