JPH01242196A - Control of operation of batch apparatus for treating activated sludge - Google Patents

Control of operation of batch apparatus for treating activated sludge

Info

Publication number
JPH01242196A
JPH01242196A JP63068218A JP6821888A JPH01242196A JP H01242196 A JPH01242196 A JP H01242196A JP 63068218 A JP63068218 A JP 63068218A JP 6821888 A JP6821888 A JP 6821888A JP H01242196 A JPH01242196 A JP H01242196A
Authority
JP
Japan
Prior art keywords
treatment
activated sludge
aeration tank
aeration
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63068218A
Other languages
Japanese (ja)
Other versions
JP2730728B2 (en
Inventor
Koji Shiraishi
皓二 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kasei Kogyo Co Ltd
Original Assignee
Fuji Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kasei Kogyo Co Ltd filed Critical Fuji Kasei Kogyo Co Ltd
Priority to JP63068218A priority Critical patent/JP2730728B2/en
Publication of JPH01242196A publication Critical patent/JPH01242196A/en
Application granted granted Critical
Publication of JP2730728B2 publication Critical patent/JP2730728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To stabilize water quality treated in the title apparatus by operating the title apparatus by completing the treatment at a time point when a gradient of increase of the concn. of dissolved oxygen, which increases in accompany with the lapse of time, attains a value predetermined under above a fixed valve of concn. of dissolved oxygen. CONSTITUTION:Waste water 1 is received in a pump pit 2, then pumped up to a batch aeration tank 4 with a storage pump 3. The waste water is mixed in the aeration tank 4 intimately with activated sludge in the aeration tank 4 by the effect of air discharged from a blower 5 and fed through an air diffusing pipe 6, and treated. A value of DO is sensed by a sensor 8 in the aeration tank 4, and an end point of treatment is determined basing on the result of computeric 7 analysis. When aeration is ceased due to completion of treatment, the activated sludge settles to the bottom of the aeration tank 4. Supernatant liquid is discharged as treated water 9 with a discharge pump 10, and excess sludge is withdrawn into an excess sludge storage tank 12 by means of a discharge pump 11, and stored therein. Thus, the treatment is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回分式活性汚泥処理装置の運転制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the operation of a batch type activated sludge treatment apparatus.

従来回分式活性汚泥処理装置の運転管理は、−定レベル
以上の技術を有する運転管理者の経験をもとにして行わ
れていたが、本発明によって回分式活性汚泥処理装置を
常に最適条件で自動運転することが可能となり、その結
果、本発明は、中小の食品製造業などのように活性汚泥
処理装置の専任運転管理者を配置することが期待できな
い業種などにおいて重用されるとともに、あらゆる産業
において常時安定した最良の水質を得る廃水処理装置の
運転制御方法として環境改善に非常に有効である。
Conventionally, the operation management of batch-type activated sludge treatment equipment was carried out based on the experience of operation managers with technical skills above a certain level, but with the present invention, it is possible to always operate batch-type activated sludge treatment equipment under optimal conditions. As a result, the present invention can be used in industries where it is not expected to have a full-time operation manager for activated sludge treatment equipment, such as small and medium-sized food manufacturing industries, and can also be used in all industries. This method is very effective in improving the environment as a method of controlling the operation of wastewater treatment equipment that always provides the best water quality in a stable manner.

〔従来の技術〕[Conventional technology]

廃水の回分式活性汚泥処理の歴史は古いが、この処理は
従来活性汚泥処理装置の中で簡易装置的な見方をされて
来た。しかしこの処理は、最近では、糸状性細菌の抑制
効果、りんの除去効果、更に窒素の除去効果などの点で
評価され、回分式活性汚泥処理方式の見直しが積極的に
行われている。
Batch activated sludge treatment of wastewater has a long history, but this treatment has traditionally been viewed as a simple device among activated sludge treatment equipment. However, this treatment has recently been evaluated for its effectiveness in suppressing filamentous bacteria, removing phosphorus, and removing nitrogen, and the batch activated sludge treatment method is being actively reviewed.

従来の一般的な回分式活性汚泥処理は、基本的には、原
水の流入、混合撹拌、曝気処理、固液沈降分離、処理水
の放流を1槽で行うシステムであり、極めて簡易な単純
な装置である。かかる回分式活性汚泥処理の運転制御は
水位レベル制御、タイマー制御、溶存酸素濃度(以下D
oという)による制御を用いて行うことが多いが、基本
的には運転管理者の経験に全面的に頼っていた。
The conventional general batch activated sludge treatment is basically a system that performs raw water inflow, mixing and agitation, aeration treatment, solid-liquid sedimentation separation, and treated water discharge in one tank, and is extremely simple. It is a device. Operational control of such batch activated sludge treatment includes water level control, timer control, and dissolved oxygen concentration (hereinafter referred to as D).
This is often done using a control system (referred to as ``o''), but basically it relies entirely on the experience of the operation manager.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

回分式活性汚泥法は通常第1図に示すような工程で運転
されている。即ち第1図において、om人工程 (1)
  工場の稼働に伴い廃水が排出され、廃水処理系に流
入してくる。
The batch activated sludge process is usually operated according to the steps shown in Figure 1. That is, in Figure 1, the om person process (1)
As factories operate, wastewater is discharged and flows into the wastewater treatment system.

(2)ポンプピットの水位の上昇で水 レベルを感知した揚水ポンプが 稼働する。(2) Water caused by rising water level in the pump pit The water pump that senses the level Be in operation.

oIIi気工程 (3)タイマー起動により曝気装置が
始動する。
oIIi Air process (3) The aeration device starts by starting the timer.

(4)工場操業終了とともに揚水ポン プが停止する。(4) Water pumps will be installed upon completion of factory operations The program stops.

(5)一定時間経過後曝気装置の運転 を停止するか、またはDO計の DO指示レベル達成で曝気装置 の運転を停止する。(5) Operation of aeration equipment after a certain period of time has passed or stop the DO meter. Aeration equipment is installed when DO level is achieved. stop operating.

(注) 回分式の一変法である制限曝気式回分活性汚泥
法では第1図のタイムチャートで16時までは曝気せず
、流入が終了した時点で曝気を開始する。
(Note) In the limited aeration batch activated sludge method, which is a variation of the batch method, aeration is not carried out until 16:00 as shown in the time chart in Figure 1, and aeration is started when the inflow is finished.

0沈降分離工程(6)沈降時間はタイマーあるいはタイ
マーと汚泥界面計を併用し て設定する。
0 Sedimentation Separation Step (6) The settling time is set using a timer or a combination of a timer and a sludge interface meter.

0放流工程 (7)処理された廃水の放流はタイマーあ
るいはタイマーと汚泥界面 計および水位レベル計を併用し て制御する。
0 discharge process (7) The discharge of treated wastewater is controlled using a timer or a combination of a sludge interface meter and a water level meter.

従来の回分式活性汚泥法は、一般的には以上のような方
法で運転しているが、原水側の濃度の変動、水質の変動
、水量の変動、季節の変動、MLSS1度の変動などに
対して運転条件が追従しないために、回分式活性汚泥処
理装置の運転には常に処理性が安定しないという問題点
がつきまとっていた。このため、常にタイマーの設定変
更、DOレベルの変更などが運転管理者の判断にもとづ
いてなされているが、処理水質は、原水側の変動の影響
を受け、安定性に欠けていた。
Conventional batch activated sludge methods are generally operated in the manner described above, but due to fluctuations in concentration on the raw water side, fluctuations in water quality, fluctuations in water volume, seasonal fluctuations, fluctuations in MLSS 1 degree, etc. On the other hand, since the operating conditions do not follow suit, the operation of batch type activated sludge treatment equipment has always had the problem of unstable treatment performance. For this reason, timer settings, DO levels, etc. are always changed based on the judgment of the operation manager, but the quality of treated water is affected by fluctuations in the raw water and lacks stability.

従って、本発明は前記した従来技術の問題点を排除し、
処理性が安定し、原水側の変動を受けることなく安定な
処理水質を得ることができる回分式活性汚泥処理装置の
運転制御方法を提供することを目的とする。
Therefore, the present invention eliminates the problems of the prior art described above,
It is an object of the present invention to provide a method for controlling the operation of a batch type activated sludge treatment device, which has stable treatment performance and can obtain stable treated water quality without being affected by fluctuations on the raw water side.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に従えば、回分式活性汚泥処理装置を運転するに
当たり、曝気槽における廃水の処理の進行に従って変化
する曝気槽内の溶存酸素濃度を測定して解析し、一定値
以上の溶存酸素の濃度のもとで溶存酸素の時間とともに
上昇する上昇勾配が所定値、例えば、O,1〜0.2 
mg/ l /hrになった時点を処理の完結として装
置を運転制御する回分式活性汚泥装置の運転制御方法が
提供される。
According to the present invention, when operating a batch type activated sludge treatment device, the dissolved oxygen concentration in the aeration tank, which changes as the wastewater treatment progresses in the aeration tank, is measured and analyzed, and the concentration of dissolved oxygen exceeding a certain value is determined. The rising gradient of dissolved oxygen that increases with time under
A method for controlling the operation of a batch type activated sludge apparatus is provided, which controls the operation of the apparatus by determining that the treatment is completed when the amount reaches mg/l/hr.

〔作用〕[Effect]

これまでの経験で曝気槽中のDoは処理性に深く関与し
ていることが判っている。連続式の活性汚泥装置に於て
は曝気槽のDOを一定値に制御して処理の安定性を図っ
ている。しかし回分式の場合、処理性の変動、処理時間
の経過などによってDOが変動するために連続式と同じ
ように一定値のDO値で制御しても効果が少ない。回分
式活性汚泥法の場合、曝気槽中のDoと廃水の処理性は
特に顕著にあられれる。
Experience has shown that Do in the aeration tank is deeply involved in processability. In continuous activated sludge equipment, the DO in the aeration tank is controlled to a constant value to ensure stability of treatment. However, in the case of the batch type, the DO varies depending on changes in processability, elapse of processing time, etc., so controlling with a fixed DO value as in the continuous type does not have much effect. In the case of the batch activated sludge method, the treatability of Do in the aeration tank and wastewater is particularly remarkable.

第2図は回分式活性汚泥法で処理した時の曝気槽内のD
O及び残存CODの時間経過による変化を示したもので
ある。DOとCODは明らかに相関がありDoが上昇し
きったところで処理が完了していることがわかる。ここ
に着目して運転制御することによって安定した処理性が
得られることが推定される。しかしこれを制御するのに
DO値で判断するこさばできない。第2図のDOのA値
は常に一定でなく、日によって8■/!であったり、6
 mg / lであったりしていつも変動する。
Figure 2 shows the D inside the aeration tank when treated with the batch activated sludge method.
It shows changes in O and residual COD over time. It can be seen that there is a clear correlation between DO and COD, and that the processing is completed when Do has completely increased. It is estimated that stable processing performance can be obtained by focusing on this and controlling the operation. However, in order to control this, it is not possible to judge based on the DO value. The A value of DO in Figure 2 is not always constant and varies from day to day by 8■/! or 6
mg/l and always fluctuates.

かかる変動要因としては、曝気空気量、水温、MLSS
I度、COD、BOD等の負荷量などが挙げられる。こ
れらの要因は常に変動しており、廃水処理の場で安定さ
せることはまず困難である。
Such fluctuation factors include aeration air volume, water temperature, and MLSS.
Examples include load amounts such as degree I, COD, and BOD. These factors are constantly changing, and it is difficult to stabilize them at wastewater treatment sites.

したがって一定レベルでDO制御すると、DOは未だ上
界途中で、COD、BODで代表される廃水中の汚濁物
質が未分解状態であったり、場合によってはDOの設定
値まで到達せずに平衡になった結果いつまでも無駄な曝
気を続けなければならなかったりすることがあり、DO
値を制御指標にするには問題があった。そこでDO値の
かわりにDOが一定レベルで安定した点をつかみ、その
点を処理終了点とすれば制御可能になると判断したQ制
御はDOの上昇勾配(Oz mg/ e / hr )
を用い、上昇勾配が徐々に小さくなり、例えば0.15
mg/1./hr、好ましくは0.1〜0.2 mg/
 l /hrになった時点を処理終了点とした。
Therefore, if DO is controlled at a constant level, DO may still be in the process of reaching its upper limit, and pollutants in wastewater such as COD and BOD may remain undecomposed, or in some cases equilibrium may not be reached without reaching the set DO value. As a result, unnecessary aeration may have to be continued indefinitely, and DO
There were problems with using values as control indicators. Therefore, it was determined that control would be possible by grasping the point at which DO stabilized at a certain level instead of the DO value and using that point as the processing end point. Q control is based on the increasing slope of DO (Oz mg/e/hr)
, the rising slope gradually becomes smaller, for example 0.15
mg/1. /hr, preferably 0.1-0.2 mg/
The point at which the temperature reached 1/hr was defined as the end point of the treatment.

但し、第2図のグラフ図から明らかなように、DOの上
昇勾配が0.1〜0.2 mg/I!、/hrになる点
は2回現出する。1回目はDOが低いレベルから徐々に
高くなりはじめる時、2回目は高くなったDOが一定値
に収束する時である。処理終了点は2回目に高くなった
時点にあり、1回目ではない。
However, as is clear from the graph in Figure 2, the increasing slope of DO is 0.1 to 0.2 mg/I! , /hr appears twice. The first time is when the DO starts to gradually increase from a low level, and the second time is when the increased DO converges to a constant value. The processing end point is at the point where the temperature rises the second time, not at the first time.

この1回目に現れる上昇勾配は常にDO値が低いレベル
(およそ3mg#!以下)で現れるので一定値(DO#
3mg/1以上のDOの上昇勾配が0.1〜0.2■/
 l /hrになった時を制御点とすれば良い。
This first rising slope always appears at a low level of DO value (approximately 3 mg#! or less), so it is a constant value (DO#!
The rising slope of DO of 3 mg/1 or more is 0.1 to 0.2 ■/
The control point may be set at the time when it reaches l/hr.

本発明によれば、以上の手段で処理終了点を指標にした
制御を行うことにより、曝気空気量、水温、MLSSe
It度、COD、BOD等の負荷量などによる変動に対
して左右されず、常に一定の安定した処理水質を得るこ
とが容易になった。
According to the present invention, by performing control using the treatment end point as an index, the aeration air amount, water temperature, MLSSe
It has become easy to always obtain a constant and stable treated water quality without being affected by fluctuations due to load amounts such as It degree, COD, BOD, etc.

第6図は本発明を実施するための装置の1例である。処
理対象廃水■を一度ポンプピット■に受けた後、揚水ポ
ンプ■で回分式曝気槽■に揚水する。曝気槽に入った廃
水は、ブロア■から吐出され散気管■を通して送風され
る空気によって曝気槽中の活性汚泥と良く混合し処理さ
れる。処理性の指標となるDoは曝気槽中のDoセンサ
ー■によって検知され、コンピューター■の解析結果に
基づいて処理の終点を決定する。処理が終了し、曝気を
停止した結果活性汚泥が曝気槽底部に沈降する。上澄水
を処理水■として放流ポンプ[相]で放流する。その際
余剰汚泥は余剰汚泥引抜ポンプ■にて余剰汚泥貯槽■に
引抜かれ、貯留されて処理が完結する。
FIG. 6 is an example of an apparatus for carrying out the present invention. After the wastewater to be treated (■) is once received in the pump pit (■), the water is pumped to the batch type aeration tank (■) using the water pump (■). The wastewater that has entered the aeration tank is thoroughly mixed with the activated sludge in the aeration tank and treated by the air discharged from the blower (1) and blown through the aeration pipe (2). Do, which is an index of treatability, is detected by Do sensor (2) in the aeration tank, and the end point of the treatment is determined based on the analysis results of computer (2). When the treatment is completed and aeration is stopped, activated sludge settles to the bottom of the aeration tank. The supernatant water is discharged as treated water (■) using a discharge pump [phase]. At this time, the surplus sludge is drawn out by the surplus sludge extraction pump (2) into the surplus sludge storage tank (2) and stored there, completing the treatment.

〔実施例〕〔Example〕

本発明の制御Do勾配およびその前後のDO勾配領域で
の処理状況を以下の実施例に示すが、本発明の範囲をこ
れらの実施例に限定するものでないことはいうまでもな
い。
The control Do gradient of the present invention and the processing situation in the DO gradient region before and after the control Do gradient are shown in the following Examples, but it goes without saying that the scope of the present invention is not limited to these Examples.

実1副ロー 制御DO勾配0.0〜0.05mg/ l / hrの
領域での処理性および処理状況(Doが上昇し、はぼ平
衡に達した点) 災斑尉I 制御DO勾配0.1〜0.2111g/ l / hr
の領域での処理性および処理状況(Doが上昇し、平衡
になる少し手前の点二本発明制御領域) 災膳貫主 制御Do勾配0.3〜0.4 mg / l / hr
の領域での処理性および処理状況(Doが直線上昇し、
曲線の領域に入った点) 0結 果 合成下水を用い、次の条件で処理試験を行い処理性を比
較した。
Processability and treatment status in the area of 0.0 to 0.05 mg/l/hr of real 1 secondary low control DO gradient (the point where Do rises and almost reaches equilibrium) Disaster Control I Control DO gradient 0. 1~0.2111g/l/hr
Processability and processing status in the region (point 2 of the present invention control region where Do rises and is slightly before reaching equilibrium) Disaster control main control Do gradient 0.3 to 0.4 mg/l/hr
Processability and processing status in the area (Do increases linearly,
Points within the curved area) 0 Results Using synthetic sewage, a treatment test was conducted under the following conditions and the treatment properties were compared.

(1)処理対象水 BOD濃度  800mg//!(
2)処理対象水 COD濃度  550■/n(3)M
LSS濃度      3200■/1(41B OD
 M L S S負荷    0.25 kg/kg 
−D結果は第3図、第4図及び第5図並びに表−1、表
−2及び表−3に示した。
(1) Water to be treated BOD concentration 800mg//! (
2) Water to be treated COD concentration 550■/n(3)M
LSS concentration 3200■/1 (41B OD
M L S S load 0.25 kg/kg
-D results are shown in Figures 3, 4 and 5, as well as Tables 1, 2 and 3.

以下余白 0処理性の比較 (1)SVI値 試験開始時SVI値は80Ild!/gであったものが
、実施例3は徐々に上昇をはじめ、不安定になって来た
。試験の後半には若干汚泥に粘性が生じはじめており、
粘性バルキングの傾向が出てきた。顕鏡によると、糸状
性細菌類はほとんど確認されなかった。実施例1及び実
施例2を比較すると実施例2は極めて安定しており、良
好であったが、実施例1はわずかではあるがSVI値が
高くなる傾向が見えており、継続して処理を進めるとさ
らに高くなって行くものと推定された。
Comparison of 0 margin processability (1) SVI value The SVI value at the start of the test was 80Ild! /g, but in Example 3, it gradually started to rise and became unstable. In the latter half of the test, the sludge began to become slightly viscous,
A tendency towards viscous bulking has emerged. Under the microscope, almost no filamentous bacteria were observed. Comparing Example 1 and Example 2, Example 2 was extremely stable and good, but Example 1 showed a tendency for the SVI value to increase, albeit slightly, and the treatment was not continued. It was estimated that the price would rise further as it progressed.

(2)BODの処理性 原水BOD濃度800■/lに対して実施例3は、試験
当初10■/P前後で良好に処理が行われていたが、経
口的にBOD値が高くなり、2週間目には20■/lを
越え、さらに上昇傾向が続いた。実力面倒2はlO■/
l以下と安定しているが、実施例1はわずかではあるが
高くなる傾向にあった。
(2) Treatability of BOD In Example 3, the raw water BOD concentration was 800 ■/L, and the treatment was performed well at around 10 ■/P at the beginning of the test, but the BOD value increased orally and 2 In the second week, it exceeded 20 ■/l and continued to rise further. Ability troublesome 2 is lO■/
Although it is stable at less than 1, Example 1 had a tendency to become higher, albeit slightly.

(3)CODの処理性 BODとほぼ同じ傾向であるが、実施例3は異常に高く
なって除去率90%以下になった。実施例1及び2はほ
とんど変わらなかった。
(3) Treatability of COD Although the tendency is almost the same as that of BOD, the removal rate in Example 3 was abnormally high and became 90% or less. Examples 1 and 2 were almost unchanged.

以上のことから、曝気終了時のDOを見ると、3条件と
も6〜Bmg/lの範囲に入っており、従来の回分式活
性汚泥処理でのDo制御の場合の制御濃度としては最も
条件的に良い濃度である。ところが実施例で見る限りで
は実施例1は活性汚泥が自己消化領域に入っているため
に曝気槽内で活性汚泥が分散し、フロックが微細化する
傾向が見られた。さらに水質も不安定であった。実施例
3はDO値が6■/1以上になっているにも拘らず、処
理が完結しておらず、処理水質は悪化し、活性汚泥の性
状も経口的に悪化した。実施例2は処理水質は良好で安
定しており、活性汚泥の分離性、凝集性も良好であり、
他の2例と比べて最も条件的にすぐれた制御領域である
ことが確認できた。
From the above, when looking at DO at the end of aeration, all three conditions are in the range of 6 to Bmg/l, which is the most conditional control concentration for Do control in conventional batch activated sludge treatment. It has a good concentration. However, as far as we can see from the examples, in Example 1, the activated sludge was in the autolysis region, so the activated sludge was dispersed in the aeration tank, and there was a tendency for the flocs to become fine. Furthermore, the water quality was unstable. In Example 3, although the DO value was 6/1 or more, the treatment was not completed, the quality of the treated water deteriorated, and the properties of the activated sludge also deteriorated. In Example 2, the treated water quality was good and stable, and the activated sludge separation and flocculation properties were also good.
It was confirmed that this was the most excellent control region in terms of conditions compared to the other two cases.

[発明の効果] 従来回分式活性汚泥処理装置の運転は、運転管理者の経
験に頼っていたところが大であったが、本発明によって
最適処理条件が確認され、DO計を用いて自動制御する
ことも容易に可能となった。
[Effects of the invention] Conventionally, the operation of batch-type activated sludge treatment equipment largely relied on the experience of the operation manager, but with the present invention, the optimal treatment conditions have been confirmed, and automatic control using a DO meter has become possible. This was also easily possible.

この結果、常に最良の処理性が得られ、また過剰曝気せ
ずにすむため最少のランニングコストでの運転および自
動制御が可能となった。
As a result, the best processability is always obtained, and since there is no need for excessive aeration, operation and automatic control are possible with minimal running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回分式活性汚泥法の通常の運転処理工程
を示すタイムチャートであり、第2図は回分式活性汚泥
法で処理した時の曝気槽内のDO及び残存CODの時間
経過による変化を示したグラフ図であり、 第3図は制御Do勾配をパラメータとしたSVI値の経
口変化を示すグラフ図であり、 第4図は制御Do勾配をパラメータとしたCOD処理性
の経口変化を示すグラフ図であり、第5図は制御Do勾
配をパラメータとしたBOD処理性の経口変化を示すグ
ラフ図であり、第6図は本発明の実施をするための装置
の一例を示す図面である。 ■・・・処理対象廃水   ■・・・ポンプピット■・
・・揚水ポンプ    ■・・・曝気槽■・・・プロア
      ■・・・散気管■・・・コンピューター 
 ■・・・DOセンサー■・・・処理水      [
相]・・・放流ポンプ0・・・余剰汚泥引抜ポンプ ■・・・余剰汚泥貯槽
Figure 1 is a time chart showing the normal operation and treatment process of the conventional batch activated sludge method, and Figure 2 is a time chart showing the DO and residual COD in the aeration tank when treated with the batch activated sludge method. FIG. 3 is a graph showing the oral change in SVI value using the control Do gradient as a parameter, and FIG. 4 is a graph showing the oral change in COD treatment property using the control Do gradient as a parameter. FIG. 5 is a graph showing oral changes in BOD treatment using the control Do gradient as a parameter, and FIG. 6 is a drawing showing an example of an apparatus for carrying out the present invention. . ■・・・Wastewater to be treated ■・・・Pump pit■・
・・Storage pump ■・・Aeration tank ■・・Proa ■・・Diffuser pipe ■・・Computer
■・・・DO sensor■・・・Treatment water [
Phase]...Discharge pump 0...Excess sludge extraction pump■...Excess sludge storage tank

Claims (1)

【特許請求の範囲】[Claims] 1、回分式活性汚泥処理装置を運転するに当たり、曝気
槽における廃水の処理の進行に従って変化する曝気槽内
の溶存酸素濃度を測定して解析し、一定値以上の溶存酸
素の濃度のもとで溶存酸素の時間とともに上昇する上昇
勾配が所定値になった時点を処理の完結として装置を運
転制御する回分式活性汚泥処理装置の運転制御方法。
1. When operating a batch-type activated sludge treatment equipment, the dissolved oxygen concentration in the aeration tank, which changes as the wastewater treatment progresses in the aeration tank, is measured and analyzed, and when the concentration of dissolved oxygen exceeds a certain value, A method for controlling the operation of a batch type activated sludge treatment equipment, in which the operation of the equipment is controlled with the time when the upward slope of dissolved oxygen that increases over time reaches a predetermined value as the treatment being completed.
JP63068218A 1988-03-24 1988-03-24 Operation control method for batch activated sludge treatment equipment Expired - Fee Related JP2730728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068218A JP2730728B2 (en) 1988-03-24 1988-03-24 Operation control method for batch activated sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068218A JP2730728B2 (en) 1988-03-24 1988-03-24 Operation control method for batch activated sludge treatment equipment

Publications (2)

Publication Number Publication Date
JPH01242196A true JPH01242196A (en) 1989-09-27
JP2730728B2 JP2730728B2 (en) 1998-03-25

Family

ID=13367441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068218A Expired - Fee Related JP2730728B2 (en) 1988-03-24 1988-03-24 Operation control method for batch activated sludge treatment equipment

Country Status (1)

Country Link
JP (1) JP2730728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424999B1 (en) * 2002-03-19 2004-03-27 주식회사 한스환경엔지니어링 Controlling system and method of sequencing batch reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144089A (en) * 1981-02-28 1982-09-06 Hitachi Plant Eng & Constr Co Ltd Automatic control method for batch-wise activated sludge method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144089A (en) * 1981-02-28 1982-09-06 Hitachi Plant Eng & Constr Co Ltd Automatic control method for batch-wise activated sludge method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424999B1 (en) * 2002-03-19 2004-03-27 주식회사 한스환경엔지니어링 Controlling system and method of sequencing batch reactor

Also Published As

Publication number Publication date
JP2730728B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5888394A (en) Method and apparatus for sewage water treatment
US7413654B2 (en) Wastewater treatment control
CA2531764A1 (en) Biological water treatment process and plant using activated sludge with regulation of aeration
CA2622930A1 (en) Dynamic control of membrane bioreactor system
Pierson et al. Real‐Time Monitoring and Control of Sequencing Batch Reactors for Secondary Treatment of a Poultry Processing Wastewater
JPH01242196A (en) Control of operation of batch apparatus for treating activated sludge
JPH0389993A (en) Method for controlling concentration of phosphorus in waste water
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
JP2002001388A (en) Equipment and process for treating sewage
US6309548B1 (en) Method for controlling and managing the biomass store of biological installations treating waste water
JPS643554B2 (en)
JP3690537B2 (en) Intermittent aeration
JP2789075B2 (en) Method and apparatus for treating organic sludge
EP1236687A2 (en) Activated sludge treatment
JPH07185584A (en) Waste water treatment device
JP4360204B2 (en) Organic wastewater treatment method
JP2003112195A (en) Sewage treatment method by batch type activated sludge method
JP2000185296A (en) Control method of operation of sludge withdrawing pump
JPH10263571A (en) Method for catalytically oxidizing waste water
JPS6347518B2 (en)
AU2006299746B2 (en) Dynamic control of membrane bioreactor system
JP2004243288A (en) Sewage treatment method and system
JPH10235387A (en) Uniform flow liquid level control device for raw water tank
JPH01130791A (en) Treatment of sewage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees