JPH01241753A - Sealed type clad type lead storage battery - Google Patents

Sealed type clad type lead storage battery

Info

Publication number
JPH01241753A
JPH01241753A JP63069015A JP6901588A JPH01241753A JP H01241753 A JPH01241753 A JP H01241753A JP 63069015 A JP63069015 A JP 63069015A JP 6901588 A JP6901588 A JP 6901588A JP H01241753 A JPH01241753 A JP H01241753A
Authority
JP
Japan
Prior art keywords
antimony
positive electrode
lead
active substance
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63069015A
Other languages
Japanese (ja)
Other versions
JPH0787095B2 (en
Inventor
Katsuto Takahashi
克仁 高橋
Masaaki Shiomi
塩見 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63069015A priority Critical patent/JPH0787095B2/en
Publication of JPH01241753A publication Critical patent/JPH01241753A/en
Publication of JPH0787095B2 publication Critical patent/JPH0787095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the service life property in the charge and discharge cycle including a deep discharge by using a lead alloy including a low density of antimony as the positive electrode grid body, and increasing the thickness of an active substance layer around the grid body. CONSTITUTION:As a positive electrode grid body, a lead binary alloy or a lead plural alloy including 1.0-3.0wt.% of antimony is used, and the thickness of an active substance layer around the positive electrode grid body is made 3.3mm or more. The lead dioxide being the positive electrode active substance adsorbs the antimony, and functions to prevent the movement of the antimony to the negative electrode plate. As a result, by suppressing the melting-out of the antimony from the grid body, and by increasing the thickness of the positive electrode active substance to increase the capacity of the positive electrode active substance to adsorb the antimony, that is, to increase the capacity of the positive electrode active substance to adsorb the antimony layer more than the melting-out amount of the antimony, the antimony is prevented from reaching to the negative electrode plate, and the hydrogen over voltage is never deteriorated. Consequently, even though the battery is used for a repeating charge and discharge including a deep discharge, an excellent cycle life can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は深い充放電を繰り返し行う、いわゆるサイクル
サービス用途で使用される密閉式鉛蓄電池の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed lead-acid batteries used in so-called cycle service applications in which deep charging and discharging are repeated.

従来の技術とその課題 密閉式j9蓄電池は深い放電を含む充放電サイクルでは
著しく寿命が短くなることが知られている。
Prior art and its problems It is known that sealed J9 storage batteries have a significantly shortened lifespan during charge/discharge cycles that include deep discharge.

これは密閉式鉛蓄電池ではアンチモンを含有しない格子
体が使用されており、この様な格子体を用いた正極板の
深放電での耐久性が著しく劣るためである。一方、アン
チモンを含有する格子体を使用すれば、深放電での耐久
性には問題はないが正極格子体から溶出するアンチモン
のために負極板の水素過電圧が低下し、水素発生による
電解液(水)の分解のなめ、寿命が短くなるという開門
が起こる。このなめフォークリフト用などの深い充放電
が繰り返される用途に対して満足な寿命性能を有する密
閉形電池はいまだ無いというのが現状である。
This is because sealed lead-acid batteries use lattice bodies that do not contain antimony, and the durability of positive electrode plates using such lattice bodies during deep discharge is significantly inferior. On the other hand, if a lattice containing antimony is used, there is no problem with durability in deep discharge, but the hydrogen overvoltage of the negative electrode plate decreases due to the antimony eluted from the positive electrode lattice, and the electrolyte (due to hydrogen generation) Water) decomposes, leading to a shortened lifespan. The current situation is that there is currently no sealed battery that has a satisfactory lifespan for applications where deep charging and discharging are repeated, such as for forklifts.

課題を解決するための手段 本発明は正極格子体に低濃度のアンチモンを含有する鉛
合金を使用し、かつ該格子体を取り囲む活物質層を厚く
することによって、上記したような従来の問題点を解消
し、深い放電を含む充放電サイクルでの寿命性能の優れ
た密閉式鉛蓄電池を提供しようとするものである。
Means for Solving the Problems The present invention solves the above-mentioned conventional problems by using a lead alloy containing a low concentration of antimony in the positive electrode grid and increasing the thickness of the active material layer surrounding the grid. The purpose of the present invention is to provide a sealed lead-acid battery that has excellent service life performance in charge-discharge cycles including deep discharge.

作用 負極の水素過電圧の低下は既に述べたようにアンチモン
に起因するものであるが、これは次のような現ゑによる
ものである。正極格子体が腐食されると、その格子体中
のアンチモンも酸化アンチモンとなる。この酸化アンチ
モンは希硫酸に溶解し易く、3価や5価のイオンや化合
物となって格子体近傍の電解液中に存在する。これらは
拡散や泳動によって正極活物質中のボア内を通ってバル
クの電解液に達し、ついには負極板に到達してその表面
に電析する。これが水素過電圧を低下させる原因となる
。しかるに正極活物質である二酸化鉛はアンチモンを吸
着し、アンチモンの負極板への移動を阻止する作用があ
る。したがって格子体からのアンチモンの溶出を抑える
と共に、正極活物質層を厚くすることにより正極活物質
がアンチモンを吸着する能力を増やせば即ちアンチモン
の溶出量より正極活物質によるアンチモンの吸着能力を
大きくすれば負極板へアンチモンが到達することを阻止
でき水素過電圧を低下させることはない。
As mentioned above, the decrease in hydrogen overvoltage of the working negative electrode is caused by antimony, and this is due to the following circumstances. When the positive electrode lattice is corroded, the antimony in the lattice also turns into antimony oxide. This antimony oxide is easily dissolved in dilute sulfuric acid, and exists in the electrolytic solution near the lattice body as trivalent or pentavalent ions or compounds. These particles pass through the bore in the positive electrode active material by diffusion and migration, reach the bulk electrolyte, and finally reach the negative electrode plate and are deposited on its surface. This causes the hydrogen overvoltage to decrease. However, lead dioxide, which is a positive electrode active material, has the effect of adsorbing antimony and preventing antimony from migrating to the negative electrode plate. Therefore, by suppressing the elution of antimony from the lattice and increasing the thickness of the positive electrode active material layer, the antimony adsorption ability of the positive electrode active material can be made larger than the amount of antimony eluted. This prevents antimony from reaching the negative electrode plate and does not reduce the hydrogen overvoltage.

実施例 そこで、正極活物M層厚や正極格子体中のアンチモン濃
度と寿命性能との関係について次のような実験を行った
Example The following experiment was conducted to examine the relationship between the thickness of the positive electrode active material M layer, the antimony concentration in the positive electrode lattice, and the life performance.

実@1.アンチモンの濃度が3.Owt%の釦−アンチ
モン合金格子体を用いて活物質層厚が2.7゜2.9 
、3.1 、3.3 、3.5および3.7vyのクラ
ッド式正極板を常法に従い製作し、これと鉛−カルシウ
ム合金格子体から成る負極板とを用いて電池を構成した
。これにシリカ微粒子と希硫酸とから成るゲル状電解液
を注入し、ゲルタイプの密閉形電池として試験に供した
。試験は電池を1.70Vまで放電し、その後2.40
Vの定電圧で充電するという条件で行い、それぞれの電
池の放電容量が初期の80%に達するまで充放電を繰り
返した。また、この時点で電池を解体し、負極活物質中
のアンチモンの濃度を分析した。放電容量が初期の80
%に達した時点のサイクル数や負極活物質中のアンチモ
ン濃度と正極活物質層厚との関係を第1図に示す。
Fruit @1. The concentration of antimony is 3. Using Owt% button-antimony alloy lattice, the active material layer thickness is 2.7°2.9
, 3.1, 3.3, 3.5, and 3.7vy were manufactured according to a conventional method, and a battery was constructed using these and a negative electrode plate made of a lead-calcium alloy lattice. A gel electrolyte consisting of fine silica particles and dilute sulfuric acid was injected into this, and the battery was tested as a gel-type sealed battery. The test was to discharge the battery to 1.70V and then to 2.40V.
Charging was carried out under the condition of charging at a constant voltage of V, and charging and discharging were repeated until the discharge capacity of each battery reached 80% of the initial value. At this point, the battery was disassembled and the concentration of antimony in the negative electrode active material was analyzed. The initial discharge capacity is 80
%, the relationship between the number of cycles, the antimony concentration in the negative electrode active material, and the thickness of the positive electrode active material layer is shown in FIG.

第1図から、正極活物質層厚が2.7〜3.111+1
の範囲では、活物質層が厚くなるに従って寿命は長くな
るが、寿命に達した時点での負極活物質中のアンチモン
濃度はほぼ一定(約140ppl)であることがわかる
、この結果は負極活物質中のアンチモン濃度が140p
pn程度まで高くなると、アンチモンのために負極板の
水素過電圧が著しく低下し、充電効率の低下と水素発生
による電解液°の分解のなめ、寿命が短くなったことを
示している。実際、これらの電池では減液量が著しく大
であった。すなわち、これらの電池では負極板へのアン
チモンの析出により短寿命となったといえる。
From Figure 1, the positive electrode active material layer thickness is 2.7 to 3.111+1
It can be seen that in the range of The antimony concentration inside is 140p.
When the temperature rises to about pn, the hydrogen overvoltage of the negative electrode plate decreases significantly due to antimony, indicating a decrease in charging efficiency and decomposition of the electrolyte due to hydrogen generation, resulting in a shortened lifespan. In fact, the amount of liquid loss in these batteries was significantly large. In other words, it can be said that the lifespan of these batteries was shortened due to the precipitation of antimony on the negative electrode plate.

一方、正極活物質層厚が3.3nIm以上の範囲では寿
命に達した時点での負極活物質中のアンチモン濃度は、
140ppnに達しておらず、3.1nm以下の場合に
比べて著しく少なく寿命性能も良い、すなわち、格子体
のアンチモン濃度が3.Owt%の場合には正極活’I
’!IN質層厚を3.3 In以上にすることにより、
負極板へのアンチモンの析出を阻止できた結果、クラッ
ド式電池本来の寿命特性を発揮でき、長寿命を達成し得
たと考えられる。
On the other hand, when the positive electrode active material layer thickness is in a range of 3.3 nIm or more, the antimony concentration in the negative electrode active material at the end of its life is
The antimony concentration of the lattice body is less than 140 ppn, which is significantly lower than that of 3.1 nm or less, and the lifetime performance is also good. In the case of Owt%, the positive electrode active 'I
'! By setting the IN layer thickness to 3.3 In or more,
It is thought that as a result of being able to prevent the precipitation of antimony on the negative electrode plate, the original life characteristics of a clad type battery could be exhibited and a long life could be achieved.

実Il&!2 、次にアンチモン濃度が1.0 、2.
0 。
Really &! 2, then the antimony concentration is 1.0, 2.
0.

3.0 、4.0および5.0wt%の鉛−アンチモン
合金格子体を用いて活物質層厚が303111のクラッ
ド式正極板を常法に従い製作し、これと鉛−カルシウム
合金格子体から成る負極板とを用いて電池を構成した。
A clad positive electrode plate with an active material layer thickness of 303111 was manufactured using a lead-antimony alloy grid of 3.0, 4.0, and 5.0 wt% according to a conventional method, and was composed of this and a lead-calcium alloy grid. A battery was constructed using the negative electrode plate.

これにシリカ微粒子と希硫酸とから成るゲル状電解液を
注入し、ゲルタイプの密閉形電池として、実験1と同様
の試験を行った。放電容量が初期の80%に達した時点
のサイクル数やその時点における負極活物質中のアンチ
モン濃度と格子中のアンチモン濃度との関係を第2図に
示す。
A gel electrolyte consisting of fine silica particles and dilute sulfuric acid was injected into this, and the same test as in Experiment 1 was conducted as a gel type sealed battery. FIG. 2 shows the number of cycles at which the discharge capacity reached 80% of the initial value and the relationship between the antimony concentration in the negative electrode active material and the antimony concentration in the lattice at that point.

なお、第2図には比敦のために正極に鉛−カルシウム合
金格子体すなわちアンチモンを含まない格子体を用いた
ゲルタイプの密閉電池の結果も併せて示す。
For comparison purposes, FIG. 2 also shows the results of a gel-type sealed battery using a lead-calcium alloy lattice, that is, a lattice containing no antimony, for the positive electrode.

この図から、格子体中のアンチモンの濃度が1〜3wt
%の範囲ではアンチモンの濃度が高くなるほど寿命は長
くなるのに対し、3wt%を超えると逆に寿命が短くな
るのがわかる。格子体中のアンチモンの濃度が3wt%
を超える電池では寿命となった時点の負極活物質中の濃
度は140ppnを超えており、これが寿命の原因と考
えられる。この結果は活物質層厚を3.31にしてら格
子体中のアンチモン濃度が3.0wt%を超えておれば
その効果のないことを示している。また、鉛−カルシウ
ム合金格子体と鉛−アンチモン合金格子体とを比較する
と、格子体中のアンチモン濃度が1〜3wt%の範囲で
あれば寿命性能は明らかに後者の方が著しく潰れている
From this figure, the concentration of antimony in the lattice is 1 to 3 wt.
% range, the higher the antimony concentration, the longer the lifespan becomes, whereas when it exceeds 3wt%, the lifespan becomes shorter. The concentration of antimony in the lattice is 3wt%
In batteries exceeding 140 ppn, the concentration in the negative electrode active material at the end of its life exceeds 140 ppn, which is considered to be the cause of the short life. This result shows that if the active material layer thickness is 3.31 and the antimony concentration in the lattice exceeds 3.0 wt%, there is no effect. Further, when comparing a lead-calcium alloy lattice body and a lead-antimony alloy lattice body, it is clear that the latter has a significantly lower life performance when the antimony concentration in the lattice body is in the range of 1 to 3 wt%.

これらの実験から、正極格子体のアンチモン濃度を1〜
3wt%とし、かつ、正極活物質層厚を3.3+ua以
上とすることにより、深い放電を含む充放電に対して優
れた寿命性能が得られることがわかる。なお、本実施例
では鉛−アンチモン三元合金を例にとって説明したが、
一般に鉛電池の格子体に添加される元素、例えばスズや
ヒ素などの元素が少量含まれているような格子体におい
ても本発明による効果は変わることはない。
From these experiments, it was found that the antimony concentration in the positive electrode lattice was 1 to 1.
It can be seen that by setting the positive electrode active material layer thickness to 3 wt % and setting the thickness of the positive electrode active material layer to 3.3+ua or more, excellent life performance can be obtained for charging and discharging including deep discharge. In addition, in this example, explanation was given using a lead-antimony ternary alloy as an example.
The effects of the present invention do not change even in a lattice body containing a small amount of elements that are generally added to the lattice body of a lead-acid battery, such as tin or arsenic.

発明の効果 以上述べたように本発明密閉式クラッド式鉛蓄電池では
深い放電を含む充放電を繰り返すような用途で使用して
も優れたサイクル寿命が得られるという利点を有する。
Effects of the Invention As described above, the sealed clad lead-acid battery of the present invention has the advantage of providing excellent cycle life even when used in applications that involve repeated charging and discharging, including deep discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は寿命サイクル数およびその時点における負極活
物質中のアンチモン濃度と正極活物質層厚との関係を示
す図、第2図は寿命サイクル数およびその時点における
負極活物質中のアンチモン濃度と正極格子体中のアンチ
モン濃度との関係を示す図である。 健rなゴ クーし茎                
、。 o   g   (′   ;   品電柘脂V戸i中
f>7〉子もン去Rgyヮ、チ己6p龜r丁丁 ’7t
L政
Figure 1 shows the relationship between the number of life cycles, the antimony concentration in the negative electrode active material at that point, and the layer thickness of the positive electrode active material, and Figure 2 shows the relationship between the number of life cycles and the antimony concentration in the negative electrode active material at that point. FIG. 3 is a diagram showing the relationship with antimony concentration in a positive electrode lattice body. A healthy stem
,. o g (';品矘fatVtoi中f>7〉子もん Gandrordda, Chichi 6p龜r dingding '7t
L government

Claims (1)

【特許請求の範囲】[Claims] 1、電解液にシリカ微粒子と希硫酸とからなるゲル状電
解液を用いたクラッド式鉛蓄電池において、正極格子体
に1.0〜3.0重量%のアンチモンを含有する鉛二元
または鉛多元合金を使用し、かつ該正極格子体を取り囲
む活物質層の厚さを303mm以上にすることを特徴と
する密閉形クラッド式鉛蓄電池。
1. In a clad lead-acid battery using a gel electrolyte consisting of silica particles and dilute sulfuric acid, the positive electrode grid contains lead binary or lead multi-component containing 1.0 to 3.0% by weight of antimony. A sealed clad lead-acid battery characterized by using an alloy and having an active material layer surrounding the positive electrode grid having a thickness of 303 mm or more.
JP63069015A 1988-03-23 1988-03-23 Sealed clad lead acid battery Expired - Lifetime JPH0787095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069015A JPH0787095B2 (en) 1988-03-23 1988-03-23 Sealed clad lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069015A JPH0787095B2 (en) 1988-03-23 1988-03-23 Sealed clad lead acid battery

Publications (2)

Publication Number Publication Date
JPH01241753A true JPH01241753A (en) 1989-09-26
JPH0787095B2 JPH0787095B2 (en) 1995-09-20

Family

ID=13390341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069015A Expired - Lifetime JPH0787095B2 (en) 1988-03-23 1988-03-23 Sealed clad lead acid battery

Country Status (1)

Country Link
JP (1) JPH0787095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579863U (en) * 1992-03-30 1993-10-29 株式会社ユアサコーポレーション Clad sealed lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579863U (en) * 1992-03-30 1993-10-29 株式会社ユアサコーポレーション Clad sealed lead acid battery

Also Published As

Publication number Publication date
JPH0787095B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5556720A (en) Sealed zinc secondary battery and zinc electrode therefor
JP4444373B2 (en) Lead-acid battery paste having a tin compound and its production and use
JP2017004963A (en) Control valve type lead-acid storage battery
US3639176A (en) Zinc electrode containing an additive to reduce gassing at the zinc electrode in a heat sterilized silver-zinc alkaline battery
JPH10188963A (en) Sealed lead-acid battery
JPH01241753A (en) Sealed type clad type lead storage battery
US3580740A (en) Zinc electrode containing lead sulfide to reduce gassing at the zinc electrode in heat sterilized silver zinc alkaline battery
JPH042060A (en) Sealed type lead acid battery
KR870000967B1 (en) Sealed deep-cycle lead acid battery
JPH01241752A (en) Sealed type clad type lead storage battery
JP2995780B2 (en) Sealed lead-acid battery
JPH0542114B2 (en)
JPH06283191A (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPS6142868A (en) Nonaqueous electrolyte battery
JPH10106576A (en) Sealed lead-acid battery
JPS58123658A (en) Sealed lead storage battery
JPH05314983A (en) Manufacture of alkaline storage battery
JPH06283190A (en) Sealed lead-acid battery
JPH02119054A (en) Sealed lead-acid battery
JPH10106572A (en) Sealed lead-acid battery
JPH0676814A (en) Negative electrode plate for sealed lead-acid battery
JPH04337256A (en) Sealed lead-acid battery
JPS62208566A (en) Sealed lead-acid battery