JPS6358854B2 - - Google Patents

Info

Publication number
JPS6358854B2
JPS6358854B2 JP16515579A JP16515579A JPS6358854B2 JP S6358854 B2 JPS6358854 B2 JP S6358854B2 JP 16515579 A JP16515579 A JP 16515579A JP 16515579 A JP16515579 A JP 16515579A JP S6358854 B2 JPS6358854 B2 JP S6358854B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
plasticizer
chloride resin
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16515579A
Other languages
Japanese (ja)
Other versions
JPS5686935A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16515579A priority Critical patent/JPS5686935A/en
Priority to DE19803048150 priority patent/DE3048150A1/en
Publication of JPS5686935A publication Critical patent/JPS5686935A/en
Publication of JPS6358854B2 publication Critical patent/JPS6358854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はペースト加工用塩化ビニル樹脂の水分
散液と可塑剤とを混合して水を分離除去すること
によつて塩化ビニル樹脂ペーストゾル(以下、塩
ピゾルという)を製造する方法に関するものであ
る。 塩ピゾルの製造方法としては、重合により得ら
れたペースト加工用塩化ビニル樹脂の水分散液を
例えば噴霧乾燥機により加熱乾燥し、必要に応じ
て更に粉砕して得られた微粉末状樹脂を可塑剤中
に機械的に分散させる方法が一般的である。しか
しながらこの方法においては、加熱乾燥工程で受
ける熱履歴により樹脂の熱安定性が損なわれるば
かりか、熱による不都合な樹脂粒子の合体が起こ
る危険性があり、また、重合時に使用した乳化剤
等の副原料のほとんどが樹脂粉末表面に残存する
ために、最終製品の熱安定性、耐候性、透明性等
を損なうことになる。さらには、樹脂を微粉末状
態で取扱うために、運搬、輸送及び加工時におけ
る微粉末の飛散、付着などによる作業環境の悪化
を伴なうという欠点が避けられ難い。 したがつて本発明の目的は、重合後の塩化ビニ
ル樹脂の加熱乾燥工程を経ることなく、改善され
た作業性を有し、かつ諸特性の優れた最終ペース
ト加工製品を与える塩ピゾルを製造することにあ
る。 本発明のこの目的は、塩化ビニル単量体又は塩
化ビニルを主体とする単量体混合物を水媒体中で
重合して得られるペースト加工用塩化ビニル樹脂
(以下、塩化ビニル樹脂ということがある)を25
〜80重量%含有する水分散液と可塑剤と塩化ビニ
ル樹脂を実質的に溶解させず、かつ該可塑剤と相
溶し得る有機溶剤とを、塩化ビニル樹脂100重量
部当たり、可塑剤20〜1500重量部及び有機溶剤0
〜40重量部となる割合で混合することによつて塩
化ビニル樹脂を可塑剤層又は可塑剤と有機溶剤と
の混合層に移行せしめた後、この層を水層から分
離し、次いで脱水した後、塩ピゾルとして回収す
ることよりなり、かつ、これらの全操作を塩化ビ
ニル樹脂が可塑剤を実質的に吸収しない条件下で
行うことにより達成される。 すなわち本発明は基本的には次の3工程より構
成される。 1 塩化ビニル樹脂の水分散液と可塑剤又は可塑
剤及び有機溶剤(両者を総称する場合、以下、
可塑剤等という)とを混合し、塩化ビニル樹脂
を可塑剤等層に移行せしめる工程。 2 塩化ビニル樹脂を含む可塑剤等層(塩ピゾル
層)を水層から分離する工程。 3 塩ピゾル層中に残存する水分(及び塩ピゾル
成分として不必要ならば有機溶剤も)を除去
し、塩ピゾルを回収する工程。 本発明において用いられるペースト加工用塩化
ビニル樹脂の水分散液は塩化ビニルの単独重合体
又は塩化ビニルを主体とした(通常は70重量%以
上)、これと酢酸ビニル、塩化ビニリデン、エチ
レン、アクリロニトリル、アクリル酸エステル又
はマレイン酸などのオレフイン系単量体との共重
合体の水分散液のことであつて、通常のペースト
加工に供しうるものであれば特に制限されない。
必要に応じて増量用塩化ビニル樹脂を含むことも
できる。水分散液中の塩化ビニル樹脂の含量は25
〜80重量%である。すなわち、重合後の塩化ビニ
ル樹脂の水分散液をその使用すればよいので好都
合であるが、必要ならば一部脱水し、或いは水を
添加して用いることも可能である。ただし25重量
%未満の場合には、生産効率が著しく低下するの
で不適当であり、80重量%を越える場合には、流
動性のある水分散液として存在し得ないために可
塑剤等との混合が困難である。 この塩化ビニル樹脂の水分散液と混合される可
塑剤は、ジオクチルフタレート、ジイソデシルフ
タレート、ジヘプチルフタレート、ジブチルフタ
レート、ブチルベンジルフタレート、ジオクチル
アジペートなどのようなペースト加工に際して用
いられるものであれば特に制限されない。使用量
は塩化ビニル樹脂100重量部当たり20〜1500重量
部の範囲で特に制限されない。可塑剤を多量に使
用する用途においては一般に可塑剤の混合作業に
多大な労力が必要とされるが、本発明によれば極
めて生産効率を向上させることができる。20重量
部未満では加熱溶融時の賦形が困難となり、一方
1500重量部を越えるとペースト加工製品としての
実用的な強度が得られない。 本発明においては、塩化ビニル樹脂を実質的に
溶解せしめず(多少膨潤させるものでもよい)、
かつ可塑剤と相溶しうる有機溶剤を可塑剤と併用
することにより塩化ビニル樹脂を効率よく可塑剤
等層に移行せしめることができる場合がある。そ
の有機溶剤の具体例として脂肪族又は芳香族炭化
水素、ケトン、エステル及びエーテル等が挙げら
れる。使用量は塩化ビニル樹脂100重量部当たり
0〜40重量部である。この有機溶剤は塩ピゾル中
に残存した場合、系の粘度を低下させる作用を有
しているので、可塑剤の使用量が100重量部以下
のような場合に併用すると好適なことがある。た
だしペースト加工時の揮散による環境汚染をもた
らす危険性があるので使用量は40重量部を越えな
いようにすべきである。 本発明の第1工程において、水分散液中の塩化
ビニル樹脂は可塑剤等との接触により可塑剤等層
へ移行するが、この移行が効率よく行われるため
には水分散液と可塑剤等とが十分に混合されるこ
とが必要である。混合機としては、撹拌式槽型混
合機、非撹拌式振とう混合機、非撹拌式塔型混合
機及び管路混合機などが用いられる。 次に、塩化ビニル樹脂を可塑剤等層に移行せし
めることにより得られた塩ピゾル層の水層からの
分離を行う。静置により容易に両層に分離する場
合には通常の沈降分離器を用いればよく、一方、
静置による分離が困難か、長時間を要する場合に
は遠心沈降型の分離器を用いるのが一般的であ
る。また、塩ピゾル層の塩化ビニル樹脂含量が高
く、樹脂が粒状の場合にはスクリーン等による水
層の分離も可能である。 このようにして得られた塩ピゾルはなおかなり
の水分を含んでいるので、そのままペースト加工
に供することは困難である。また、有機溶剤を併
用した場合、それが塩ピゾル成分として不必要又
は障害となるときは有機溶剤の除去が必要とな
る。そこで、回収に先立つて第3工程として通常
は常温付近での真空蒸発法による残存水分及び有
機溶剤の除去が行われる。そのためには、例え
ば、流下薄膜式蒸発缶や撹拌液膜式蒸発缶等と油
回転式ポンプやスチームエジエクター等とを組合
せて使用することができる。 一方、塩ピゾル層と分離された水層には塩化ビ
ニル樹脂が残留している場合があるので、この場
合には、水層を第1又は第2工程へリサイクルす
ることによつて塩化ビニル樹脂の回収率を上げる
ことが望ましい。 なお、本発明により得られる塩ピゾルは塩化ビ
ニル樹脂の可塑剤等中への分散液であつて、塩化
ビニル樹脂が可塑剤等を実質的に吸収していない
ものでなければならない。もしも可塑剤等が塩化
ビニル樹脂に吸収されていると得られた塩ピゾル
の粘度が高くなるため、ペースト加工に供するこ
とができないのである。したがつて、本発明にお
いては、全工程を通じて塩化ビニル樹脂が可塑剤
を吸収しないような条件を選定することが必要で
ある。その主たる条件は温度であつて、全工程を
通じて0〜70℃、好ましくは20〜50℃に保たなけ
ればならない。 かくして得られた本発明の塩ピゾルに、通常の
塩化ビニル樹脂のペースト加工に際して用いられ
る配合剤、例えば熱安定剤、充填剤、顔料、粘度
低下剤及び追加成分としての可塑剤などが適宜混
合されるが、場合によつては、これらの配合剤は
本発明における水層分離後、残存水分除去前の塩
ピゾルに添加することも可能である。 本発明の効果は下記の通りである。 (1) 本発明の塩ピゾルは、従来の塩ピゾルと同様
にペースト加工に供することができる。 (2) 加熱乾燥工程を経ないので、塩化ビニル樹脂
粒子が合体することなく、可塑剤等中に極めて
微細に分散しており、したがつて、加工性が良
好である。例えば薄膜塗布加工においてしばし
ば問題となる筋引き現象も防止できる。 (3) 重合時に使用した乳化剤等の副原料は水層の
分離除去工程で水層側にも分配されるため、本
発明の塩ピゾルは従来の塩ピゾルに比べて副原
料の含量が少なく、したがつて、成形加工時の
熱安定性、成形物の透明性、耐候性が向上す
る。 (4) 塩化ビニル樹脂は乾燥粉末として取り出すこ
とがないので、移送、加工時等における粉体取
り扱いに伴なう作業環境、作業能率の低下を防
止することができる。 なお、本発明は、特公昭26―669号における塩
化ビニル樹脂の水分散液と可塑剤とを混合した
後、水を除去する方法と一見混同されがちかと思
われる。しかしながら、該方法は、加工時の可塑
化時間の短縮を目的として、塩化ビニル樹脂に可
塑剤を十分吸収させた流動性の可塑化粉末を調製
しようとするものである。そのため、可塑化処理
時の温度は塩化ビニル樹脂が極力可塑剤を吸収し
得、なおかつ粉末状で得られうるような温度、す
なわち100℃に近い温度でなければならず、また
十分な可塑化を達成するために重合体に対して6
〜15倍容量もの水を使用することが必要とされ、
さらには、可塑化物の粉末状で得るために、乾燥
工程を経なければならない。そして、塩化ビニル
樹脂の可塑化及び乾燥による熱履歴も本発明にお
けるそれとは比ぶべくもないほど過酷なのであ
る。 また、アメリカ国特許第3067162号の発明は上
記特公昭26―669号の発明における可塑化処理温
度を40〜60℃に下げてはいるが、その代り可塑剤
をエマルジヨンとして添加することによつて、樹
脂粒子への可塑剤の吸収性を向上せしめたものと
解されるので、この発明も、基本的には特公昭26
―669号の発明と同じ技術思想に基づくものであ
る。しかもこのアメリカ特許においては上記の通
り可塑剤がエマルジヨン化されているため、そこ
で用いられた乳化剤等による製品品質への悪影響
を覚悟しなければならない。 このように、これらの公知方法は技術思想、目
的及び構成において本発明方法とは全く異なるも
のなのである。 次に本発明を実施例により説明する。なお配合
剤の部数は塩化ビニル樹脂100重量部当たりの重
量部数のことである。 実施例 1 ペースト加工用塩化ビニル樹脂ラテツクス(樹
脂含量47重量%)250g及びジオクチルフタレー
ト50gを分液漏斗中で常温で30分間振とうさせた
後、2時間静置したところ可塑剤層(塩ピゾル
層)と水層とに分離した。可塑剤層を回収して回
転式蒸発缶と油回転式真空ポンプとにより真空脱
水を行うことによつてジオクチルフタレート60部
を含有する塩ピゾルAが得られた。 この塩ピゾルにCa/Zn系液状熱安定剤を塩化
ビニル樹脂100重量部当たり2重量部添加したも
のをガラス板上に厚さ0.4mmに塗布し、熱風式オ
ーブン中、190℃で10分間加熱したところ透明な
軟質シートが得られた。 実施例 2 ペースト加工用塩化ビニル樹脂ラテツクス(樹
脂含量19重量%)250g及びジオクチルフタレー
ト50gをビーカーに入れ、常温で30分間プロペラ
撹拌機で撹拌した後、そのまま2時間静置したと
ころ、可塑剤層と水層とに分離した。水層を除去
した後、可塑剤層について実施例1と同様の脱水
操作を行つたところ、ジオクチルフタレート150
部を含有する塩ピゾルBが得られた。 この塩ピゾルにCa/Zn系液状熱安定剤1部及
び炭酸カルシウム120部を加えて混練分散させた
後、適当な金型に注入したものを熱風式オーブン
中、110℃で30分間加熱したところ、不透明な字
消しが得られた。 実施例 3 ペースト加工用塩化ビニル樹脂ラテツクス(樹
脂含量47重量%)200g、増量用塩化ビニル樹脂
スラリー(樹脂含量30重量%)50g及びジオクチ
ルフタレート50gをポリエチレン製広口ビンに入
れ、常温で30分間振とう機で振とうさせた後、そ
のまま2時間静置したところ、可塑剤層と水層と
に分離した。水層を除去した後、可塑剤層につい
て実施例1と同様の脱水操作を行つたところ、ジ
オクチルフタレート70部を含有する塩ピゾルCが
得られた。 この塩ピゾルにCa/Zn系液状熱安定化剤を3
部混練分散させた後、230℃で5分間回転成形加
工を行つたところ、半透明の中空成形品が得られ
た。 実施例 4 ペースト加工用塩化ビニル樹脂ラテツクス(樹
脂含量47重量%)250g、ジオクチルフタレート
25g及びブチルベンジルフタレート25gをビーカ
ーに入れ、常温で30分間プロペラ撹拌機で撹拌し
た後、混合物を遠心分離機に導入し、7000r.p.m.
で20分間分離操作を行つたところ、樹脂沈澱層、
可塑剤層及び水層に分離した。水層を除去した
後、沈澱層と可塑剤層とをプロペラ撹拌機で10分
間撹拌して両層を均一化させた後、実施例1と同
様にして脱水を行つたところ、可塑剤合計44部を
含有する塩ピゾルDが得られた。 この塩ピゾルにミネラルスピリツトA(日本石
油化学(株)製)10部及び有機錫系熱安定剤3部を混
練分散させた後、表面を接着剤処理した鋼板上に
厚さ0.2mmに塗布し、遠赤外加熱式コンベアオー
ブンにより210℃で2分間加熱したところ、鋼板
によく密着した被膜が得られた。 実施例 5 実施例1で用いたジオクチルフタレート50gの
代りにジオクチルフタレート40g及びミネラルス
ピリツト10gを用いたほかは実施例1と同様の実
験を行つたところ、両者を合計で55部含有する塩
ピゾルEが得られた。 この塩ピゾルにジブチルフタレート20部、有機
錫系熱安定剤2部及びゲル化剤2部を混練分散さ
せた後、ガラスびん表面に浸漬塗布し、熱風式オ
ーブン中、190℃で15分間加熱したところ、ガラ
スびん表面に透明な保護被膜が形成された。 実施例 6 実施例1で用いたジオクチルフタレートの代り
にジイソデシルフタレートを同量用いて同様の実
験を行つたところ、ジイソデシルフタレート55重
量部を含有する塩ピゾルFが得られた。 参考例 実施例1〜6で得られた塩ピゾルA〜Fの特性
を評価した。その結果を表示する。なお、可塑剤
等をペースト加工用塩化ビニル樹脂粉末に各実施
例におけると同部数添加することによつて調製し
た通常の塩ピゾル(実施例順に対応してa,b,
c,d,e,fという)の特性を併記する。
The present invention relates to a method for producing a vinyl chloride resin paste sol (hereinafter referred to as salt pisol) by mixing an aqueous dispersion of vinyl chloride resin for paste processing with a plasticizer and separating and removing water. . As a method for producing salt pisol, an aqueous dispersion of vinyl chloride resin for paste processing obtained by polymerization is heated and dried using, for example, a spray dryer, and if necessary, the fine powder resin obtained by further pulverization is plasticized. A common method is to mechanically disperse the compound in the agent. However, in this method, not only the thermal stability of the resin is impaired due to the thermal history received in the heat drying process, but also there is a risk of undesirable coalescence of resin particles due to heat. Most of the raw materials remain on the surface of the resin powder, which impairs the thermal stability, weather resistance, transparency, etc. of the final product. Furthermore, since the resin is handled in a fine powder state, it is difficult to avoid the disadvantage that the working environment is deteriorated due to scattering and adhesion of the fine powder during transportation, transportation, and processing. Therefore, an object of the present invention is to produce a salt pisol that has improved workability and provides a final paste processed product with excellent properties without going through the heat drying process of vinyl chloride resin after polymerization. There is a particular thing. This object of the present invention is a vinyl chloride resin for paste processing (hereinafter sometimes referred to as vinyl chloride resin) obtained by polymerizing a vinyl chloride monomer or a monomer mixture mainly composed of vinyl chloride in an aqueous medium. 25
An aqueous dispersion containing ~80% by weight, a plasticizer, and an organic solvent that does not substantially dissolve the vinyl chloride resin and is compatible with the plasticizer, in an amount of 20~80% by weight of the plasticizer per 100 parts by weight of the vinyl chloride resin. 1500 parts by weight and 0 organic solvents
After the vinyl chloride resin is transferred to a plasticizer layer or a mixed layer of a plasticizer and an organic solvent by mixing in a proportion of ~40 parts by weight, this layer is separated from an aqueous layer, and then dehydrated. This is accomplished by recovering the plasticizer as a salt pizol, and performing all of these operations under conditions in which the vinyl chloride resin does not substantially absorb the plasticizer. That is, the present invention basically consists of the following three steps. 1 An aqueous dispersion of vinyl chloride resin and a plasticizer or a plasticizer and an organic solvent (hereinafter, when both are collectively referred to as
A process in which the vinyl chloride resin is mixed with a plasticizer, etc.) and transferred to the plasticizer layer. 2. A step of separating a plasticizer layer containing vinyl chloride resin (salt pisol layer) from the aqueous layer. 3. A step of removing the water remaining in the salt pizol layer (and the organic solvent if unnecessary as a salt pizol component) and recovering the salt pizol. The aqueous dispersion of vinyl chloride resin for paste processing used in the present invention is a homopolymer of vinyl chloride or mainly composed of vinyl chloride (usually 70% by weight or more), along with vinyl acetate, vinylidene chloride, ethylene, acrylonitrile, It refers to an aqueous dispersion of a copolymer with an olefinic monomer such as acrylic acid ester or maleic acid, and is not particularly limited as long as it can be subjected to normal paste processing.
If necessary, a vinyl chloride resin for weight expansion can also be included. The content of vinyl chloride resin in the aqueous dispersion is 25
~80% by weight. That is, it is convenient to use an aqueous dispersion of vinyl chloride resin after polymerization, but it is also possible to partially dehydrate it or add water if necessary. However, if it is less than 25% by weight, it is unsuitable because the production efficiency will drop significantly, and if it exceeds 80% by weight, it cannot exist as a fluid aqueous dispersion, so it cannot be mixed with plasticizers etc. Difficult to mix. The plasticizer to be mixed with the aqueous dispersion of vinyl chloride resin is particularly limited as long as it is used in paste processing, such as dioctyl phthalate, diisodecyl phthalate, diheptyl phthalate, dibutyl phthalate, butylbenzyl phthalate, dioctyl adipate, etc. Not done. The amount used is not particularly limited and is in the range of 20 to 1,500 parts by weight per 100 parts by weight of the vinyl chloride resin. In applications where a large amount of plasticizer is used, a great deal of labor is generally required to mix the plasticizer, but according to the present invention, production efficiency can be greatly improved. If it is less than 20 parts by weight, shaping during heating and melting becomes difficult;
If it exceeds 1500 parts by weight, practical strength as a paste processed product cannot be obtained. In the present invention, the vinyl chloride resin is not substantially dissolved (it may be slightly swollen),
In addition, by using an organic solvent that is compatible with the plasticizer in combination with the plasticizer, it may be possible to efficiently transfer the vinyl chloride resin to the same layer as the plasticizer. Specific examples of the organic solvent include aliphatic or aromatic hydrocarbons, ketones, esters, and ethers. The amount used is 0 to 40 parts by weight per 100 parts by weight of vinyl chloride resin. If this organic solvent remains in the salt pisol, it has the effect of lowering the viscosity of the system, so it may be suitable to use it in combination when the amount of plasticizer used is 100 parts by weight or less. However, since there is a risk of environmental pollution due to volatilization during paste processing, the amount used should not exceed 40 parts by weight. In the first step of the present invention, the vinyl chloride resin in the aqueous dispersion transfers to the plasticizer layer by contact with the plasticizer, etc., but in order for this transfer to occur efficiently, the aqueous dispersion and the plasticizer etc. It is necessary that these are sufficiently mixed. As the mixer, a stirring tank mixer, a non-stirring shaking mixer, a non-stirring tower mixer, a pipe mixer, etc. are used. Next, the salt pisol layer obtained by transferring the vinyl chloride resin to the plasticizer layer is separated from the aqueous layer. If the two layers can be easily separated by standing still, a normal sedimentation separator may be used;
When separation by standing still is difficult or requires a long time, a centrifugal sedimentation type separator is generally used. Furthermore, if the salt pizol layer has a high vinyl chloride resin content and the resin is granular, it is also possible to separate the aqueous layer using a screen or the like. Since the salt pisol thus obtained still contains a considerable amount of water, it is difficult to use it as is for paste processing. Further, when an organic solvent is used in combination, if it is unnecessary or becomes a nuisance as a salt pisol component, it is necessary to remove the organic solvent. Therefore, as a third step prior to recovery, residual moisture and organic solvent are usually removed by vacuum evaporation at around room temperature. For this purpose, for example, a falling film evaporator, a stirring liquid film evaporator, or the like can be used in combination with an oil rotary pump, a steam ejector, or the like. On the other hand, vinyl chloride resin may remain in the water layer separated from the salt pizol layer, so in this case, the vinyl chloride resin can be removed by recycling the water layer to the first or second step. It is desirable to increase the recovery rate. The salt pisol obtained by the present invention must be a dispersion of vinyl chloride resin in a plasticizer, etc., and the vinyl chloride resin must not substantially absorb the plasticizer, etc. If plasticizers and the like are absorbed into the vinyl chloride resin, the viscosity of the resulting salt pisol will increase, making it impossible to use it for paste processing. Therefore, in the present invention, it is necessary to select conditions such that the vinyl chloride resin does not absorb the plasticizer throughout the entire process. The main condition is temperature, which must be maintained at 0-70°C, preferably 20-50°C throughout the entire process. The thus obtained salt pisol of the present invention is appropriately mixed with compounding agents used in conventional paste processing of vinyl chloride resin, such as heat stabilizers, fillers, pigments, viscosity reducers, and plasticizers as additional components. However, in some cases, these compounding agents can be added to the salt pisol after separation of the aqueous layer in the present invention but before removal of residual water. The effects of the present invention are as follows. (1) The salt pisol of the present invention can be subjected to paste processing in the same manner as conventional salt pisol. (2) Since there is no heat drying process, the vinyl chloride resin particles do not coalesce and are extremely finely dispersed in the plasticizer, etc., and therefore have good processability. For example, it is possible to prevent the streaking phenomenon that is often a problem in thin film coating processing. (3) Since auxiliary raw materials such as emulsifiers used during polymerization are also distributed to the aqueous layer side during the separation and removal process of the aqueous layer, the salt pisol of the present invention has a lower content of auxiliary raw materials than conventional salt pisol, Therefore, the thermal stability during molding, the transparency and weather resistance of the molded product are improved. (4) Since vinyl chloride resin is not taken out as a dry powder, it is possible to prevent the working environment and working efficiency from deteriorating due to powder handling during transportation, processing, etc. At first glance, the present invention may be confused with the method disclosed in Japanese Patent Publication No. 26-669, in which an aqueous dispersion of vinyl chloride resin and a plasticizer are mixed and then water is removed. However, this method attempts to prepare a fluid plasticized powder in which a plasticizer is sufficiently absorbed into a vinyl chloride resin for the purpose of shortening the plasticization time during processing. Therefore, the temperature during the plasticization treatment must be such that the vinyl chloride resin can absorb as much plasticizer as possible and still be able to obtain it in powder form, that is, at a temperature close to 100°C. 6 for polymers to achieve
It is required to use ~15 times the volume of water;
Furthermore, in order to obtain the plasticized product in powder form, a drying process must be performed. Moreover, the thermal history due to plasticization and drying of the vinyl chloride resin is incomparably more severe than that in the present invention. Furthermore, the invention of U.S. Patent No. 3,067,162 lowers the plasticizing temperature to 40 to 60°C in the invention of Japanese Patent Publication No. 26-669, but instead adds a plasticizer as an emulsion. It is understood that this invention improves the absorption of plasticizer into resin particles, so this invention is also basically based on the
- It is based on the same technical idea as the invention of No. 669. Moreover, in this US patent, the plasticizer is emulsionized as described above, so one must be prepared for the adverse effects of the emulsifier used thereon on product quality. As described above, these known methods are completely different from the method of the present invention in terms of technical idea, purpose, and structure. Next, the present invention will be explained by examples. Note that the number of parts of the compounding agent is the number of parts by weight per 100 parts by weight of the vinyl chloride resin. Example 1 250 g of vinyl chloride resin latex for paste processing (resin content 47% by weight) and 50 g of dioctyl phthalate were shaken at room temperature for 30 minutes in a separatory funnel, and then left to stand for 2 hours. layer) and an aqueous layer. The plasticizer layer was collected and vacuum dehydrated using a rotary evaporator and an oil rotary vacuum pump to obtain salt Pisol A containing 60 parts of dioctyl phthalate. A mixture of 2 parts by weight of a Ca/Zn-based liquid heat stabilizer per 100 parts by weight of vinyl chloride resin was added to this salt pizol and applied onto a glass plate to a thickness of 0.4 mm, and heated in a hot air oven at 190°C for 10 minutes. As a result, a transparent soft sheet was obtained. Example 2 250 g of vinyl chloride resin latex for paste processing (resin content 19% by weight) and 50 g of dioctyl phthalate were placed in a beaker, stirred with a propeller stirrer for 30 minutes at room temperature, and then left to stand for 2 hours, resulting in a plasticizer layer. and an aqueous layer. After removing the aqueous layer, the plasticizer layer was dehydrated in the same manner as in Example 1.
A salt pisol B was obtained containing 50%. After adding 1 part of Ca/Zn-based liquid heat stabilizer and 120 parts of calcium carbonate to this salt pisol and kneading and dispersing it, the mixture was poured into a suitable mold and heated at 110°C for 30 minutes in a hot air oven. , an opaque eraser was obtained. Example 3 200 g of vinyl chloride resin latex for paste processing (resin content 47% by weight), 50 g of vinyl chloride resin slurry for bulking (resin content 30% by weight), and 50 g of dioctyl phthalate were placed in a wide-mouthed polyethylene bottle and shaken at room temperature for 30 minutes. After shaking with a shaker, the mixture was allowed to stand for 2 hours, and was separated into a plasticizer layer and an aqueous layer. After removing the aqueous layer, the plasticizer layer was subjected to the same dehydration operation as in Example 1 to obtain salt Pisol C containing 70 parts of dioctyl phthalate. Add 3 parts of Ca/Zn liquid thermal stabilizer to this salt pizole.
After partial kneading and dispersion, rotational molding was performed at 230°C for 5 minutes to obtain a translucent hollow molded product. Example 4 250 g of vinyl chloride resin latex for paste processing (resin content 47% by weight), dioctyl phthalate
Put 25g and 25g of butylbenzyl phthalate into a beaker and stir with a propeller stirrer for 30 minutes at room temperature, then introduce the mixture into a centrifuge and stir at 7000rpm.
When the separation operation was performed for 20 minutes, a resin precipitate layer,
It was separated into a plasticizer layer and an aqueous layer. After removing the aqueous layer, the precipitate layer and the plasticizer layer were stirred for 10 minutes using a propeller stirrer to make both layers homogeneous, and dehydration was performed in the same manner as in Example 1. The total amount of plasticizer was 44. A salt Pisol D was obtained containing 50%. After kneading and dispersing 10 parts of Mineral Spirit A (manufactured by Nippon Petrochemical Co., Ltd.) and 3 parts of an organic tin-based heat stabilizer in this salt pizol, it was applied to a thickness of 0.2 mm on a steel plate whose surface had been treated with an adhesive. When heated at 210°C for 2 minutes in a far-infrared heating conveyor oven, a film that adhered well to the steel plate was obtained. Example 5 An experiment similar to Example 1 was conducted except that 40 g of dioctyl phthalate and 10 g of mineral spirits were used instead of the 50 g of dioctyl phthalate used in Example 1, and a salt pisol containing a total of 55 parts of both was obtained. E was obtained. After kneading and dispersing 20 parts of dibutyl phthalate, 2 parts of an organic tin-based heat stabilizer, and 2 parts of a gelling agent in this salt pisol, it was applied by dip coating onto the surface of a glass bottle, and heated in a hot air oven at 190°C for 15 minutes. However, a transparent protective film was formed on the surface of the glass bottle. Example 6 A similar experiment was conducted using the same amount of diisodecyl phthalate in place of the dioctyl phthalate used in Example 1, and a salt Pisol F containing 55 parts by weight of diisodecyl phthalate was obtained. Reference Example The characteristics of the salt pisols A to F obtained in Examples 1 to 6 were evaluated. Display the results. In addition, ordinary salt pisol prepared by adding plasticizer etc. to the vinyl chloride resin powder for paste processing in the same parts as in each example (corresponding to the order of examples, a, b,
c, d, e, f) are also listed.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル単量体又は塩化ビニルを主体とす
る単量体混合物を水媒体中で重合して得られるペ
ースト加工用塩化ビニル樹脂を25〜80重量%含有
する水分散液と可塑剤と塩化ビニル樹脂を実質的
に溶解させず、かつ該可塑剤と相溶し得る有機溶
剤とを、塩化ビニル樹脂100重量部当たり、可塑
剤20〜1500重量部及び有機溶剤0〜40重量部とな
る割合で混合することによつて塩化ビニル樹脂を
可塑剤層又は可塑剤と有機溶剤との混合層に移行
せしめた後、この層を水層から分離し次いで脱水
した後、塩化ビニル樹脂ペーストゾルとして回収
することよりなり、かつ、これらの全操作を塩化
ビニル樹脂が可塑剤を実質的に吸収しない条件下
で行うことを特徴とする塩化ビニル樹脂ペースト
ゾルの製造方法。
1 An aqueous dispersion containing 25 to 80% by weight of a vinyl chloride resin for paste processing obtained by polymerizing a vinyl chloride monomer or a monomer mixture mainly composed of vinyl chloride in an aqueous medium, a plasticizer, and vinyl chloride. An organic solvent that does not substantially dissolve the resin and is compatible with the plasticizer in a ratio of 20 to 1,500 parts by weight of the plasticizer and 0 to 40 parts by weight of the organic solvent per 100 parts by weight of the vinyl chloride resin. After the vinyl chloride resin is transferred to a plasticizer layer or a mixed layer of plasticizer and organic solvent by mixing, this layer is separated from the water layer and then dehydrated, and then recovered as a vinyl chloride resin paste sol. A method for producing a vinyl chloride resin paste sol, characterized in that all of these operations are carried out under conditions in which the vinyl chloride resin does not substantially absorb a plasticizer.
JP16515579A 1979-12-19 1979-12-19 Production of vinyl chloride resin paste sol Granted JPS5686935A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16515579A JPS5686935A (en) 1979-12-19 1979-12-19 Production of vinyl chloride resin paste sol
DE19803048150 DE3048150A1 (en) 1979-12-19 1980-12-19 Polyvinyl chloride resin paste soln. prepn. - by mixing aq. dispersion of PVC resin in plasticiser-solvent mixt., then sepg. and dehydrating resin layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16515579A JPS5686935A (en) 1979-12-19 1979-12-19 Production of vinyl chloride resin paste sol

Publications (2)

Publication Number Publication Date
JPS5686935A JPS5686935A (en) 1981-07-15
JPS6358854B2 true JPS6358854B2 (en) 1988-11-17

Family

ID=15806910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16515579A Granted JPS5686935A (en) 1979-12-19 1979-12-19 Production of vinyl chloride resin paste sol

Country Status (2)

Country Link
JP (1) JPS5686935A (en)
DE (1) DE3048150A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141441A (en) * 1981-02-27 1982-09-01 Mitsubishi Monsanto Chem Co Production of paste sol
JPS5912956A (en) * 1982-07-14 1984-01-23 Mitsubishi Monsanto Chem Co Manufacture of polyvinyl chloride resin composition

Also Published As

Publication number Publication date
DE3048150A1 (en) 1981-09-10
JPS5686935A (en) 1981-07-15

Similar Documents

Publication Publication Date Title
JP2703155B2 (en) Method of manufacturing putty by treating automotive paint sludge and putty
US3813259A (en) Preparation of resin encapsulated crumb rubber
US4423178A (en) Plasticizers for vinyl chloride polymers
DE60114115T2 (en) High solids bimodal polymer additive compositions, process for their preparation and their use
US3244687A (en) Process for the production of dry, finely divided and fusible polyethylene powders
JPS6358854B2 (en)
US5349049A (en) Method of production of polyvinyl chloride resin for paste processing
US2379236A (en) Plasticization of plastics
JPS6121485B2 (en)
JPS61264005A (en) Recovery of polymer from polymer latex
JP2007039479A (en) Method for treating vinyl chloride resin waste and recycled vinyl chloride resin
US5231125A (en) Method of preparation of vinyl chloride resin plastisol
US2148062A (en) Method of forming polyvinyl acetal resin sheets
US2668801A (en) Coating composition comprising a vinyl chloride polymer dispersed in a mixture of plasticizer and an alkyl ether of a mono- or diethylene glycol
JPS6094409A (en) Recovery of vinyl chloride resin
JPH0124175B2 (en)
US2291697A (en) Method for making plastic compositions
JPS6031214B2 (en) Hydrolyzed ethylene/vinyl acetate copolymer in powder form
US3067162A (en) Method of forming uniform-sized plasticized resin granules and resulting product
JPH0240089B2 (en) ENKABINIRUJUSHINOKAISHUHOHO
USRE22812E (en) Plasticization of plastics
DE2149820B2 (en) Process for the preparation of polymers in powder form from aqueous polymer dispersions
US2996478A (en) Polyvinyl fluoride resins stabilized with an alkali metal formate
JP2007070383A (en) Method of treatment of vinyl chloride-based resin product and vinyl chloride-based resin composition obtained by the method of treatment
JPH0143785B2 (en)