JPH01241877A - Substrate for electronic device - Google Patents

Substrate for electronic device

Info

Publication number
JPH01241877A
JPH01241877A JP63070598A JP7059888A JPH01241877A JP H01241877 A JPH01241877 A JP H01241877A JP 63070598 A JP63070598 A JP 63070598A JP 7059888 A JP7059888 A JP 7059888A JP H01241877 A JPH01241877 A JP H01241877A
Authority
JP
Japan
Prior art keywords
film
substrate
bix
single crystal
ycuzodelta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070598A
Other languages
Japanese (ja)
Inventor
Shogo Matsubara
正吾 松原
Yoichi Miyasaka
洋一 宮坂
Sadahiko Miura
貞彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63070598A priority Critical patent/JPH01241877A/en
Priority to US07/326,783 priority patent/US5084438A/en
Publication of JPH01241877A publication Critical patent/JPH01241877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a substrate for an electronic device having a thin superconductor film by forming an insulator film on a silicon single crystalline substrate, and further forming an oxide layer represented by a general formula of Bix(Sr, Ca)yCuzOdelta and having compositions of metal element components falling in specific ranges. CONSTITUTION:An insulator film is formed on a silicon single cryspalline substrate, and a superconductor oxide layer represented by a general formula Bix(Sr, Ca)yCuzOdelta and containing compositions of metal element components falling within ranges of 0.08<=x/(x+y+z)<=0.41 and 0.29<=y/(x+y+z)<=0.47 and 1<=Sr/Ca<=3 is formed on the insulator film. MgAl2O4 layer 2 is thereby epitaxially grown on the substrate 1 having a face orientation in a plane (100), and a Bix(Sr, Ca)yCuzOdelta layer 3 is formed by a sputtering method. Since the Bix(Sr, Ca)yCuzOdelta film containing the above composition ranges is mixed with a superconducting substance and a nonsuperconducting substance but the volumetric ratio of the superconducting substance is large, the superconducting characteristic of the whole film is exhibited with good reproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体層と絶縁体層、及び超伝導体層とからな
る電子デバイス用基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a substrate for electronic devices comprising a semiconductor layer, an insulator layer, and a superconductor layer.

(従来の技術) Bi−8r−Ca−Cu−0系の酸化物は組成に依って
は液体窒素温度以上の臨界温度T。を有する高温超伝導
材料である。従来超伝導材料として用いられているNb
系合金はその冷却に高価な液体ヘリウムを必要とするの
に対し、B1−8r−Ca−Cu−0系酸化物は安価の
液体窒素を用いることができ、工業的実用化材料として
注目されている。
(Prior Art) Bi-8r-Ca-Cu-0-based oxides have a critical temperature T that is higher than the liquid nitrogen temperature depending on the composition. It is a high-temperature superconducting material with Nb, conventionally used as a superconducting material
While the B1-8r-Ca-Cu-0 based alloy requires expensive liquid helium for cooling, the B1-8r-Ca-Cu-0 based oxide can use inexpensive liquid nitrogen and is attracting attention as a material for industrial practical use. There is.

高温超伝導材料の電子デバイスへの応用には薄膜デバイ
スが検討されており、B1−8r−Ca−Cu−0系材
料の薄膜化が進められている。現在の電子デバイスの主
流はシリコン半導体である。従ってB1−8r−Ca−
Cu−0系の高温超伝導材料をシリコン単結晶基板上に
形成できれば成熟したシリコン半導体技術を用いて高機
能、高集積の超伝導デバイスを開発することが可能であ
る。しかしながらB1−8r−Ca−Cu−0系高温超
伝導材料のシリコン基板上への薄膜形成の公知例は未だ
ない。
Thin film devices are being considered for the application of high temperature superconducting materials to electronic devices, and efforts are being made to make B1-8r-Ca-Cu-0-based materials thinner. Silicon semiconductors are the mainstream of current electronic devices. Therefore, B1-8r-Ca-
If a Cu-0-based high-temperature superconducting material can be formed on a silicon single crystal substrate, it will be possible to develop a highly functional, highly integrated superconducting device using mature silicon semiconductor technology. However, there is still no known example of forming a thin film of B1-8r-Ca-Cu-0 based high temperature superconducting material on a silicon substrate.

(発明が解決しようとする課題) 前述の如く、シリコン基板上には、種々の電子デバイス
が作製され実用になっており、超伝導体が薄膜状で作製
できれば、これらのデバイスと共存させて使用でき実用
上の価値は極めて高い。しかしながら、周知のように、
シリコン基板上に酸化物の薄膜を作製すると、シリコン
基板と酸化物との熱膨張差によるクラックの発生及び剥
離の問題がある。
(Problems to be Solved by the Invention) As mentioned above, various electronic devices have been fabricated on silicon substrates and are in practical use, and if a superconductor can be fabricated in the form of a thin film, it can be used in coexistence with these devices. Its practical value is extremely high. However, as is well known,
When a thin oxide film is formed on a silicon substrate, there are problems of cracking and peeling due to the difference in thermal expansion between the silicon substrate and the oxide.

また、シリコン上に形成した半導体デバイス同志の配線
を超伝導材料によって行うことを考えると、シリコン基
板と超伝導配線層との間の絶縁を行う必要があるが、こ
れまでその方法は明らかにされていなかった。
Furthermore, considering that wiring between semiconductor devices formed on silicon is made of superconducting material, it is necessary to provide insulation between the silicon substrate and the superconducting wiring layer, but a method for this has not yet been clarified. It wasn't.

本発明は上記従来技術の問題を解決するもので、超伝導
体薄膜を具備する電子デバイス用基板を提供することを
目的とする。
The present invention solves the problems of the prior art described above, and an object of the present invention is to provide a substrate for an electronic device comprising a superconductor thin film.

(課題を解決するための手段) すなわち本発明はシリコン単結晶基板上に絶縁体膜が形
成され、該絶縁体膜上に一般式がBix(Sr。
(Means for Solving the Problems) That is, in the present invention, an insulating film is formed on a silicon single crystal substrate, and a general formula of Bix(Sr.

Ca)yCuρ6で表わされ、それぞれの金属元素成分
の組 成 が0.08≦x/(x + y + z)≦
鉤41  か つ0.29≦y/(x + y + z
)≦0.47かつ1≦Sr/Ca≦3の範囲内にある超
伝導体酸化物層が形成されていることを特徴とする電子
デバイス用基板である。
Ca)yCuρ6, and the composition of each metal element component is 0.08≦x/(x + y + z)≦
Hook 41 and 0.29≦y/(x + y + z
)≦0.47 and 1≦Sr/Ca≦3.

(作用) シリコン単結晶基板上に形成する絶縁体単結晶膜として
、マグネシウムアルミネートスピネル(MgA1204
)、マグネシア(MgO)が考えられる。この場合、M
gOは本出願人が提案(特願昭58−229033) 
シているようにシリコン単結晶基板に直接成長するより
もシリコン基板上に成長したMgAl2O4を介して形
成した方が良質の単結晶膜が形成できる。従って絶縁体
単結晶膜として2層構造のものでも良い。
(Function) Magnesium aluminate spinel (MgA1204
) and magnesia (MgO). In this case, M
gO was proposed by the applicant (Japanese Patent Application No. 58-229033)
As shown in Figure 2, it is possible to form a single crystal film of better quality by forming it via MgAl2O4 grown on a silicon substrate than by directly growing it on a silicon single crystal substrate. Therefore, the insulating single crystal film may have a two-layer structure.

また、本出願人はSi基板上に形成したMgAl2O4
エピタキシャル膜は成長後MgA1204膜を通してS
i基板を熱酸化し、MgA1□04/8102/81構
造にすることによってその結晶性を改善できることをす
でに提案(特願昭56−103967) している。従
って絶縁体単結晶膜としてSi単結晶基板上に非晶質S
iO2を介したような構造のものでも良い。
In addition, the applicant has also developed MgAl2O4 formed on a Si substrate.
After the epitaxial film is grown, S is passed through the MgA1204 film.
It has already been proposed (Japanese Patent Application No. 56-103967) that the crystallinity of the i-substrate can be improved by thermally oxidizing the i-substrate into a MgA1□04/8102/81 structure. Therefore, as an insulator single crystal film, amorphous S is formed on a Si single crystal substrate.
It may also have a structure via iO2.

このように良質な結晶性を有する絶縁体単結晶膜上に一
般式がBiX(Sr、 Ca)、CuzO6で表わされ
、クラックの発生がなく、臨界温度T。がバルクセラミ
ックと同等の値を有する高温超伝導体膜を作製すること
ができる。本発明における絶縁体単結晶膜はその熱膨張
係数がMgAl2O4の8.8X10−6に−1、Mg
Oの13.8X10−6に−1とSiの4.2X10−
6に−1よりも大きい。Bix(Sr、 Ca)、Cu
ρ6の熱膨張係数は同じ酸化物の高温超伝導材料である
YBa2Cu30゜−8と同等とすると14〜25X1
0−6に一1程度と考えられる。従って、本発明におけ
るMgAl2O4,MgO単結晶膜はシリコン基板とB
ix(Sr、 Ca)yCuρ6膜との間の熱膨張差に
よって生ずる膜の内部応力を緩和し、クラックの発生を
防ぐ役割を有する。
As described above, the general formula is BiX (Sr, Ca), CuzO6 on an insulating single crystal film with good crystallinity, no cracks occur, and the critical temperature T is low. It is possible to fabricate a high-temperature superconductor film having a value equivalent to that of bulk ceramics. The insulator single crystal film in the present invention has a thermal expansion coefficient of 8.8X10-6 of MgAl2O4, -1
13.8X10-6 of O and 4.2X10-1 of Si
greater than -1 to 6. Bix (Sr, Ca), Cu
The thermal expansion coefficient of ρ6 is 14-25X1 if it is equivalent to YBa2Cu30°-8, which is a high-temperature superconducting material made of the same oxide.
It is thought to be about 1 in 0 to 6. Therefore, the MgAl2O4, MgO single crystal film in the present invention is
It has the role of alleviating the internal stress of the film caused by the difference in thermal expansion between the ix(Sr, Ca)yCuρ6 film and preventing the occurrence of cracks.

またシリコン基板上に形成される絶縁体膜が単結晶膜で
あることは、その上に形成されるBix(Sr。
Furthermore, the fact that the insulating film formed on the silicon substrate is a single crystal film means that Bix (Sr) formed on it.

Ca)、Cuρ6、超伝導体膜の臨界温度T。がバルク
のセラミックと同等の値を有するうえに重要な意味をも
つ。高温超伝導体材料の臨界温度T。は組成敏感な特性
であるので、薄膜の場合にバルクのセラミックと同等の
臨界温度T。を示すためには基板との相互拡散を防ぐこ
とが重要である。多結晶膜において、粒界は高速拡散径
路であり、その上に膜を形成した場合表面に出た粒界を
通じて相互拡散を起こしやすいことが知られている。従
ってシリコン基板上に形成される絶縁体膜が単結晶膜で
あることは、その上に形成されるBix(Sr、 Ca
)、Cuρ8膜との相互拡散を防ぐ有効な手段である。
Ca), Cuρ6, critical temperature T of superconductor film. It has an important value as it has a value equivalent to that of bulk ceramic. Critical temperature T of high temperature superconductor materials. Since is a composition-sensitive property, the critical temperature T in the case of thin films is equivalent to that of bulk ceramics. In order to demonstrate this, it is important to prevent mutual diffusion with the substrate. In polycrystalline films, grain boundaries are high-speed diffusion paths, and it is known that when a film is formed thereon, interdiffusion is likely to occur through the grain boundaries exposed on the surface. Therefore, the fact that the insulator film formed on the silicon substrate is a single crystal film means that the Bix (Sr, Ca
) is an effective means for preventing mutual diffusion with the Cuρ8 film.

さらに、MgAl2O4の融点2408に、 MgOの
融点3008にといずれも高く、このことも上記の相互
拡散を防ぐ効果のひとつである。
Furthermore, the melting point of MgAl2O4 is 2408, and the melting point of MgO is 3008, both of which are higher, which is also one of the effects of preventing the above-mentioned mutual diffusion.

本発明において高温超伝導膜はSi基板上に形成される
ことから、熟成したSi半導体集積回路技術を用いるこ
とによって高い機能を超伝導デバイスに持たせることが
できる。例えば、超伝導体膜をソース電極とドレイン電
極に用いた電界効果型の超伝導トランジスタや超伝導配
線によるLSIの開発が可能となる等、本発明の波及効
果は甚大である。
In the present invention, since the high temperature superconducting film is formed on the Si substrate, the superconducting device can be provided with high functionality by using mature Si semiconductor integrated circuit technology. For example, the ripple effects of the present invention are enormous, such as making it possible to develop field-effect superconducting transistors using superconductor films for source and drain electrodes and LSIs using superconducting wiring.

(実施例1) 面方位が(100)のSi単結晶基板上にMgA12o
4をエピタキシャル成長し、その上にBix(Sr、 
Ca)yCuρ6をスパッタ法において形成した。第1
図(a)、 (b)は本実施の説明図で1は(100)
Si単結晶基板、2は気相成長法で成長したMgAl2
O4エピタキシャル膜である。
(Example 1) MgA12o was deposited on a Si single crystal substrate with (100) plane orientation.
4 was epitaxially grown, and Bix(Sr,
Ca)yCuρ6 was formed by sputtering. 1st
Figures (a) and (b) are explanatory diagrams of this implementation, and 1 is (100)
Si single crystal substrate, 2 is MgAl2 grown by vapor phase growth method
It is an O4 epitaxial film.

3はスパッタ法で作成したBix(Sr、 Ca)、C
uρ6膜である。MgAl2O4の気相成長は本出願人
がすでに提案(特願昭57−136051) している
方法で成長した。すなわち反応ガスとしてMgC1□、
AIにHCIガスを反応させて生成したAlCl3.C
O2,H2ガスを用い、キャリアガスとしてN2ガスを
用いた。MgA1□04の生成反応は MgCl2+2AIC13+4CO2+4H2→MgA
l2O4+ 4CO+ 8HC1で表わされる。成長温
度950°Cで0.1pm成長し、X線回折及び電子線
回折で(100)方位のMgAl2O4がエピタキシャ
ル成長していることを確認した。Bix(Sr。
3 is Bix (Sr, Ca), C prepared by sputtering method.
It is a uρ6 film. MgAl2O4 was grown by vapor phase growth using a method already proposed by the applicant (Japanese Patent Application No. 136051/1982). That is, MgC1□ as a reaction gas,
AlCl3. produced by reacting AI with HCI gas. C
O2 and H2 gases were used, and N2 gas was used as a carrier gas. The production reaction of MgA1□04 is MgCl2+2AIC13+4CO2+4H2→MgA
It is expressed as 12O4+ 4CO+ 8HC1. The film was grown to a thickness of 0.1 pm at a growth temperature of 950°C, and it was confirmed by X-ray diffraction and electron diffraction that MgAl2O4 in the (100) orientation was epitaxially grown. Bix (Sr.

Ca)、Cu20s膜は高周波マグネトロンスパッタリ
ング法でlpm作製した。第1表に示す組成となるよう
に各酸化物を混合し950°Cで予焼した粉末をターゲ
ットに用い、Ar−02混合ガス中で、基板温度700
’Cで行った。成膜後、四端子法によりBix(Sr、
 Ca)、Cuρ8膜の電気抵抗の温度変化を測定し、
第1表の臨界温度特性を得た。
Ca) and Cu20s films were fabricated using a high frequency magnetron sputtering method. A powder of each oxide mixed with the composition shown in Table 1 and pre-fired at 950°C was used as a target, and the substrate temperature was 700°C in Ar-02 mixed gas.
I went with 'C. After film formation, Bix (Sr,
Ca), measuring the temperature change in the electrical resistance of the Cuρ8 film,
The critical temperature characteristics shown in Table 1 were obtained.

上記の組成範囲にあるBix(Sr、 Ca)、Cuρ
6膜は超伝導物質と非超伝導物質が混在しているが超伝
導物質の体積比率が大きいために膜全体として超伝導特
性を再現性良く示す。しかしながら、BiX(Sr。
Bix (Sr, Ca), Cuρ in the above composition range
The 6th film contains a mixture of superconducting and non-superconducting materials, but because the volume ratio of the superconducting material is large, the film as a whole exhibits superconducting properties with good reproducibility. However, BiX(Sr.

Ca)、Cuρ8膜の組成が上記の範囲にない場合は非
超伝導物質の体積比率が大きくなり、半導体あるいは絶
縁体的電気特性を表わすようになる。従ってBix(S
r、 Ca)、Cu70.膜の組成は0.08≦x/(
x +y +z)≦0.41かつ0.29≦y/(x 
+y + z)≦0.47かつ1≦Sr/Ca≦3であ
ることが望ましい。
If the composition of the Ca), Cuρ8 film is not within the above range, the volume ratio of the non-superconducting material becomes large, and the film exhibits semiconductor or insulator-like electrical characteristics. Therefore, Bix(S
r, Ca), Cu70. The composition of the film is 0.08≦x/(
x + y + z)≦0.41 and 0.29≦y/(x
+y + z)≦0.47 and 1≦Sr/Ca≦3.

第1表 (実施例2) (100)Si単結晶基板上にエピタキシャル成長した
膜厚0.1pmのMgAl2O4膜を通してSi基板を
熱酸化し、MgAl2O4膜とSi基板の間にSiO2
を0.5pm形成したあとでMgAl2O4エピタキシ
ャル膜上にBix(Sr。
Table 1 (Example 2) (100) The Si substrate was thermally oxidized through an MgAl2O4 film with a thickness of 0.1 pm epitaxially grown on a Si single crystal substrate, and SiO2
After forming 0.5 pm of Bix(Sr) on the MgAl2O4 epitaxial film.

Ca)、Cuρ6を111m成長させた。Ca) and Cuρ6 were grown to 111 m.

第2図は本実施例の工程図である。4はSi基板、5は
MgAl2O4エピタキシャル膜、6は5102.7は
Bix(Sr、 Ca)yCuρ6膜で、(a)はMg
Al2O4のエピタキシャル成長工程、(b)は熱酸化
による5102の形成、(C)はBix(Sr、Ca)
yCu206の成長工程を示す。熱酸化の条件は110
0°Cでの水蒸気酸化である。
FIG. 2 is a process diagram of this example. 4 is a Si substrate, 5 is a MgAl2O4 epitaxial film, 6 is a 5102.7 Bix(Sr, Ca)yCuρ6 film, and (a) is an MgAl2O4 epitaxial film.
Epitaxial growth process of Al2O4, (b) formation of 5102 by thermal oxidation, (C) Bix (Sr, Ca)
The growth process of yCu206 is shown. Thermal oxidation conditions are 110
Steam oxidation at 0°C.

熱酸化によってMgAl2O4膜のX線ロッキングカー
ブの半値幅は30%減少し、結晶性は改善された。
The half width of the X-ray rocking curve of the MgAl2O4 film was reduced by 30% by thermal oxidation, and the crystallinity was improved.

MgAl2O4及びBiX(Sr、 Ca)、Cuρ8
の成長は実施例1と同じ方法によった。いずれの組成に
おいても実施例1と同様な臨界温度特性が得られた。
MgAl2O4 and BiX(Sr, Ca), Cuρ8
The growth was performed in the same manner as in Example 1. The same critical temperature characteristics as in Example 1 were obtained in all compositions.

(実施例3) (100)Si単結晶基板上に膜厚800人のMgA1
□04をエピタキシャル成長しその上に膜厚0.5pm
のMgOをエピタキシャル成長したのち実施例1と同様
に膜厚2pmのBix(Sr、 Ca)、Cuρ8を成
長した。いずれの組成においても実施例1と同様の臨界
温度が得られた。
(Example 3) MgA1 with a film thickness of 800 on a (100)Si single crystal substrate
□04 is grown epitaxially and a film thickness of 0.5 pm is grown on it.
After epitaxially growing MgO, Bix (Sr, Ca) and Cuρ8 with a thickness of 2 pm were grown in the same manner as in Example 1. The same critical temperature as in Example 1 was obtained in all compositions.

第3図に本実施によって成る構成を示す。8はSi単結
晶基板、9はMgAl2O4エピタキシャル膜、10は
MgOエピタキシャル膜、11はBix(Sr、 Ca
)、CaP2膜である。
FIG. 3 shows the configuration obtained by this implementation. 8 is a Si single crystal substrate, 9 is an MgAl2O4 epitaxial film, 10 is an MgO epitaxial film, and 11 is a Bix (Sr, Ca
), CaP2 film.

さらにSi単結晶1SiO2/MgAl2O4/MgO
のような構成の基板にBix(Sr、 Ca)、Cuz
O,を形成しても有効であることを確認した。
Furthermore, Si single crystal 1SiO2/MgAl2O4/MgO
Bix (Sr, Ca), Cuz
It was confirmed that it is also effective to form O.

以上のように本発明によって、層状ペロブスカイト構造
を有する膜を容易にシリコン単結晶基板上に形成するこ
とが可能となった。シリコン単結晶基板は大口径で良質
のものが低価格に入手できること、及び超伝導体機能素
子とシリコンICとを一体化できるという利点を考えれ
ば本発明の工業的価値は大きい。
As described above, according to the present invention, it has become possible to easily form a film having a layered perovskite structure on a silicon single crystal substrate. The industrial value of the present invention is great considering the advantages that large-diameter, high-quality silicon single crystal substrates can be obtained at low cost, and that a superconductor functional element and a silicon IC can be integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明による基板の製造プロセスを示す図
。 1、4.8・・・Si単結晶基板、2.5.9・・・M
gAl2O4エピタキシャル膜、3.7.11・Bix
(Sr、 Ca)、CaP2膜、6・・・5i02.1
0・・・MgOエピタキシャル膜。
1 to 3 are diagrams showing the manufacturing process of a substrate according to the present invention. 1, 4.8...Si single crystal substrate, 2.5.9...M
gAl2O4 epitaxial film, 3.7.11 Bix
(Sr, Ca), CaP2 film, 6...5i02.1
0...MgO epitaxial film.

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン単結晶基板上に絶縁体膜が形成され、該
絶縁体膜上に一般式がBi_x(Sr、Ca)_yCu
_zO_δで表わされ、それぞれの金属元素成分の組成
が 0.08≦x/(x+y+z)≦0.41かつ0.29
≦y/(x+y+z)≦0.47かつ1≦Sr/Ca≦
3の範囲内にある酸化物層が形成されていることを特徴
とする電子デバイス用基板。
(1) An insulator film is formed on a silicon single crystal substrate, and the general formula Bi_x(Sr,Ca)_yCu is formed on the insulator film.
It is expressed as _zO_δ, and the composition of each metal element component is 0.08≦x/(x+y+z)≦0.41 and 0.29
≦y/(x+y+z)≦0.47 and 1≦Sr/Ca≦
A substrate for an electronic device, characterized in that an oxide layer falling within the range of 3 is formed.
(2)シリコン単結晶基板上に形成される絶縁体膜がマ
グネシウムアルミネートスピネル(MgAl_2O_4
)エピタキシャル膜である特許請求の範囲第1項記載の
電子デバイス用基板。
(2) The insulator film formed on the silicon single crystal substrate is magnesium aluminate spinel (MgAl_2O_4
) The electronic device substrate according to claim 1, which is an epitaxial film.
(3)シリコン単結晶膜基板上に形成される絶縁体膜が
マグネシウムアルミネートスピネル(MgAl_2O_
4)エピタキシャル膜と、さらにその上に形成されるマ
グネシア(MgO)エピタキシャル膜である特許請求の
範囲第1項記載の電子デバイス用基板。
(3) The insulator film formed on the silicon single crystal film substrate is magnesium aluminate spinel (MgAl_2O_
4) The electronic device substrate according to claim 1, which comprises an epitaxial film and a magnesia (MgO) epitaxial film formed thereon.
(4)シリコン単結晶基板上に形成される絶縁体膜は該
シリコン基板表面に形成される二酸化シリコン(SiO
_2)層とこの上に形成される絶縁体エピタキシャル膜
とからなる特許請求の範囲第1項記載の電子デバイス用
基板。
(4) The insulator film formed on the silicon single crystal substrate is silicon dioxide (SiO2) formed on the surface of the silicon substrate.
_2) The electronic device substrate according to claim 1, comprising a layer and an insulator epitaxial film formed thereon.
JP63070598A 1988-03-23 1988-03-23 Substrate for electronic device Pending JPH01241877A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63070598A JPH01241877A (en) 1988-03-23 1988-03-23 Substrate for electronic device
US07/326,783 US5084438A (en) 1988-03-23 1989-03-21 Electronic device substrate using silicon semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070598A JPH01241877A (en) 1988-03-23 1988-03-23 Substrate for electronic device

Publications (1)

Publication Number Publication Date
JPH01241877A true JPH01241877A (en) 1989-09-26

Family

ID=13436161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070598A Pending JPH01241877A (en) 1988-03-23 1988-03-23 Substrate for electronic device

Country Status (1)

Country Link
JP (1) JPH01241877A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161635A (en) * 1984-02-02 1985-08-23 Nec Corp Substrate for electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161635A (en) * 1984-02-02 1985-08-23 Nec Corp Substrate for electronic device

Similar Documents

Publication Publication Date Title
US5084438A (en) Electronic device substrate using silicon semiconductor substrate
CA1326976C (en) Superconducting member
JPH03150218A (en) Production of superconductive thin film
JP2641865B2 (en) Substrates for electronic devices
JPH01241877A (en) Substrate for electronic device
JPH01241876A (en) Substrate for electronic device
JP2646683B2 (en) Substrates for electronic devices
JP2814563B2 (en) Manufacturing method of oxide superconducting film
JPS60161635A (en) Substrate for electronic device
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPS586147A (en) Semiconductor device and its manufacture
JPH01167221A (en) Production of superconducting thin film
JPS63225599A (en) Preparation of oxide superconductive thin film
EP0304078A2 (en) Composite superconductor layer structure
JP3145799B2 (en) Electronic device substrate and method of manufacturing the same
JP2519337B2 (en) Substrate material for producing oxide superconductor and method for producing oxide superconductor
JP2546730B2 (en) Substrate for oxide thin film formation
JP2506798B2 (en) Superconductor
JP3250227B2 (en) Substrates for electronic devices
JP2759469B2 (en) Superconducting thin film fabrication method
JPS63225572A (en) Superconductive base material
JPH02217306A (en) Production of oxide superconductor
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH0667787B2 (en) Thin film type superconducting element
JP2847769B2 (en) Method for producing Bi-based superconductor thin film