JPH0124175B2 - - Google Patents

Info

Publication number
JPH0124175B2
JPH0124175B2 JP55129848A JP12984880A JPH0124175B2 JP H0124175 B2 JPH0124175 B2 JP H0124175B2 JP 55129848 A JP55129848 A JP 55129848A JP 12984880 A JP12984880 A JP 12984880A JP H0124175 B2 JPH0124175 B2 JP H0124175B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
plasticizer
resin
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55129848A
Other languages
Japanese (ja)
Other versions
JPS5755948A (en
Inventor
Eitaro Nakamura
Masaaki Nishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP12984880A priority Critical patent/JPS5755948A/en
Publication of JPS5755948A publication Critical patent/JPS5755948A/en
Publication of JPH0124175B2 publication Critical patent/JPH0124175B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ペースト加工に供される粒状の塩化
ビニル樹脂組成物の製造方法に関する。 通常塩化ビニル樹脂をペースト加工するに際し
ては、ペースト加工用に製造された塩化ビニル樹
脂(以下樹脂ということがある)を、可塑剤、安
定剤の他、必要に応じて顔料、充てん剤等の配合
剤とともに混合し液状のプラスチゾルとし、成形
工程へ供する方法が採られる。そして液状のプラ
スチゾルを注形、コーテイング浸漬等の手段で賦
型し、加熱溶融固化させることによつて成形品が
得られる。従つて、プラスチゾルの流動特性はペ
ースト加工の成形性に極めて重要な影響を及ぼす
特性であるため、配合処方上、とりわけ樹脂の品
質設計上、多大な努力と工夫が施されているのが
実情である。一方、プラスチゾルの流動特性とと
もに、成形品の特性とりわけ外観、強度に与える
影響の大きなものとして、粉体配合剤の液状配合
剤中への分散性があげられる。樹脂を代表として
粉体配合剤が粗大な集合体としてゾル中に残存し
ていると、プラスチゾルの流動性に影響を与える
ばかりでなく、ゾルの輸送時の目づまり、コーテ
イング加工時の筋引き等のトラブルや、成形品肌
の荒れ、艶消し、さらには強度低下等の問題を引
き起こす。この様なペースト加工上の問題を考慮
して、樹脂は、通常JISふるい325メツシユ全通の
様な微細な粉体として供給されているのが実情で
ある。そのための樹脂の製造方法としては、塩化
ビニル又は塩化ビニルを主体とする単量体混合物
をラジカル発生型重合開始剤と乳化剤の存在下、
乳化重合あるいは懸濁重合することによつて粒径
0.05〜5μの球型樹脂の水性分散液を得、この水性
分散液をスプレー乾燥を行う方法が採られてい
る。 ところがこうした方法で得られた樹脂は、樹脂
の水性分散液中の全ての不揮発成分を含んでお
り、成形品の熱安定性、耐水性、透明性等の特性
を低下させる原因となつている。さらに、通常の
スプレー乾燥では、噴霧された水分散液中の樹脂
粒子は、水分の蒸発に伴つて樹脂粒子集合体とし
て乾燥、捕捉されるため、製品として出荷するた
めには粉砕工程を要する場合があるし、こうした
処理を行つてもプラスチゾル製造時の簡単な混合
では集合粒子の分散を達成できないことが多い。
さらに先に述べた様に、樹脂は微細な粉体である
ため、製品の袋詰め時、並びにプラスチゾル製造
に際しての開袋投入及び混合時の粉体飛散等、作
業環境の低下を引き起こす。加えて、粉体流動性
が悪いと、自動計量、自動輸送が困難になる。 本発明者は、こうしたペースト加工用樹脂の現
状の問題点について検討した結果、ペースト加工
用塩化ビニル樹脂の水性分散液に、(イ)可塑剤及び
所望により(ロ)該可塑剤と相容性を有し、該塩化ビ
ニル樹脂を実質的に溶解せず、かつ水に難溶の有
機液体を、その使用量(有機液体を用いる場合は
可塑剤との合計量)が塩化ビニル樹脂の水性分散
液と同容量以下であつて、かつ塩化ビニル樹脂
100容量部に対して15容量部以上となるような割
合で混合して塩化ビニル樹脂を可塑剤相又は可塑
剤と有機液体との混合相に移行せしめた後、水相
を分離除去し、次いで塩化ビニル樹脂と可塑剤又
は可塑剤と有機液体とを含有する相を乾燥するこ
とによつて可塑剤含有塩化ビニル樹脂粒状組成物
を得ることよりなり、かつこれらの操作を70℃以
下に行うことにより、流動性が良好で飛散性が少
なく、プラスチゾル製造時には、簡単な混合で均
一分散を達成することが可能で、さらに、優れた
熱安定性、耐水性、透明性を有する成形品を与え
る粒状塩化ビニル樹脂組成物が得られることを確
認し、本発明を完成するに至つた。 本発明の方法は基本的には以下の工程から構成
される。すなわち、(1)樹脂の水性分散液と可塑剤
(と有機液体)とを混合し、樹脂を可塑剤(及び
有機液体)相へ移行せしめる第1工程、(2)混合液
から水相を除去する第2工程、(3)可塑剤(及び有
機液体)、樹脂を主体とする混合物を乾燥する第
3工程である。なお、これらの工程に(4)第2工程
で分離された水相から樹脂を回収する工程、(5)(4)
で回収した樹脂を単独で、あるいは第3工程の混
合物と混合して乾燥する工程を付加してもよく、
さらに(6)第1〜第3工程中に造粒工程を組み入れ
ることは本発明の効果を達成する上で有効であ
る。 本発明において用いられるペースト加工用塩化
ビニル樹脂の水分散液は通常の乳化重合又は懸濁
重合により製造された塩化ビニルの単独重合体又
は塩化ビニルを主体とした(通常は70重量%以
上)、これと酢酸ビニル、塩化ビニリデン、エチ
レン、アクリロニトリル、アクリル酸エステル又
はマレイン酸などのオレフイン系単量体との共重
合体の水分散液のことであつて、通常のペースト
加工に供しうるものであれば特に制限されない。
必要に応じて増量用塩化ビニル樹脂を含むことも
できる。水分散液中の塩化ビニル樹脂の含量は10
〜80重量%である。すなわち、重合後の塩化ビニ
ル樹脂の水分散液をそのまま使用すればよいので
好都合であるが、必要ならば一部脱水し、或いは
水を添加して用いることも可能である。ただし10
重量%未満の場合には、生産効率が著しく低下す
るので不適当であり、80重量%を越える場合に
は、流動性のある水分散液として存在し得ないた
めに可塑剤(及び有機液体)との混合が困難であ
る。 この塩化ビニル樹脂の水分散液と混合される可
塑剤は、ジオクチルフタレート、ジイソデシルフ
タレート、ジヘプチルフタレート、ジブチルフタ
レート、ブチルベンジルフタレート、ジオクチル
アジペートなどのようなペースト加工に際して用
いられるものであれば特に制限されない。しか
し、樹脂に対するゲル化性能の高い可塑剤、例え
ばジエチルフタレートなどは、得られる粒状組成
物の保存安定性の点からその使用は注意を要す
る。またその使用量は、樹脂に対して樹脂を最密
充てんしたときの樹脂間の空隙率以下の混合率と
することが好ましい。空隙率以上の可塑剤を使用
した場合は、粒状組成物がブロツキングを起こし
て貯蔵上、物流上の問題を生ずるおそれがある。
市販のペースト用樹脂粒子を最密充てんしたとき
の樹脂間の空隙率は通常0.3〜0.4程度であるが、
樹脂の粒径分布を最適化することで0.14位までの
低下は可能とされている。 必要に応じて使用される有機液体としては、常
圧における沸点あるいは90重量%蒸発温度が−15
℃以上、200℃以下の水に難溶で可塑剤と相溶性
を有し、かつ樹脂を溶解しないものが使用され
る。沸点あるいは90重量%蒸発温度が−15℃より
低いものは、水性分散液との混合、分離の操作
や、有機液体の回収操作や装置を高度化する必要
を生じ経済的でなく、また500℃を超す様なもの
は、有機液体相に捕捉された樹脂組成物の乾燥工
程において、より高温での操作を行う必要を生
じ、結果的に樹脂組成物中の可塑剤が樹脂中に溶
解吸収され、プラスチゾルにならないか、あるい
は、プラスチゾルとなつたとしても極めて高粘度
のゾルを与える様な組成物となる危険があり避け
るべきである。もちろん、この様な高沸点のある
いは低蒸気圧の有機液体を使つても、低温下に長
時間、減圧のもとに乾燥を行えば本発明の目的を
達することができるが経済的な方法ではない。ま
た有機液体の使用目的は、可塑剤の粘度を低下せ
しめ、可塑剤を含む有機液体相の水性媒体に対す
る存在比を向上させて、樹脂の可塑剤相への移行
を促進し、移行の能率を向上させることにあるか
ら、有機液体は可塑剤や樹脂と化学的、物理的に
不活性であることが必要であつて、樹脂を溶解し
たり著しく膨潤したりする様なものは好ましくな
い。また、有機液体は可塑剤と相溶性がなければ
ならない。さらに、有機液体は水への溶解度が低
いものほど、分離すべき水相の排水処理が簡便に
なり、しかも有機液体の損失が少なくなるので、
工業上好ましい。また、有機液体が樹脂を溶解す
る様なもの、あるいは強く膨潤する様なものであ
る場合は、単に、有機液体の回収に時間と設備を
要するばかりでなく、乾燥して得られる樹脂組成
物はゾル調製時の分散性が著しく低下し、またこ
の組成物から得られるプラスチゾルは粘度が著し
く不安定なものとなり、本発明の目的を達成する
ことができない。 このような点から有機液体の例としては、ブタ
ン、ヘキサン、オクタン等のパラフイン系炭化水
素、シクロヘキサン、メチルシクロペンタン、テ
トラリン等のナフテン系炭化水素、イソプロピル
ベンゼン、ジエチルベンゼン等の芳香族炭化水素
およびこれらの混合物であるミネラルスピリツ
ト、ミネラルターペン等の石油系溶剤、四塩化炭
素、トリクレン、フレオン等のハロゲン化炭化水
素などがあげられる。また、水に難溶であり、樹
脂を溶解しないものであれば、エステル類、エー
テル類、アルコール類、ケトン類も使用し得る。
混合有機液体として使用する場合は、その一成分
が、単体としては樹脂を溶解あるいは膨潤する様
なものでも、混合液体としては前記条件を満足す
る様なものであれば差支えない。 可塑剤(及び有機液体)の使用量は、両者の合
計量で樹脂の水性分散液と同容量以下、水性分散
液中の樹脂100容量部に対し15容量部以上とする
ことが必要である。可塑剤(と有機液体の合計)
量が、樹脂の水性分散液よりも多いとこれを樹脂
の水性分散液と混合した場合、油中水型のエマル
ジヨンを生じ、樹脂を可塑剤(及び有機液体)相
に捕捉分離回収することが困難になる危険を生ず
るばかりでなく、組成物の乾燥工程において不要
のエネルギーを消費し、不経済である。一方、可
塑剤(と有機液体の合計)量が、樹脂100容量部
に対し15容量部未満では樹脂の可塑剤相への移行
率が減少し、不都合である。可塑剤および有機液
体の総量およびそれぞれの量、種類は目的とする
最終組成物の構成(可塑剤含有率)、可塑剤(及
び有機液体)相に捕捉された樹脂混合物の形状に
より、上に述べた範囲で任意に選択できる。例え
ば、樹脂と可塑剤(と有機液体)との混合物を球
状の相当の物理的強度を有する粒状物として分離
し、造粒しようとする場合には、樹脂粒子を最密
充てんした時の樹脂粒子間の空隙容積の30%以
上、100%未満になるように、可塑剤(と有機液
体との総)量を調節すべきである。 可塑剤(及び有機液体)と樹脂の水性分散液と
の混合は、通常20〜70℃の温度で行われるが、有
機液体を用いる場合には、その蒸気圧に応じて装
置上、操作上の最適点を選択すれば良い。一般的
に高温での操作は、可塑剤(と有機液体との混合
物)の粘度を減じ、これと水および樹脂との界面
張力を低下させるため樹脂の可塑剤相への移行を
促進するが、高温になるほど可塑剤や有機液体に
よる樹脂の膨潤速度を高めるので好ましくは50℃
以下とすべきである。70℃を越えると、可塑剤の
樹脂への吸収が早まるばかりか、樹脂が軟化し合
体化して最終組成物がもはやペースト加工に適合
しなくなる危険がある。 次に可塑剤(及び有機液体)相に捕捉された樹
脂混合物から水相を分離するには、捕捉された樹
脂混合物の形状に応じて、公知の方法を用いれば
良い。例えば、可塑剤(及び有機液体)の使用量
を少なくして液体造粒を達成する様に混合した場
合には、スクリーン等の手段で水相を分離でき
る。 分離工程にて分離された樹脂粒子と可塑剤(と
有機液体)との混合物は、次に乾燥工程に送ら
れ、有機液体と付着水分が除去される。この乾燥
工程においては樹脂の集合、合体の強度が、製品
組成物のペースト加工時の分散性を損なわぬ様な
条件を設定することが必要である。すなわち乾燥
工程中の、被乾燥樹脂組成物の温度は70℃以下、
好ましくは50℃以下となる様にする。乾燥装置と
しては、被乾燥物の温度を低く維持することと有
機液体の回収の点から、減圧の撹拌乾燥機、バン
ド乾燥機、回転乾燥機の使用が好ましいが、広く
公知の乾燥装置が使用し得る。乾燥工程において
は装置を適当に選ぶことによつて不定形の、ある
いは粒度分布の広い樹脂組成物を製品として得る
ことが可能であるが、押出型造粒機などのペレツ
ト形成機を工程中に組み込むことによつて粒子形
状を均質化することも可能である。この場合も、
造粒時に熱や圧力により樹脂組成物が溶融した
り、可塑剤を吸収したりして、ペースト加工時の
分散性を損う様なことがあつてはならない。 このような乾燥工程を経て、粒状の樹脂組成物
が得られる。なお、可塑剤は樹脂粒子間に介在し
て粒子同士の結合剤的役割を果しているものと思
われる。 工業的に本発明の方法の実施する場合には、第
1工程での樹脂の可塑剤(及び有機液体)層への
移行率を高めるとともに、第2工程での樹脂混合
物相中への水分の混入率を低下せしめることが重
要である。そのためには、前者については、有機
液体の選択の他、樹脂の移動速度を決定する混合
の諸因子を公知の方法によつて最適化することに
留意すべきであり、また、後者については、適切
な分離機の選択を行うことに留意すべきである。 さらに、樹脂の損失を防ぎ、廃水の処理に伴う
費用の低減を図るために、第2工程で分離された
水相中に残留する樹脂及び有機液体を回収する工
程を組み入れることは有効である。その回収方法
としては、遠心分離、エアレーシヨンによる浮遊
法のような物理的回収法の他に、凝集剤水溶液の
添加による凝集沈降法、及び浮上法も有効であ
る。特に、凝集法では、水相中に残存する有機液
体エマルジヨンも樹脂とともに凝集するので、得
られた凝集体を水相から分離して得たケーキ或い
は泥状物は相当量の可塑剤および有機液体(用い
た場合)を含有する。したがつて、このケーキ或
いは泥状物を好ましくは第2工程で分離された樹
脂混合物と混合した後乾燥することによつて樹脂
組成物とすることが可能である。また、凝集分離
物を第1工程へ戻してもよい。この凝集による回
収では、公知の凝集剤が一般に使用可能であり、
例えば硫酸アルミニウム、ポリ塩化アルミニウム
等の無機凝集剤、塩化ナトリウム等の無機塩類、
ポリアクリル酸、ポリアクリルアミド等の高分子
凝集剤等が使用される。しかしながら、これら凝
集剤の添加は、製品樹脂の品質特に熱安定性、透
明性に対して、負の効果をもたらすため、その多
用は慎むべきであり、一般には分離された水相中
の樹脂100重量部当り、1重量部以下とすべきで
ある。 次に本発明を実施例により説明する。 実施例 1 ペースト加工用に重合されたポリ塩化ビニル樹
脂の水性分散液(固型分含有量44重量%)1200g
とジ−2−エチルヘキシルフタレート120gとノ
ルマルヘキサン320gとを、2ポリエチレン製
広口ビンに入れて常温(20℃)で30分間振とう混
合を行つたところ、樹脂、可塑剤及びノルマルヘ
キサンを主体とする泥状物Aと水相Bとに分離し
た。水相Bを採取し、これに常温(20℃)で硫酸
アルミニウム18水塩の10%水溶液を0.1g添加し
撹拌したところ凝集物が沈降した。傾斜法で水を
除いた後これを遠心分離機で遠心沈降させ沈降物
Cを回収した。 Aの一部とCを重量比で9:1で混合し、浴温
50℃で撹拌減圧乾燥を行い、粒状の乾燥樹脂組成
物Dを得た。 実施例 2 実施例1で得られた泥状物Aのうちの300gを
耐圧ガラス容器に入れ、40℃の湯浴中で撹拌、通
気しながら乾燥し、内容物が半乾燥の状態になつ
たところで内容物の重量を測定したところ240g
であつた。この内容物を常温(20℃)で手動の押
出式造粒機で2mmφのペレツトとして押出した
後、真空乾燥機で40℃で2時間乾燥し、ペレツト
状樹脂組成物Eを185g得た。Eのかさ比重は0.5
g/c.c.であつた。 比較例 1 実施例1で得た泥状物Aのうちの300gを真空
撹拌器に入れ、80℃で43分間真空下に撹拌乾燥し
たところ、球形の粒状組成物Fを183g得た。 実施例 3 実施例1に供したと同じ樹脂の水性分散液300
gとジ−2−エチルヘキシルフタレート10gと四
塩化炭素110gを500mlポリエチレン製広口ビンに
入れて常温(20℃)で振とう、撹拌を30分行つた
ところ2相に分離したので、傾斜法により油相G
と水相Hとに分離した。Gを撹拌機付き5減圧
容器にて50℃の湯浴で加温しつつ減圧乾燥し、粒
状乾燥樹脂組成物I118gを得た。 Iをポリエチレン製の袋の中に入れ、ガラス板
の間に置き、1Kgの分銅をガラス板上に置いて1
昼夜放置後ポリエチレン製袋中の組成物の状態を
見たところ、試験前とほとんど同じ粒状であつて
ブロツキングは起きていなかつた。 実施例 4 実施例1に使用したと同じ樹脂の水性分散液
1500gと、ジオクチルアジペート150gを内部に
多数の棒状翼から成る撹拌装置を有する1.8の
円筒型ステンレス製混合器に入れ、常温(20℃)
で800rpmで30分間混合したところ、球状樹脂組
成物の水分散液が得られた。この水分散液から42
メツシユの金網で球状樹脂組成物を分離し、湿潤
組成物Jを40℃で2時間620g得た。Jを真空乾
燥することにより樹脂組成物K480gが得られた。 比較例 2 実施例1に供した樹脂の水性分散液1000gを実
験室用スプレードライヤで噴霧乾燥して乾燥樹脂
とした後、卓上パルベライザーで2回粉砕し、乾
燥樹脂Lを得た。 参考例 各実施例及び比較例で得られた乾燥樹脂試料
D、E、F、I、K及びLの一部をエーテル抽出
し、エーテル抽出物の重量%を測定した後エーテ
ル抽出残量100重量部に対し、ジ−2−エチルヘ
キシルフタレート60重量部及びT−17MJ(勝田化
工製安定剤)2重量部を添加し、石川式ライカイ
機中で10分間混合し、撹拌式真空脱泡機にて5mm
Hgabs下10分間脱泡してプラスチゾルとし、各種
試験を行つた。結果を表に示す。 なお試験方法及び数値の意味は下記の通りであ
る。 (1) 吸油量 乾燥樹脂組成物試料2gをガラス板上に置い
て、ビユレツトよりジ−2−エチルヘキシルフ
タレートを滴下しつつ試料をヘラで練り、試料
がパテ状になるまでの滴下量を測定する。 (2) エーテル抽出量 乾燥樹脂組成物試料をソツクスレー抽出器に
よりエーテルで6時間抽出し、エーテルを蒸発
させた残留分から計算する。 (3) ノースフアインネス ゾル中の樹脂粒子の粒度を示すもので、数値
が大きい程細かい(8が最も細かく0が最も荒
い)。 (4) 粘度 ブルツクフイールドBM型粘度計ローター
#4により6rpmで測定したとき(初日)、及び
23℃で7日間放置したとき(7日後)のゾル温
23℃での値。 (5) 熱安定性 ゾルをアルミニウム製モールドに注入し、
190℃の熱風雰囲気下で所定時間毎の色調の変
化を数字で表現する。 1(無色変)〜5(黒化) (6) 透明性 ゾルを1mm厚のガラス板上で190℃で10分間
加熱することにより得られた膜厚約370μのフ
イルムの光透過率を測定し、空気の光透過率を
100%として算出する。 (7) 耐水白化性 (6)で成形したフイルムを23℃の水に一昼夜浸
した後、水を切つて10分後のフイルムについて
測定した光透過率を測定し、空気の光透過率を
100%として算出する。
The present invention relates to a method for producing a granular vinyl chloride resin composition that is subjected to paste processing. Normally, when paste processing vinyl chloride resin, the vinyl chloride resin (hereinafter referred to as resin) manufactured for paste processing is mixed with plasticizers, stabilizers, pigments, fillers, etc. as necessary. A method is adopted in which the plastisol is mixed with an agent to form a liquid plastisol and then subjected to a molding process. A molded article is then obtained by shaping the liquid plastisol by means such as casting, coating and dipping, and heating it to melt and solidify it. Therefore, the fluidity properties of plastisol are properties that have an extremely important effect on the formability of paste processing, and the reality is that great effort and ingenuity are put into the formulation, especially in the quality design of the resin. be. On the other hand, in addition to the flow characteristics of plastisol, the dispersibility of the powder compound into the liquid compound has a large influence on the properties, particularly the appearance and strength, of the molded article. If powder compounding agents, such as resins, remain in the sol as coarse aggregates, it not only affects the fluidity of the plastisol, but also causes clogging during transportation of the sol, streaking during coating processing, etc. This causes problems such as roughening of the molded product's skin, matting, and even a decrease in strength. In consideration of such problems in paste processing, the reality is that resin is usually supplied as a fine powder, such as a JIS sieve 325 mesh. As a method for producing resin for this purpose, vinyl chloride or a monomer mixture mainly composed of vinyl chloride is mixed in the presence of a radical-generating polymerization initiator and an emulsifier.
Particle size can be adjusted by emulsion polymerization or suspension polymerization.
A method has been adopted in which an aqueous dispersion of spherical resin of 0.05 to 5 μm is obtained and this aqueous dispersion is spray-dried. However, the resin obtained by this method contains all the nonvolatile components in the aqueous resin dispersion, which causes a decrease in properties such as thermal stability, water resistance, and transparency of the molded product. Furthermore, in normal spray drying, the resin particles in the sprayed aqueous dispersion are dried and captured as resin particle aggregates as the water evaporates, so a pulverization process may be required in order to ship the product. Even with these treatments, it is often not possible to achieve dispersion of aggregated particles through simple mixing during plastisol production.
Furthermore, as mentioned above, since resin is a fine powder, it causes a deterioration of the working environment, such as powder scattering when products are packed into bags, and when plastics are opened and mixed when bags are opened and mixed. In addition, poor powder fluidity makes automatic weighing and transportation difficult. As a result of studying the current problems with resins for paste processing, the present inventors have determined that (a) a plasticizer and, optionally, (b) compatibility with the plasticizer, are added to the aqueous dispersion of vinyl chloride resin for paste processing. An organic liquid that does not substantially dissolve the vinyl chloride resin and is sparingly soluble in water is used (if an organic liquid is used, the total amount including the plasticizer) in an aqueous dispersion of the vinyl chloride resin. The same volume or less as the liquid, and vinyl chloride resin
After mixing at a ratio of 15 parts by volume or more to 100 parts by volume to transfer the vinyl chloride resin to a plasticizer phase or a mixed phase of plasticizer and organic liquid, the aqueous phase is separated and removed, and then Obtaining a plasticizer-containing vinyl chloride resin granular composition by drying a phase containing a vinyl chloride resin and a plasticizer or a plasticizer and an organic liquid, and performing these operations at 70°C or lower. This makes it possible to achieve uniform dispersion with simple mixing during the production of plastisol, and also provides molded products with excellent thermal stability, water resistance, and transparency. It was confirmed that a vinyl chloride resin composition could be obtained, and the present invention was completed. The method of the present invention basically consists of the following steps. That is, (1) the first step of mixing the aqueous dispersion of the resin and the plasticizer (and organic liquid) and transferring the resin to the plasticizer (and organic liquid) phase; (2) removing the aqueous phase from the mixed liquid. (3) a third step of drying a mixture mainly consisting of a plasticizer (and organic liquid) and a resin. These steps include (4) the step of recovering the resin from the aqueous phase separated in the second step, (5) (4)
A step may be added in which the resin recovered in step 1 is dried alone or mixed with the mixture in step 3.
Furthermore, (6) incorporating a granulation step into the first to third steps is effective in achieving the effects of the present invention. The aqueous dispersion of vinyl chloride resin for paste processing used in the present invention is a vinyl chloride homopolymer produced by conventional emulsion polymerization or suspension polymerization, or mainly consists of vinyl chloride (usually 70% by weight or more). An aqueous dispersion of a copolymer of this and an olefinic monomer such as vinyl acetate, vinylidene chloride, ethylene, acrylonitrile, acrylic acid ester, or maleic acid, which can be subjected to normal paste processing. There are no particular restrictions.
If necessary, a vinyl chloride resin for weight expansion can also be included. The content of vinyl chloride resin in the aqueous dispersion is 10
~80% by weight. That is, it is convenient to use the aqueous dispersion of vinyl chloride resin after polymerization as it is, but it is also possible to partially dehydrate it or add water if necessary. However, 10
If it is less than 80% by weight, it is unsuitable because the production efficiency will drop significantly, and if it exceeds 80% by weight, the plasticizer (and organic liquid) cannot exist as a fluid aqueous dispersion. It is difficult to mix with The plasticizer to be mixed with the aqueous dispersion of vinyl chloride resin is particularly limited as long as it is used in paste processing, such as dioctyl phthalate, diisodecyl phthalate, diheptyl phthalate, dibutyl phthalate, butylbenzyl phthalate, dioctyl adipate, etc. Not done. However, plasticizers with high gelling properties for resins, such as diethyl phthalate, must be used with caution in view of the storage stability of the resulting granular composition. Further, the amount used is preferably such that the mixing ratio is equal to or less than the porosity between the resins when the resin is packed in the resin. If a plasticizer with a porosity higher than the porosity is used, the granular composition may cause blocking, which may cause problems in terms of storage and distribution.
When commercially available resin particles for paste are packed close-packed, the porosity between the resins is usually about 0.3 to 0.4.
It is believed that it is possible to reduce the particle size to around 0.14 by optimizing the particle size distribution of the resin. The organic liquid used as necessary must have a boiling point or 90% evaporation temperature of -15 at normal pressure.
The material used is one that is sparingly soluble in water at temperatures between 10°C and 200°C, is compatible with plasticizers, and does not dissolve resins. Those with a boiling point or 90% evaporation temperature lower than -15°C are not economical, as they require sophisticated mixing and separation operations with aqueous dispersions, as well as organic liquid recovery operations and equipment, and are not economical. If the temperature exceeds 100%, it becomes necessary to operate at higher temperatures during the drying process of the resin composition trapped in the organic liquid phase, resulting in the plasticizer in the resin composition being dissolved and absorbed into the resin. This should be avoided since there is a risk that the composition will not become a plastisol, or even if it does become a plastisol, it will be a composition that provides an extremely high viscosity sol. Of course, even if such a high boiling point or low vapor pressure organic liquid is used, the purpose of the present invention can be achieved by drying it at low temperature for a long time under reduced pressure, but this is not an economical method. do not have. The purpose of using the organic liquid is to lower the viscosity of the plasticizer, improve the abundance ratio of the organic liquid phase containing the plasticizer to the aqueous medium, promote the transition of the resin to the plasticizer phase, and improve the efficiency of the transition. Since the purpose of the organic liquid is to improve the performance of plasticizers and resins, it is necessary that the organic liquid be chemically and physically inert to the plasticizer and resin, and it is not preferable that the organic liquid dissolves or significantly swells the resin. The organic liquid must also be compatible with the plasticizer. Furthermore, the lower the solubility of the organic liquid in water, the easier the wastewater treatment of the aqueous phase to be separated, and the less loss of the organic liquid.
Industrially preferred. In addition, if the organic liquid dissolves the resin or strongly swells, not only will it take time and equipment to recover the organic liquid, but the resin composition obtained by drying will The dispersibility during sol preparation is markedly reduced, and the plastisol obtained from this composition has a markedly unstable viscosity, making it impossible to achieve the object of the present invention. From this point of view, examples of organic liquids include paraffinic hydrocarbons such as butane, hexane, and octane; naphthenic hydrocarbons such as cyclohexane, methylcyclopentane, and tetralin; aromatic hydrocarbons such as isopropylbenzene and diethylbenzene; Examples include mineral spirits, which are mixtures of mineral spirits, petroleum solvents such as mineral turpentine, and halogenated hydrocarbons such as carbon tetrachloride, trichlene, and freon. Further, esters, ethers, alcohols, and ketones may also be used as long as they are sparingly soluble in water and do not dissolve the resin.
When used as a mixed organic liquid, one of the components may dissolve or swell the resin as a single component, but it does not matter if the mixed liquid satisfies the above conditions. The total amount of plasticizer (and organic liquid) used must be equal to or less than the volume of the aqueous resin dispersion, and at least 15 parts by volume per 100 parts by volume of the resin in the aqueous dispersion. Plasticizer (plus organic liquid)
When the amount is greater than that of the aqueous dispersion of resin and mixed with the aqueous dispersion of resin, a water-in-oil emulsion is formed, and the resin can be trapped in the plasticizer (and organic liquid) phase and separated and recovered. Not only does this create a risk of drying the composition, but it also consumes unnecessary energy and is uneconomical in the drying process of the composition. On the other hand, if the amount of plasticizer (total of organic liquid) is less than 15 parts by volume per 100 parts by volume of resin, the rate of transfer of the resin to the plasticizer phase decreases, which is disadvantageous. The total amount and respective amounts and types of plasticizer and organic liquid will depend on the desired composition of the final composition (plasticizer content) and the shape of the resin mixture entrapped in the plasticizer (and organic liquid) phase as described above. It can be selected arbitrarily within the specified range. For example, when attempting to separate and granulate a mixture of resin and plasticizer (and organic liquid) into spherical granules with considerable physical strength, The amount of plasticizer (total of organic liquid) should be adjusted so that it is at least 30% and less than 100% of the void volume between. Mixing of the plasticizer (and organic liquid) and the aqueous resin dispersion is usually carried out at a temperature of 20 to 70°C, but when using an organic liquid, equipment and operational considerations depend on its vapor pressure. Just choose the optimal point. Generally, operating at high temperatures reduces the viscosity of the plasticizer (and its mixture with organic liquid) and reduces the interfacial tension between it and water and resin, thus promoting the transition of the resin into the plasticizer phase. The temperature is preferably 50℃ because the higher the temperature, the faster the resin will swell due to the plasticizer and organic liquid.
It should be: Above 70°C, there is a risk that not only will the plasticizer be absorbed into the resin faster, but the resin will soften and coalesce, making the final composition no longer suitable for pasting. Next, to separate the aqueous phase from the resin mixture trapped in the plasticizer (and organic liquid) phase, a known method may be used depending on the shape of the trapped resin mixture. For example, if the amount of plasticizer (and organic liquid) used is reduced to achieve liquid granulation, the aqueous phase can be separated by means such as a screen. The mixture of resin particles and plasticizer (and organic liquid) separated in the separation process is then sent to a drying process to remove the organic liquid and attached moisture. In this drying process, it is necessary to set conditions such that the strength of resin aggregation and coalescence does not impair the dispersibility of the product composition during paste processing. That is, during the drying process, the temperature of the resin composition to be dried is 70°C or less,
Preferably, the temperature is 50°C or lower. As the drying device, from the viewpoint of maintaining the temperature of the material to be dried low and recovering the organic liquid, it is preferable to use a reduced pressure stirring dryer, band dryer, or rotary dryer, but widely known drying devices can be used. It is possible. In the drying process, it is possible to obtain a resin composition with an amorphous shape or a wide particle size distribution as a product by appropriately selecting the equipment, but it is possible to use a pellet forming machine such as an extrusion type granulator during the process. It is also possible to homogenize the particle shape by incorporating. In this case too,
During granulation, the resin composition must not melt due to heat or pressure or absorb plasticizer, which may impair dispersibility during paste processing. Through such a drying process, a granular resin composition is obtained. Note that the plasticizer appears to be present between the resin particles and to function as a binder between the particles. When carrying out the method of the present invention industrially, it is necessary to increase the transfer rate of the resin to the plasticizer (and organic liquid) layer in the first step, and to increase the transfer rate of water into the resin mixture phase in the second step. It is important to reduce the contamination rate. To this end, for the former, it should be noted that in addition to the selection of the organic liquid, various mixing factors that determine the transfer rate of the resin should be optimized using known methods, and for the latter, Care should be taken to select the appropriate separator. Furthermore, in order to prevent resin loss and reduce costs associated with wastewater treatment, it is effective to incorporate a step of recovering the resin and organic liquid remaining in the aqueous phase separated in the second step. As a recovery method, in addition to physical recovery methods such as centrifugation and floating methods using aeration, coagulation-sedimentation methods by adding an aqueous flocculant solution and flotation methods are also effective. In particular, in the flocculation method, the organic liquid emulsion remaining in the aqueous phase is also flocculated together with the resin, so the cake or slurry obtained by separating the resulting aggregates from the aqueous phase contains a considerable amount of plasticizer and organic liquid. Contains (if used). Therefore, it is possible to obtain a resin composition by preferably mixing this cake or slurry with the resin mixture separated in the second step and then drying it. Alternatively, the aggregated and separated product may be returned to the first step. In this collection by flocculation, known flocculants can generally be used,
For example, inorganic flocculants such as aluminum sulfate and polyaluminum chloride, inorganic salts such as sodium chloride,
Polymer flocculants such as polyacrylic acid and polyacrylamide are used. However, since the addition of these flocculants has a negative effect on the quality of the product resin, especially the thermal stability and transparency, their excessive use should be avoided. It should be less than 1 part by weight per part by weight. Next, the present invention will be explained by examples. Example 1 1200 g of an aqueous dispersion of polymerized polyvinyl chloride resin (solids content 44% by weight) for paste processing
When 120 g of di-2-ethylhexyl phthalate and 320 g of n-hexane were placed in a wide-mouthed polyethylene bottle and mixed with shaking for 30 minutes at room temperature (20°C), the main components were resin, plasticizer, and n-hexane. It was separated into a slurry A and an aqueous phase B. Aqueous phase B was collected, and 0.1 g of a 10% aqueous solution of aluminum sulfate 18 hydrate was added thereto at room temperature (20° C.) and stirred, resulting in sedimentation of aggregates. After water was removed by a decanting method, the mixture was centrifuged to sediment using a centrifuge to collect sediment C. A part of A and C are mixed at a weight ratio of 9:1, and the bath temperature is
The mixture was stirred and dried under reduced pressure at 50°C to obtain a granular dry resin composition D. Example 2 300g of the slurry A obtained in Example 1 was placed in a pressure-resistant glass container and dried in a 40°C water bath with stirring and ventilation until the contents became semi-dry. By the way, when I measured the weight of the contents, it was 240g.
It was hot. The contents were extruded as pellets of 2 mm diameter using a manual extrusion type granulator at room temperature (20°C), and then dried in a vacuum dryer at 40°C for 2 hours to obtain 185 g of pellet-like resin composition E. The bulk specific gravity of E is 0.5
g/cc. Comparative Example 1 300 g of the slurry A obtained in Example 1 was placed in a vacuum stirrer, stirred and dried under vacuum at 80° C. for 43 minutes to obtain 183 g of spherical granular composition F. Example 3 Aqueous dispersion of the same resin as used in Example 1 300
g, di-2-ethylhexyl phthalate, 10 g, and carbon tetrachloride, 110 g, were placed in a 500 ml wide-mouthed polyethylene bottle, shaken at room temperature (20°C), and stirred for 30 minutes. The oil phase was separated into two phases using the decanting method. G
and an aqueous phase H. G was dried under reduced pressure in a 5 reduced pressure container equipped with a stirrer while being heated in a 50° C. water bath to obtain 118 g of granular dry resin composition I. Place I in a polyethylene bag, place it between glass plates, place a 1 kg weight on the glass plate, and
When the state of the composition in the polyethylene bag was observed after being left for day and night, it was found that it had almost the same granular shape as before the test, and no blocking had occurred. Example 4 Aqueous dispersion of the same resin used in Example 1
1500 g of dioctyl adipate and 150 g of dioctyl adipate were placed in a 1.8 cylindrical stainless steel mixer equipped with a stirring device consisting of many rod-shaped blades, and heated to room temperature (20°C).
When mixed for 30 minutes at 800 rpm, an aqueous dispersion of a spherical resin composition was obtained. From this aqueous dispersion 42
The spherical resin composition was separated using a mesh wire gauze to obtain 620 g of wet composition J at 40° C. for 2 hours. By vacuum drying J, 480 g of resin composition K was obtained. Comparative Example 2 1000 g of the aqueous dispersion of the resin used in Example 1 was spray-dried using a laboratory spray dryer to obtain a dry resin, and then pulverized twice using a tabletop pulverizer to obtain a dry resin L. Reference Example A portion of the dry resin samples D, E, F, I, K and L obtained in each Example and Comparative Example was extracted with ether, and after measuring the weight percent of the ether extract, the amount remaining after the ether extraction was 100 weight. 60 parts by weight of di-2-ethylhexyl phthalate and 2 parts by weight of T-17MJ (stabilizer made by Katsuta Kako) were mixed for 10 minutes in an Ishikawa-type Raikai machine, and then mixed in an agitator-type vacuum defoaming machine. 5mm
Plastisol was degassed under Hgabs for 10 minutes and various tests were conducted. The results are shown in the table. The test methods and meanings of the numerical values are as follows. (1) Oil absorption: Place 2 g of a dry resin composition sample on a glass plate, knead the sample with a spatula while dropping di-2-ethylhexyl phthalate from a burette, and measure the amount of dripping until the sample becomes putty-like. . (2) Amount of ether extracted A dry resin composition sample is extracted with ether using a Soxhlet extractor for 6 hours, and the amount is calculated from the residue after evaporating the ether. (3) North fineness This indicates the particle size of the resin particles in the sol, and the higher the number, the finer it is (8 is the finest and 0 is the roughest). (4) Viscosity When measured at 6 rpm using a Burtskfield BM type viscometer rotor #4 (first day), and
Sol temperature when left at 23℃ for 7 days (after 7 days)
Values at 23℃. (5) Thermal stability Inject the sol into an aluminum mold,
Changes in color tone at predetermined time intervals in a hot air atmosphere of 190℃ are expressed numerically. 1 (colorless change) to 5 (blackening) (6) Transparency The light transmittance of a film with a thickness of about 370μ obtained by heating the sol at 190℃ for 10 minutes on a 1mm thick glass plate was measured. , the light transmittance of the air
Calculated as 100%. (7) Water whitening resistance The film formed in (6) was soaked in water at 23°C for a day and night, and the light transmittance of the film was measured 10 minutes after the water was removed, and the light transmittance of air was measured.
Calculated as 100%.

【表】 表より明らかなとおり、本発明の試料は、噴霧
乾燥品(試料L)に比べて吸油量が少ない。すな
わち、より少量の可塑剤でゾル化することがで
き、しかも、プラスチゾルとしたときの初期粘
度、経日粘度が低い。また、ゾルとしたときの樹
脂粒子が小さい(ノースフアインネス値が大き
い)ことから、凝集粒子が少なく、ゾル中での分
散性がよく、最終製品に筋やぶつを生成させな
い。さらに、本発明によれば、重合薬剤等に起因
する不純物が少ないことから、熱安定性、透明
性、耐水性の優れた製品が得られることがわか
る。 なお、本発明の試料はエーテル抽出量が、噴霧
乾燥品より著しく大きく、可塑剤を取り込んでい
ることがわかる。
[Table] As is clear from the table, the sample of the present invention has a smaller oil absorption amount than the spray-dried product (sample L). That is, it can be made into a sol using a smaller amount of plasticizer, and when it is made into a plastisol, its initial viscosity and aging viscosity are low. In addition, since the resin particles are small when made into a sol (the North Fineness value is large), there are few aggregated particles, the dispersibility in the sol is good, and the final product does not produce streaks or bumps. Further, according to the present invention, since there are few impurities caused by polymerizing agents and the like, a product with excellent thermal stability, transparency, and water resistance can be obtained. It should be noted that the amount of ether extracted from the sample of the present invention was significantly larger than that of the spray-dried product, indicating that plasticizer was incorporated.

Claims (1)

【特許請求の範囲】 1 ペースト加工用塩化ビニル樹脂の水性分散液
に可塑剤を、その使用量が塩化ビニル樹脂の水性
分散液と同容量以下であつて、かつ塩化ビニル樹
脂100容量部に対して15容量部以上となるような
割合で混合して塩化ビニル樹脂を可塑剤相に移行
せしめた後、水相を分離除去し、次いで塩化ビニ
ル樹脂と可塑剤とを含有する相を乾燥することに
よつて可塑剤含有塩化ビニル樹脂粒状組成物を得
ることよりなり、かつこれらの操作を70℃以下で
行うことを特徴とする粒状塩化ビニル樹脂組成物
の製造方法。 2 ペースト加工用塩化ビニル樹脂の水性分散液
に可塑剤を、その使用量が塩化ビニル樹脂の水性
分散液と同容量以下であつて、かつ塩化ビニル樹
脂100容量部に対して15容量部以上となるような
割合で混合して塩化ビニル樹脂を可塑剤相に移行
せしめた後、水相を分離除去し、水相に混入した
塩化ビニル樹脂を回収し、これを塩化ビニル樹脂
と可塑剤とを含有する相に混合した後乾燥するこ
とによつて可塑剤含有塩化ビニル樹脂粒状組成物
を得ることよりなり、かつこれらの操作を70℃以
下で行うことを特徴とする粒状塩化ビニル樹脂組
成物の製造方法。 3 ペースト加工用塩化ビニル樹脂の水性分散液
に可塑剤を、その使用量が塩化ビニル樹脂の水性
分散液と同容量以下であつて、かつ塩化ビニル樹
脂100容量部に対して15容量部以上となるような
割合で混合して塩化ビニル樹脂を可塑剤相に移行
せしめた後、水相を分離除去し、塩化ビニル樹脂
と可塑剤とを含有する相を造粒した後または造粒
しつつ乾燥を行うことによつて可塑剤含有塩化ビ
ニル樹脂粒状組成物を得ることよりなり、かつこ
れらの操作を70℃以下で行うことを特徴とする粒
状塩化ビニル樹脂組成物の製造方法。 4 ペースト加工用塩化ビニル樹脂の水性分散液
に(イ)可塑剤及び(ロ)該可塑剤と相溶性を有し、該塩
化ビニル樹脂を実質的に溶解せず、かつ水に難溶
の有機液体を、その合計量が塩化ビニル樹脂の水
性分散液と同容量以下であつて、かつ塩化ビニル
樹脂100容量部に対して15容量部以上となるよう
な割合で混合して塩化ビニル樹脂を可塑剤相に移
行せしめた後、水相を分離除去し、次いで塩化ビ
ニル樹脂と可塑剤とを含有する相を乾燥すること
によつて可塑剤含有塩化ビニル樹脂粒状組成物を
回収することよりなり、かつこれらの操作を70℃
以下で行うことを特徴とする粒状塩化ビニル樹脂
組成物の製造方法。
[Scope of Claims] 1. A plasticizer is added to an aqueous dispersion of vinyl chloride resin for paste processing in an amount equal to or less than the same volume as the aqueous dispersion of vinyl chloride resin, and per 100 parts by volume of vinyl chloride resin. After mixing the vinyl chloride resin in a proportion of 15 parts by volume or more to transfer the vinyl chloride resin to the plasticizer phase, separating and removing the aqueous phase, and then drying the phase containing the vinyl chloride resin and the plasticizer. 1. A method for producing a granular vinyl chloride resin composition, which comprises obtaining a granular vinyl chloride resin composition containing a plasticizer, and performing these operations at 70°C or lower. 2 Adding a plasticizer to the aqueous dispersion of vinyl chloride resin for paste processing, the amount used is not more than the same volume as the aqueous dispersion of vinyl chloride resin, and at least 15 parts by volume per 100 parts by volume of vinyl chloride resin. After mixing the vinyl chloride resin in a proportion such that the plasticizer phase is transferred, the aqueous phase is separated and removed, the vinyl chloride resin mixed in the aqueous phase is recovered, and the vinyl chloride resin and plasticizer are combined. A granular vinyl chloride resin composition comprising the steps of: obtaining a plasticizer-containing vinyl chloride resin granular composition by mixing the composition with a phase containing the plasticizer and then drying the composition, and performing these operations at 70°C or lower. Production method. 3 Adding a plasticizer to the aqueous dispersion of vinyl chloride resin for paste processing, the amount used is not more than the same volume as the aqueous dispersion of vinyl chloride resin, and at least 15 parts by volume per 100 parts by volume of vinyl chloride resin. After the vinyl chloride resin is mixed in a proportion such that the plasticizer phase is transferred, the aqueous phase is separated and removed, and the phase containing the vinyl chloride resin and plasticizer is granulated or dried while being granulated. 1. A method for producing a granular vinyl chloride resin composition, which comprises obtaining a granular vinyl chloride resin composition containing a plasticizer by performing the following steps, and performing these operations at 70°C or lower. 4. In the aqueous dispersion of vinyl chloride resin for paste processing, (a) a plasticizer and (b) an organic material that is compatible with the plasticizer, does not substantially dissolve the vinyl chloride resin, and is sparingly soluble in water. Plasticize the vinyl chloride resin by mixing the liquids in a ratio such that the total amount is the same volume or less as the aqueous dispersion of the vinyl chloride resin and 15 parts by volume or more per 100 parts by volume of the vinyl chloride resin. After transferring to the agent phase, the aqueous phase is separated and removed, and then the phase containing the vinyl chloride resin and the plasticizer is dried to recover the plasticizer-containing vinyl chloride resin granular composition, and these operations at 70℃
A method for producing a granular vinyl chloride resin composition, characterized by carrying out the following steps.
JP12984880A 1980-09-18 1980-09-18 Production of particulate vinyl chloride resin composition Granted JPS5755948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12984880A JPS5755948A (en) 1980-09-18 1980-09-18 Production of particulate vinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12984880A JPS5755948A (en) 1980-09-18 1980-09-18 Production of particulate vinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS5755948A JPS5755948A (en) 1982-04-03
JPH0124175B2 true JPH0124175B2 (en) 1989-05-10

Family

ID=15019731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12984880A Granted JPS5755948A (en) 1980-09-18 1980-09-18 Production of particulate vinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS5755948A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120019A (en) * 1983-12-02 1985-06-27 Nippon Zeon Co Ltd Manufacture of polyvinyl chloride polymer particulate matter
JPS60210634A (en) * 1984-04-04 1985-10-23 Toyo Soda Mfg Co Ltd Production of particulate polyvinyl chloride paste resin
JPH0651798B2 (en) * 1985-11-14 1994-07-06 鐘淵化学工業株式会社 Resin granulation method
JP2581322B2 (en) * 1992-03-31 1997-02-12 日本ゼオン株式会社 Method for producing vinyl chloride resin for paste processing
JP2773582B2 (en) * 1992-09-29 1998-07-09 日本ゼオン株式会社 Plastisol coating method
JP2001115097A (en) * 1999-05-11 2001-04-24 Tosoh Corp Additive for treating surface, composition for treating surface, comprising the same, and use thereof

Also Published As

Publication number Publication date
JPS5755948A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US3432483A (en) Continuous process for preparing finely divided polymers
KR100354098B1 (en) Dispersible Carbon Black Pellets
US4977241A (en) Particulate polymer and preparation process thereof
JPH0124175B2 (en)
US5349049A (en) Method of production of polyvinyl chloride resin for paste processing
US4792490A (en) Compacted agglomerates of polymer latex particles
US4604454A (en) Method of recovering vinyl chloride resin
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JPH0134259B2 (en)
JPH0142282B2 (en)
JPS60120019A (en) Manufacture of polyvinyl chloride polymer particulate matter
JPS627430A (en) Method for obtaining aggregate or colloidal particles
JPH0155647B2 (en)
JPS5859249A (en) Plastisol for pasting
JPH0459010B2 (en)
JPS58128112A (en) Flocculating method of latex particle
JP2687537B2 (en) Method for producing vinyl chloride resin
JPS59102906A (en) Recovery of vinyl chloride resin
JPS59109504A (en) Recovery of vinyl chloride resin for processing into paste
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
JP3206067B2 (en) Method for producing granular resin
JPH0463888B2 (en)
JPH0873519A (en) Production of vinyl chloride resin for paste processing
JPS6358854B2 (en)
JPS59155403A (en) Production of thermoplastic resin