JPH01242423A - Means for holding molten glass discharge nozzle - Google Patents

Means for holding molten glass discharge nozzle

Info

Publication number
JPH01242423A
JPH01242423A JP6809688A JP6809688A JPH01242423A JP H01242423 A JPH01242423 A JP H01242423A JP 6809688 A JP6809688 A JP 6809688A JP 6809688 A JP6809688 A JP 6809688A JP H01242423 A JPH01242423 A JP H01242423A
Authority
JP
Japan
Prior art keywords
nozzle
glass
heater
molten glass
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6809688A
Other languages
Japanese (ja)
Other versions
JPH0686298B2 (en
Inventor
Isamu Shigyo
勇 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63068096A priority Critical patent/JPH0686298B2/en
Publication of JPH01242423A publication Critical patent/JPH01242423A/en
Publication of JPH0686298B2 publication Critical patent/JPH0686298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/70Horizontal or inclined press axis

Abstract

PURPOSE:To keep a forming die and its vicinity clean and to improve the dimensional precision of a formed product by holding the forming die and molten glass discharge nozzle in an airtight clean room. CONSTITUTION:A raw glass material is charged in a crucible 3 provided in a melting furnace 1, melted by energizing a heater 2, and defoamed to obtain molten glass 4. The discharge nozzle 5 is held by a seal plate 7 of the same quality as the nozzle 5 fixed to the opening of the upper surface of the clean room 11 by the fixing jigs 10 having a U-shaped section. A heater 6 for the nozzle 5 is energized to preheat the nozzle 5. Glass 4 is then supplied to the nozzle 5, the heater 6 is turned off when the glass 4 reaches the tip of the nozzle 5, and the glass 4 is solidified. Valves 13 and 15 are then opened, air is sent into the room 11 to clean the inside of the room 11, the heater 6 is energized to heat and melt the glass 4 in the nozzle 11, hence fluid glass 18 flows out from the nozzle 5 and is pressed by the forming faces 18A and 18B of a die member 17, and then the fluid glass 18 is cut by a shear 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融ガラス流出用ノズルの保持手段に関し、
特に成形用型を収容するクリーンルームに流出用ノズル
を保持する手段に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a holding means for a molten glass outflow nozzle,
In particular, it relates to means for retaining an outflow nozzle in a clean room containing a mold.

(従来の技術) 近年、所定の表面精度を有する成形用型内にガラス素材
を収容してプレス成形することにより、研削及び研摩等
の後加工を不安とした高石1度の光学素子を成形する方
法が開発されている。
(Prior art) In recent years, by press-molding a glass material housed in a mold with a predetermined surface accuracy, it has become possible to mold optical elements that are difficult to handle after processing such as grinding and polishing. A method has been developed.

このような光学素子を成形する際においては、成形用型
の劣化を防止するために成形装置を非酸化性等の特定の
雰囲気に保持したり、又成形品の表面精度を保障するた
めに成形装置の周囲を清浄に保つ必要がある。
When molding such optical elements, it is necessary to maintain the molding equipment in a specific non-oxidizing atmosphere to prevent deterioration of the mold, and to ensure the surface accuracy of the molded product. The area around the equipment must be kept clean.

そこで、Na等の非酸化雰囲気中におけるガラス成形で
は、上述のような溶融炉を含む成形装置全体を1111
記のような所定の雰囲気中に置いて成形したり、成形装
置の周囲を清浄に保つために、ガラス溶融炉を含む装置
全体をクリーンな室内に置いて成形したり、又成形直前
に成形表面をエアー等で吹き払い表面のゴミ等を除去し
たりすることが行われている。
Therefore, in glass forming in a non-oxidizing atmosphere such as Na, the entire forming apparatus including the above-mentioned melting furnace is
In order to keep the area around the molding equipment clean, the entire equipment including the glass melting furnace is placed in a clean room for molding, or the molding surface is cleaned immediately before molding. This is done by blowing off the surface with air or the like to remove dust, etc. from the surface.

(発明が解決しようとする問題点) しかるに、−F述した従来の方法には以下に述べるよう
な種々の問題点があった。
(Problems to be Solved by the Invention) However, the conventional method described in -F has various problems as described below.

概して、成形品の表面に付着する粉塵等は主にガラス溶
融炉の耐火物自体から発生することが多い。従って、ガ
ラス溶融炉を含む成形装置全体を包囲する室を用いてこ
の室内を所定の雰囲気に形成する方法では炉口体から発
生する粉塵等を防11ニすることは困難である。又、ガ
ラス溶融炉及び成形装置全体を包囲する室であるため装
置が大掛かりになり、コストアップになる。またこの方
法では使用する溶融炉の大きさが制限され、大型の溶融
炉を用いることは困難となる。
In general, dust adhering to the surface of molded products is often generated mainly from the refractories themselves of the glass melting furnace. Therefore, it is difficult to prevent dust and the like generated from the furnace mouth by using a chamber that surrounds the entire molding apparatus including the glass melting furnace and creating a predetermined atmosphere in this chamber. Furthermore, since the chamber surrounds the entire glass melting furnace and molding device, the device becomes large-scale and costs increase. Further, in this method, the size of the melting furnace used is limited, making it difficult to use a large-sized melting furnace.

史に、成形直前に型表面をエアー等で吹き払いこの表面
のゴミ等を除去する方法では雰囲気自体が粉塵等で汚染
している場合は何の効果も期待できない。
Historically, the method of blowing off the surface of the mold with air or the like to remove dust or the like on this surface immediately before molding cannot be expected to have any effect if the atmosphere itself is contaminated with dust or the like.

本発明は、このような成形時における粉塵等の問題を解
決するために成されたものである。
The present invention was made in order to solve the problem of dust and the like during molding.

(問題点を解決するための手段) −1,述した従来の問題点を解決するために、本発明の
溶融ガラス流出用ノズルの保持手段は、ガラス溶融炉の
流出ノズルから流出するガラス流体な押圧成形する成形
用型をクリーンルーム内に収容し、該クリーンルームに
対して11?1記ノズルを該ノズルと同材質の保持部材
で保持することを特徴とする。(作 用) 本発明においては、成形用型部材はクリーンルーム内に
収容されているため、」−記したような溶融炉とは隔離
された状態にあるから該溶融炉から発生するゴミ、チリ
等の粉塵からは完全に分離され成形用型及びその周辺は
常に清浄に保たれる。
(Means for Solving the Problems) -1. In order to solve the above-mentioned conventional problems, the holding means for the molten glass outflow nozzle of the present invention is designed to hold the glass fluid flowing out from the outflow nozzle of the glass melting furnace. A mold for press molding is housed in a clean room, and the nozzle No. 11-1 is held in the clean room by a holding member made of the same material as the nozzle. (Function) In the present invention, since the mold member for molding is housed in a clean room, it is isolated from the melting furnace as described in ``-'', so that dust, dust, etc. generated from the melting furnace can be removed. The mold and its surroundings are kept clean at all times.

11q記クリーンルームとしては、気密室、非酸化雰囲
気室等が挙げられる。
Examples of the clean room described in 11q include an airtight room, a non-oxidizing atmosphere room, and the like.

このようなりリーンルーム内の成形用型部材に対して溶
融炉から流出するガラス流体は該溶融炉に設けられた流
出ノズルから供給せしめられる。
In this manner, the glass fluid flowing out from the melting furnace is supplied to the mold member in the lean room from the outflow nozzle provided in the melting furnace.

通常、ガラス溶融炉は白金等を」:成分とする高耐熱性
材料から形成され、このような溶融炉に設けらたノズル
も又同材料から形成されることが多い。このようなノズ
ルを気密性が要求されるクリーンルーム内に設けられた
成形用型まで接近するにはクリーンルーム外壁にて該ノ
ズルを連結保持することが必要となる。本発明において
は、この保持部材としてノズルと同材質のもの(ノズル
材質の主成分を保持部材の主成分とする)が使用しであ
る。これにより異種材料を溶接した場合に生じる腐食が
防1トされクリーンルーム内の気密性が確実に保持され
る。
Typically, glass melting furnaces are made of a highly heat-resistant material containing platinum or the like as a component, and the nozzle provided in such a melting furnace is often also made of the same material. In order to bring such a nozzle close to a mold provided in a clean room where airtightness is required, it is necessary to connect and hold the nozzle at the outer wall of the clean room. In the present invention, the holding member is made of the same material as the nozzle (the main component of the nozzle material is the main component of the holding member). This prevents corrosion that occurs when dissimilar materials are welded, and ensures airtightness within the clean room.

(実施例) 以ト1本発明の実施例について図面を参照しながら説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

(第1実施例) 第1図は本発明の第1の実施例の構成全体を示す概略断
面図である。
(First Embodiment) FIG. 1 is a schematic sectional view showing the entire configuration of a first embodiment of the present invention.

lはファイバー等の耐火物で構成される溶融炉の本体で
ある。この溶融炉内には溶融ガラス4を収容する白金ル
ツボ3とこのルツボの周辺に設置された溶融用過熱ヒー
ター2が設けられている。
1 is the main body of the melting furnace made of refractory material such as fiber. This melting furnace is provided with a platinum crucible 3 containing molten glass 4 and a melting superheater 2 installed around the crucible.

叉、前記ルツボ3の下方には白金ノズル5が設けられ、
白金ルツボ3内の溶融ガラス4はこのノズル5を介して
流トされる。6はノズル5の周囲に設けられた過熱用ヒ
ーターである。
Further, a platinum nozzle 5 is provided below the crucible 3,
Molten glass 4 in platinum crucible 3 is poured through this nozzle 5. Reference numeral 6 denotes a superheating heater provided around the nozzle 5.

ノズル5の流出1コ下方には横力向に抑圧動作を行う成
形用型17を有するプレス成形装置16が設けられてい
る。成形用=r + 7は左右に開放或は押圧動作をす
る一対の型部材17a、17bからなり、ノズル5から
流出するガラス流体18は開放状態にある型部材間に流
下せしめられる。
A press molding device 16 having a mold 17 that performs a suppressing operation in the direction of lateral force is provided below the outlet of the nozzle 5 . The molding =r + 7 consists of a pair of mold members 17a and 17b that open or press in the left and right directions, and the glass fluid 18 flowing out from the nozzle 5 is caused to flow down between the mold members in the open state.

このような型部材17を有する成形装置16は気密カバ
ーI+で包囲されており、該成形装置全体は外部の雰囲
気から遮断されている。この気密カバー11には雰囲気
調整ガスを導入する導入口12およびこれを排出する排
出1J14が設けられている。13.15はこれら導入
口13及び排出l」14に設けられたバルブである。
A molding device 16 having such a mold member 17 is surrounded by an airtight cover I+, so that the entire molding device is isolated from the outside atmosphere. This airtight cover 11 is provided with an inlet 12 for introducing atmosphere adjusting gas and an outlet 1J14 for discharging the gas. Reference numerals 13 and 15 indicate valves provided at the inlet 13 and the outlet 14.

気密カバー11の一ヒ面の開口部には、該気密カバー1
1に対して例えばボルト締結により断面コ字状の固定治
具10により固定保持された白金製シールプレート7が
設けられている。このシールプレート7には先端部が気
密カバー11内の型部材!7付近で開[−1するよう構
成されたノズル5か溶接接合により堅固に取付けられて
いる。これらシールプレート7とノズル5は1−述した
ように双力とも白金から形成されているから!jいの溶
接も工(好に行なわれ、該溶接部分が融着等の化学反応
を起すことなく気密カバー+1の気密性も保持せしめら
れる。
The airtight cover 1 has an opening on one side.
1 is provided with a platinum seal plate 7 that is fixedly held by a fixing jig 10 having a U-shaped cross section by, for example, bolting. The tip of this seal plate 7 is a mold member inside the airtight cover 11! The nozzle 5, which is configured to open at about 7 [-1], is firmly attached by welding. These seal plate 7 and nozzle 5 are both made of platinum as mentioned above! The welding is also well done, and the welded portion does not cause chemical reactions such as fusion, and the airtightness of the airtight cover +1 is maintained.

本実施例においては、このシールプレート7と気密カバ
ー11間には気密カバー11内の気密性を保持するため
のOリング9が設けられ、気密カバー11内の気密性を
確保しである。さらに、シールプレート7と固定治具1
0間には冷却手段9が設けられている。この冷却手段9
は冷却媒体として低温水が循環せしめられ、ノズル5の
冒4による上記0リング9の損傷を防+lzしている。
In this embodiment, an O-ring 9 is provided between the seal plate 7 and the airtight cover 11 to maintain the airtightness inside the airtight cover 11. Furthermore, seal plate 7 and fixing jig 1
A cooling means 9 is provided between the two. This cooling means 9
Low-temperature water is circulated as a cooling medium to prevent the O-ring 9 from being damaged by damage to the nozzle 5.

このように構成された本実施例装置を使用するには、溶
融炉lの開口部(不図示)からルツボ3に所定のガラス
原料を投入し、しかる後前記開口部を閉じ、次いで過熱
ヒーター2に通電してルツボ3内のガラス原料を溶解し
清澄せしめ胞泡操作を行うことにより溶融ガラス4を作
る。又、この作業と同時にノズル5の過熱用ヒーター6
にも通電し溶融ガラス4がノズル5の先端に達した時点
で過熱用ヒーター6の通電を停止lニジ、ノズル5内の
ガラスを−ij、 1.lil化せしめる。その後、バ
ルブ13、I5を開けて導入D I 2より11−9常
な空気をカバー11内に送り込み、排出口14より排気
する゛。そして、気密カバー11内が充分に浄化した後
、ノズル5の加熱用ヒーター6にr11度通電してヒー
ター5を加熱し、ノズル5内の溶融ガラス4を加熱軟化
せしめ該ノズル5の先端よりガラス流体!8を流出せし
める。
To use the apparatus of this embodiment configured as described above, a predetermined glass raw material is introduced into the crucible 3 through the opening (not shown) of the melting furnace 1, and then the opening is closed, and then the superheater 2 is turned on. A molten glass 4 is produced by applying electricity to melt the glass raw material in the crucible 3 and performing a clarification and bubbling operation. Also, at the same time as this work, the heater 6 for overheating the nozzle 5
When the molten glass 4 reaches the tip of the nozzle 5, the power supply to the overheating heater 6 is stopped, and the glass in the nozzle 5 is heated. Make it a lil. Thereafter, the valves 13 and I5 are opened, and normal air is sent into the cover 11 from the introduction DI2, and is exhausted from the exhaust port 14. After the inside of the airtight cover 11 is sufficiently purified, the heating heater 6 of the nozzle 5 is energized for 11 degrees to heat the heater 5, and the molten glass 4 in the nozzle 5 is heated and softened, and the glass is heated from the tip of the nozzle 5. fluid! Let 8 flow out.

型部材17は、上述したように横方向に開閉動作をする
よう構成してあり、型部材17の各成形面によりノズル
5からFツノ向に流トするガラス流体18を抑圧転写す
る。この型部材17は、ガラス流体18の先端が型部材
17の成形面を通過した後に抑圧動作するよう、不図示
のコントローラーにより作動タイミングが:t制御され
、押/−E後は一定時間保持状態を保ち2型部材17と
ガラス流体18との温度差により型部材間における被成
形部が冷却固化せしめられる。
The mold member 17 is configured to open and close in the lateral direction as described above, and each molding surface of the mold member 17 suppresses and transfers the glass fluid 18 flowing from the nozzle 5 in the F-horn direction. The operation timing of this mold member 17 is controlled by a controller (not shown) so that it performs a suppressing operation after the tip of the glass fluid 18 passes the molding surface of the mold member 17, and is held in a state for a certain period of time after pressing/-E. The molded portion between the mold members is cooled and solidified due to the temperature difference between the second mold member 17 and the glass fluid 18.

19はガラス流体18を切断するためのシャーであり、
型部材17がガラス流体18を押)t した直後開閉作
動することによりガラス流体18をノズル5のF方位置
で切断する。ガラス流体18は連続的にノズル5から流
下せしめられ、シャー19による切断後は型部材17が
開放して再び4〜述のようなプレス成形動作が連続的に
行なわれる。
19 is a shear for cutting the glass fluid 18;
Immediately after the mold member 17 pushes the glass fluid 18, it opens and closes to cut the glass fluid 18 at the position F of the nozzle 5. The glass fluid 18 is continuously made to flow down from the nozzle 5, and after cutting by the shear 19, the mold member 17 is opened and the press molding operations as described in 4 to 4 are continuously performed again.

このようなプレス成形により得られた成形品にはガラス
流体の先端部を抑圧成形した際に生ずるシャーマーク等
の欠陥がなく、表面精度も良好で11つ粉塵等による成
形品の汚染はまったくみられなっかった。
The molded product obtained by this type of press molding has no defects such as shear marks that occur when the tip of the glass fluid is suppressed, the surface accuracy is good, and there is no contamination of the molded product by dust, etc. I couldn't.

(第2′y:、施例) 以ド1本発明の他の実施例として第2図を参照しながら
説明する。
(Second Embodiment) Another embodiment of the present invention will be described below with reference to FIG. 2.

この実施例はL記実施例とはノズル5の加熱手段、及び
シールプレート7と気密カバー11の気密のためのOリ
ング9を冷却する一L段において相違している。即ち、
図示のようにノズル5には電極板21が固着され、この
電極板21には不図示の電力コントローラーに接続され
た通電端子22が付設され、ノズル5は1−記実施例と
は異なり直接加熱されてノズル5内のガラス流体+8が
加熱せしめられる。又、シールプレート7の気密カバー
11に対する取付けは、気密カバー11に同着された断
面コ字状の周定治具10でシールプレート7のト)゛を
挟み、このL下接触部分共にOリング9が介装しである
。そして、固定治具10の内側には環状の冷却室27が
形成され、この冷却室27内で外部から供給された冷却
ガスが循環できるよう固定治具lOの一方にはエアー導
入管25が、他方にはエアー排出管26が設けられてい
る。
This embodiment differs from embodiment L in the heating means for the nozzle 5 and the one L stage for cooling the O-ring 9 for airtight sealing of the seal plate 7 and airtight cover 11. That is,
As shown in the figure, an electrode plate 21 is fixed to the nozzle 5, and a current-carrying terminal 22 connected to a power controller (not shown) is attached to the electrode plate 21, and the nozzle 5 is directly heated unlike the embodiment described in 1-1. As a result, the glass fluid +8 in the nozzle 5 is heated. The seal plate 7 is attached to the airtight cover 11 by sandwiching the seal plate 7 with a circumferential jig 10 having a U-shaped cross section and attached to the airtight cover 11, and then attaching the O-ring 9 to the lower L contact portion. It is an intervention. An annular cooling chamber 27 is formed inside the fixing jig 10, and an air introduction pipe 25 is provided on one side of the fixing jig 10 so that cooling gas supplied from the outside can be circulated within the cooling chamber 27. An air discharge pipe 26 is provided on the other side.

この実施例装置を使用するについては、ます子連のよう
な方法で溶融ガラス4を作り、電極板21に通電してノ
ズル5を加熱し、溶融ガラス4がノズル5の先端に達し
た時点で通電を停止Fシ、ノズル5内のガラスを固化す
る。次いで、気密カバー11上ノJに設けられた不図示
の開L1部より徐々にアルゴンガスを注入し、気密カバ
ー11全体にこのアルゴンガスな充填する。そして、開
口部を閉じた後、バルブ13を開けて導入口12から少
(l」のN2ガスを流入せしめ、気密カバー11内を非
酸化雰囲気状態にしてノズル5を過熱した後、型部材1
7により上述のような作動によりプレス成形を行なう。
To use this embodiment device, make molten glass 4 using a similar method, heat the nozzle 5 by applying electricity to the electrode plate 21, and when the molten glass 4 reaches the tip of the nozzle 5, Turn off the current and solidify the glass inside the nozzle 5. Next, argon gas is gradually injected from an opening L1 (not shown) provided on the top J of the airtight cover 11, and the entire airtight cover 11 is filled with this argon gas. Then, after closing the opening, the valve 13 is opened to allow a small amount (1) of N2 gas to flow in from the inlet 12, and the inside of the airtight cover 11 is brought into a non-oxidizing atmosphere, and the nozzle 5 is heated, and then the mold member 1
7, press forming is performed by the operation described above.

叉、このような操作中において、エアー導入管25及び
エアー排出管26を開放して冷却室27内に冷却空気を
循環し、0リング9の5’?fAによる損傷を防止して
気密カバー11内の気密性を保持する。
During such an operation, the air introduction pipe 25 and the air discharge pipe 26 are opened to circulate cooling air into the cooling chamber 27, and the 5'? The airtightness inside the airtight cover 11 is maintained by preventing damage caused by fA.

このような操作により得られた成形品は上記実施例同様
表面精度も良好で1つ粉塵等による成形品の汚染は完全
に防止されており、プレス成形時におけるガラスとの接
触による型部材17の酸化も全くみられなかった。
The molded product obtained by such an operation has good surface precision as in the above example, and contamination of the molded product by dust etc. is completely prevented. No oxidation was observed at all.

(第3実施例) さらに、本発明の他の実施例について第3図を参照しな
がら説明する。
(Third Embodiment) Further, another embodiment of the present invention will be described with reference to FIG. 3.

この実施例におけるシールプレート7aの気密カバー1
1に対する取付けは第1実施例におけると同様、内部に
冷却水を循環させる形式の冷却上段8がシールプレート
7a間と固定治具lOに介在しである。
Airtight cover 1 of seal plate 7a in this embodiment
As in the first embodiment, the upper cooling stage 8 of the type in which cooling water is circulated is interposed between the seal plates 7a and the fixing jig 1O.

本実施例において、」二記第1及び第2の実施例と相違
する点は、シールプレート7aが電極板を兼ねている点
にあり、このシールプレート7aの端部に第2実施例に
おけると同様の電極板21及び通電端子22が設けられ
ている。
This embodiment is different from the first and second embodiments in that the seal plate 7a also serves as an electrode plate, and the end portion of the seal plate 7a is different from the second embodiment. Similar electrode plates 21 and current-carrying terminals 22 are provided.

この実施例においても、各接合部は溶接接合或は0リン
グ9の使用により気密カバー11内の気密性は保持され
ており、上記同様シールプレート7aの胃温に伴なう0
リング9の損傷も冷却上段8により防止されている。
In this embodiment as well, the airtightness within the airtight cover 11 is maintained by welding or using the O-ring 9 at each joint, and as described above, the O-ring due to the gastric temperature of the seal plate 7a
Damage to the ring 9 is also prevented by the cooling upper stage 8.

又、得られた成形品も上記同様、表面精度も良好で且つ
粉塵等の欠陥も全くみられなかった。
Further, the obtained molded product also had good surface precision and no defects such as dust were observed, as described above.

(発明の効果) 以−ト説明したように1本発明によれば、成形用型部材
は気密度が確保されたクリーンルーム内に収容されてい
るため、該成形用型及びその周辺は常に清浄に保たれる
。したがって、このような成形方法により得られた成形
品には粉塵等が付着することがなく成形品の表面精度を
向上するのに有益である。又、溶融ルツボ内の溶融ガラ
スを流下するノズルは該ノズルをクリーンルームに対し
て保持する保持部材と同様の材質で形成されているから
、該保持部材とノズルとを同容する溶接等の接合部が腐
食せずに記りリーンルーム内の気密性は確実に保持され
る。又、このため、クリーンルーム内の雰囲気を容易に
調節することができ。
(Effects of the Invention) As explained above, according to the present invention, the mold member is housed in a clean room with airtightness, so the mold and its surroundings are always kept clean. It is maintained. Therefore, the molded product obtained by such a molding method is free from dust and the like, which is useful for improving the surface precision of the molded product. In addition, since the nozzle through which the molten glass in the melting crucible flows downward is made of the same material as the holding member that holds the nozzle with respect to the clean room, a joint such as welding that makes the holding member and the nozzle the same can be used. The airtightness inside the lean room is reliably maintained without corrosion. Additionally, the atmosphere inside the clean room can be easily adjusted.

例えばこのクリーンルーム内を非酸化雰囲気にすること
により型部材のガラスとの接触による融着を防11二す
る等が可能となる。
For example, by creating a non-oxidizing atmosphere in the clean room, it is possible to prevent the mold member from fusion due to contact with the glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の構成を示す概略断面図で
あり、第2図は本発明の第2実施例の要部を示す概略断
面図であり、第3図は本発明の第3実施例の要部を示す
概略断面図である。 1・・・溶融炉 2・・・溶融用加熱ヒーター 3・・・白金ルツボ 4・・・溶融ガラス 5・・・ノズル 6・・・ノズル用加熱ヒーター 7・・・白金製シールプレート 7a・・・電極兼用シールプレート 8・・・冷却手段9−0リング 10 ・・・固定治具 11・・・気密カバー 17・・・成形用型 18・・・ガラス流体 代理人  弁理士 山 下 穣 平 第1図 第2図 第3因
FIG. 1 is a schematic cross-sectional view showing the configuration of a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view showing main parts of a second embodiment of the present invention, and FIG. FIG. 7 is a schematic cross-sectional view showing main parts of a third embodiment. 1... Melting furnace 2... Melting heater 3... Platinum crucible 4... Molten glass 5... Nozzle 6... Nozzle heater 7... Platinum seal plate 7a...・Seal plate 8 for electrode use...Cooling means 9-0 ring 10...Fixing jig 11...Airtight cover 17...Molding mold 18...Glass fluid agent Patent attorney Heidai Yamashita Figure 1 Figure 2 Figure 3 Cause

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス溶融炉の流出ノズルから流出するガラス流
体を押圧成形する成形用型をクリーンルーム内に収容し
、前記クリーンルームに前記ノズルを該ノズルと同材質
の保持部材で保持することを特徴とする溶融ガラス流出
用ノズルの保持手段。
(1) A mold for press-molding the glass fluid flowing out from an outflow nozzle of a glass melting furnace is housed in a clean room, and the nozzle is held in the clean room by a holding member made of the same material as the nozzle. Holding means for a nozzle for outflowing molten glass.
(2)前記保持部材を前記クリーンルームに対する保持
位置で冷却することを特徴とする特許請求の範囲第1項
記載の溶融ガラス流出用ノズルの保持手段。
(2) The holding means for a molten glass outflow nozzle according to claim 1, wherein the holding member is cooled at a holding position relative to the clean room.
JP63068096A 1988-03-24 1988-03-24 Glass material forming equipment Expired - Lifetime JPH0686298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068096A JPH0686298B2 (en) 1988-03-24 1988-03-24 Glass material forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068096A JPH0686298B2 (en) 1988-03-24 1988-03-24 Glass material forming equipment

Publications (2)

Publication Number Publication Date
JPH01242423A true JPH01242423A (en) 1989-09-27
JPH0686298B2 JPH0686298B2 (en) 1994-11-02

Family

ID=13363864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068096A Expired - Lifetime JPH0686298B2 (en) 1988-03-24 1988-03-24 Glass material forming equipment

Country Status (1)

Country Link
JP (1) JPH0686298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327830A (en) * 2005-04-28 2006-12-07 Asahi Glass Co Ltd Glass manufacturing apparatus, its component and method for conducting ohmic heating of the component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109207A (en) * 1974-02-06 1975-08-28
JPS6311530A (en) * 1986-06-30 1988-01-19 Matsushita Electric Ind Co Ltd Producing device for optical glass element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109207A (en) * 1974-02-06 1975-08-28
JPS6311530A (en) * 1986-06-30 1988-01-19 Matsushita Electric Ind Co Ltd Producing device for optical glass element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327830A (en) * 2005-04-28 2006-12-07 Asahi Glass Co Ltd Glass manufacturing apparatus, its component and method for conducting ohmic heating of the component
JP4561468B2 (en) * 2005-04-28 2010-10-13 旭硝子株式会社 GLASS MANUFACTURING APPARATUS AND ITS COMPONENTS, METHOD FOR ELECTRIC HEATING THE COMPONENTS, AND GLASS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JPH0686298B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
TWI391346B (en) A glass manufacturing apparatus, and a constituent element thereof, and a method of electrically heating the constituent elements
JP5389450B2 (en) Apparatus and method for continuous clarification of glass with high purity specifications
JPH0435425B2 (en)
WO1995030501A1 (en) Replacing device for immersion nozzles
CA1277138C (en) Method of assembling a gas circulation block provided for metallurgical vessels
JPH01242423A (en) Means for holding molten glass discharge nozzle
WO2003045615A3 (en) Thermal stir welding process and apparatus
AU662729B2 (en) Plate brick cartridge for slide valve device and slide valve device using the cartridge
TW200526530A (en) Processing method and apparatus for prolonging optical fiber parent material and optical fiber parent material
SU1727540A3 (en) Device for heat treatment of semiconductor plates
JPH07508223A (en) How to replace the sliding gate valve device and the fixing plate for the device
JP3595427B2 (en) Sealing method for sliding nozzle for molten steel casting
JP3681475B2 (en) Method of forced cooling during brazing and brazing apparatus for carrying out the method
JP3291153B2 (en) Quartz glass products for heat treatment
JPH09142948A (en) Method for joining ceramic structure
JPS63285926A (en) Semiconductor diffusion furnace
JP3045434B2 (en) Glass blank manufacturing equipment for optical glass elements
JPH07186267A (en) Apparatus for bonding mandrel
WO2023106093A1 (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method
JP2003001402A (en) Wear-resistant member repairing method, repairing device used for repairing wear-resistant member, and steam valve
JPH0244943Y2 (en)
JPS6160256A (en) Building-up method by tinkering
JPH0123422B2 (en)
JPS61161711A (en) Thermal treatment method of semiconductor and thermal treatment equipment
JP2562275Y2 (en) Melting furnace