JPH01241750A - Lithium storage battery - Google Patents

Lithium storage battery

Info

Publication number
JPH01241750A
JPH01241750A JP63068869A JP6886988A JPH01241750A JP H01241750 A JPH01241750 A JP H01241750A JP 63068869 A JP63068869 A JP 63068869A JP 6886988 A JP6886988 A JP 6886988A JP H01241750 A JPH01241750 A JP H01241750A
Authority
JP
Japan
Prior art keywords
battery
gas
lithium
container
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63068869A
Other languages
Japanese (ja)
Inventor
Kinya Suzuki
欽也 鈴木
Masao Ogawa
雅男 小川
Katsuhiko Arai
克彦 新井
Yoshitomo Masuda
善友 増田
Tadashi Fuse
布施 正
Tetsuro Amano
天野 哲朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP63068869A priority Critical patent/JPH01241750A/en
Priority to US07/269,449 priority patent/US4939050A/en
Priority to DE3838575A priority patent/DE3838575A1/en
Publication of JPH01241750A publication Critical patent/JPH01241750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PURPOSE:To make it possible to improve the sealing property in the normal condition and to exhaust the gas in the battery securely to the outside in the abnormal condition by forming a thin part less than the area 20mm<2> at a part of a battery container. CONSTITUTION:At a part of a battery container 3, a thin part 4 is provided. As the method of forming the thin part 4, a thickness cutting process in a drilling or the like at the part of the battery container 3, and a thin part forming method with a heat source of laser beams or the like, for example, are available. In this case, the area and the thickness of the part 4 are set adequately depending on the material (the breakdown strength of the material) and the set pressure, but the area is made less than 20mm<2>. As a result, the sealing property in the normal condition is increased, and the gas in the battery can be exhausted out of the battery when the battery inner pressure reaches the preset value in the abnormal condition, that is, the battery inner pressure rises abnormally following the generation of gas in the battery. A trouble of exposing the electrode to the outside and the like can be prevented consequently.

Description

【発明の詳細な説明】 童果上例■且分災 本発明は、電池内の化学反応によるガス発生に供なう電
池内圧の異常上昇時に、確実にガスを外部に排出して電
池内圧を降下させるガス排出機構を備えた安全性の高い
リチウム電池に関する。
[Detailed Description of the Invention] Example of Fruits and Disasters The present invention reliably discharges gas to the outside to reduce the battery internal pressure when the battery internal pressure rises abnormally due to gas generation due to a chemical reaction within the battery. This invention relates to a highly safe lithium battery equipped with a lowering gas discharge mechanism.

災米例技先 従来、密閉型電池の内部から発生するガスに基づく内部
ガス圧の異常上昇を解除するために種々の機構が提案、
実施されている0例えば、金gL製鋭刃によって電池の
樹脂封口体を破断させるもの。
Previously, various mechanisms have been proposed to relieve the abnormal rise in internal gas pressure caused by gas generated from inside sealed batteries.
For example, the resin sealing body of a battery is broken using a sharp gold blade.

内部圧の上昇によって亀裂を生じるガラス−金属又はセ
ラミックー全屈製の密封シールを用いるもの、アルミニ
ウム等の軟金属の薄膜を用いるもの、円形、多角形、直
線状の薄溝部を設けて、それを破断させるもの、排気弁
構造を有するゴム栓を用いるもの、ガス透過膜を用いる
ものなどがある。
Those that use a glass-metal or ceramic fully-flexible seal that cracks due to an increase in internal pressure, those that use a thin film of soft metal such as aluminum, and those that have circular, polygonal, or linear thin grooves. There are some that use rupture, some that use a rubber stopper with an exhaust valve structure, and some that use a gas permeable membrane.

明が  しようとする しかし、これらの機構は、リチウム電池のガス排出機構
としては採用し難い。即ち、リチウム電池は、通常負極
として禁水性のリチウム合成、リチウム合金等が用いら
れ、また電解液には可燃、引火性の非水溶媒を使用する
ため、電池容器は酸素、窒素、水分等の不純物が内部に
侵入できない密閉構造とされ、このため電池ガス圧の異
常上昇時に確実に内部ガスを外部へ排出するV&構を必
要とするが、上記した機構、例えば密閉型鉛Mffi池
によく採用される排気弁構造を有するゴム栓をリチウム
電池に採用した場合、非水溶媒と反応してゴム栓が膨潤
し、ゴム栓自体の機能が損なわれる場合があり、更に密
閉性が悪いため不純物が侵入し易く、このため電池性能
を低下させる恐れがある。また、ガス透過膜の使用を考
えた場合、リチウム電池内に発生するガスの成分は、二
酸化炭素。
However, these mechanisms are difficult to adopt as a gas discharge mechanism for lithium batteries. In other words, lithium batteries usually use water-prohibitive lithium synthetics, lithium alloys, etc. as the negative electrode, and combustible and flammable non-aqueous solvents are used as the electrolyte, so the battery container is free from oxygen, nitrogen, moisture, etc. It has a sealed structure that prevents impurities from entering inside, and therefore requires a V& structure to reliably exhaust the internal gas to the outside when the battery gas pressure rises abnormally. If a rubber stopper with an exhaust valve structure is used in a lithium battery, the rubber stopper may react with a non-aqueous solvent and swell, impairing the function of the rubber stopper itself.Furthermore, the poor sealing performance may cause impurities to form inside the battery. They are easy to penetrate, which may reduce battery performance. In addition, when considering the use of gas permeable membranes, the gas component generated within lithium batteries is carbon dioxide.

アセチレン、エタン、プロピレン等の低沸点有機化合物
を含むため、これらのガスを透過膜の孔を通して外部へ
排出することは可能であるが、逆にこれらのガスより分
子径の小さいrj1素、窒素、水分などが孔を通って電
池内部に侵入し、電池特性を低下させてしまう。また、
薄溝部による破断構造を設ける方法は、破断箇所が大き
く、電極が露出し易く、電極と外部空気とが接触して発
火燃焼する危険がある。また、アルミニウム等の献金g
の薄膜を用いる方法は、これら軟金属がリチウムと合金
化して脆弱化するために使用出来ないものである。
Because it contains low-boiling point organic compounds such as acetylene, ethane, and propylene, it is possible to discharge these gases to the outside through the pores of the permeable membrane. Moisture can enter the battery through the holes, degrading battery characteristics. Also,
In the method of providing a fracture structure using thin grooves, the fracture location is large, the electrode is easily exposed, and there is a risk of ignition and combustion due to contact between the electrode and external air. In addition, donations of aluminum etc.
The method using a thin film cannot be used because these soft metals alloy with lithium and become brittle.

本発明は上記事情に鑑みなされたもので、平常時には密
閉性が高く、異常時即ち電池内でのガス発生に伴う電池
内圧の異常上昇時には、電池内圧が設定された圧力に達
した時点で確実に作動し、電池内のガスを確実に電池外
部へ排出すると共に。
The present invention has been developed in view of the above circumstances, and has a high airtightness under normal conditions, and in an abnormal situation, that is, when the internal pressure of the battery rises due to gas generation within the battery, it is ensured that the internal pressure of the battery reaches the set pressure. It operates to ensure that the gas inside the battery is exhausted to the outside of the battery.

作動時及び作動後に電極がみだりに外部へ露出するよう
なことのない信頼性の高いガス排出機構を備えたリチウ
ム電池を提供することを目的とする。
An object of the present invention is to provide a lithium battery equipped with a highly reliable gas discharge mechanism that prevents electrodes from being exposed to the outside during and after operation.

tル  するためのこ  び・ 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、電池容器の一部に面′8L20mm2以下の
薄肉部を形成することにより、平常時には密閉性が高い
が、電池内圧の上昇時には所定の内圧に達した時点で上
記薄肉部が圧壊されて電池内外を連通ずる排気孔が形成
され、該排気孔からガスを電池外へ排出して電池内圧を
確実に低下させることができ、しかもこの方法によれば
圧壊により形成される排気孔を極く小さいものとするこ
とができ、従って薄肉部圧壊後に電極がみだりに外部に
露出するようなことがないことを見い出し、本発明をな
すに至ったものである。
In order to achieve the above object, the inventors of the present invention have conducted intensive studies and found that by forming a thin walled part with a surface area of 20 mm2 or less on a part of the battery container, the airtightness is maintained during normal operation. However, when the internal pressure of the battery rises and reaches a predetermined internal pressure, the thin wall portion is crushed and an exhaust hole is formed that communicates the inside and outside of the battery, and gas is discharged from the exhaust hole to the outside of the battery to reduce the internal pressure of the battery. Moreover, according to this method, the exhaust hole formed by the crushing can be made extremely small, so that the electrode will not be unnecessarily exposed to the outside after the thin wall part is crushed. This discovery led to the present invention.

従って、本発明は、電池容器の一部に電池内圧が所定以
上に上昇した際に破壊可能な面積が20mm2以下の薄
肉部を設けたことを特徴とするリチウム電池を提供する
ものである。
Accordingly, the present invention provides a lithium battery characterized in that a part of the battery container is provided with a thin part having a breakable area of 20 mm2 or less when the battery internal pressure rises above a predetermined level.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明のリチウム電池は、上述したように電池容器の一
部に薄肉部を設けたものである。
As described above, the lithium battery of the present invention has a thin wall portion provided in a part of the battery container.

この場合、電池容器の材質及び形状は特に制限はなく、
通常リチウム電池の電池容器として用いられるものを好
適に使用し得る。その材質として具体的には、ニッケル
メッキ軟鋼、ステンレス鋼等がリチウムと合金化し難く
、有機電解液に対する耐食性にも優れることから好適に
使用され、また形状としてはコイン形、円筒形、箱形等
種々の形状とすることができる。この場合、電池容器は
通常容器本体と蓋体とから構成されるが、薄肉部はその
一方に形成しても両方に形成してもよい。
In this case, there are no particular restrictions on the material and shape of the battery container;
Those normally used as battery containers for lithium batteries can be suitably used. Specifically, nickel-plated mild steel, stainless steel, etc. are preferably used because they are difficult to alloy with lithium and have excellent corrosion resistance against organic electrolytes, and the shapes are coin-shaped, cylindrical, box-shaped, etc. It can be of various shapes. In this case, the battery container is usually composed of a container body and a lid, but the thin wall portion may be formed on one or both of them.

また、薄肉部を形成する方法としては、特に制限はなく
、種々の方法を採用し得る1例えば、電池容器の一部に
ドリル等によって切削薄肉加工する方法、レーザ光線等
の熱源によって電池容器の一部を薄肉化する方法、プレ
ス加工によって電池容器に薄肉部を形成する方法、ff
i池容器の一部に孔をあけ、その孔に薄肉の箔を溶接又
はエポキシ接着剤等で接着して薄肉部を形成する方法な
どを挙げることができる。ここで、電池容器の一部に孔
をあけ、その孔に薄肉の箔を溶接又は接着する方法を採
用する場合、箔の材質はリチウムと合金化し難く、有機
電解液に対する耐食性に優れるものであればよく、電池
容器の材質と同じであっても異なっていても差支えない
There are no particular restrictions on the method for forming the thin walled portion, and various methods may be employed.For example, a method of cutting a portion of the battery container into a thinner wall using a drill or the like, or a method of forming the thin wall portion of the battery container using a heat source such as a laser beam. Method of thinning a part, method of forming a thin wall part in a battery container by press working, ff
Examples include a method in which a hole is made in a part of the i-ike container and a thin-walled portion is formed by welding or bonding a thin foil to the hole using an epoxy adhesive or the like. When adopting the method of making a hole in a part of the battery container and welding or gluing a thin foil to the hole, the material of the foil must be one that is difficult to alloy with lithium and has excellent corrosion resistance against organic electrolytes. The material may be the same as or different from the material of the battery container.

この薄肉部の面積及び厚みは、薄肉部の材質(材料の破
壊強度)及び設定圧力によって適宜設定されるが1面積
は2〇mm2以下であり、好ましくは面積10−1〜1
〇−程度、厚み10−3〜10−1鵬程度である。
The area and thickness of this thin part are appropriately set depending on the material of the thin part (breaking strength of the material) and the set pressure, but one area is 20 mm2 or less, preferably an area of 10-1 to 1
The thickness is about 10-3 to 10-1.

本発明のリチウム電池は、上記薄肉部を形成した電池容
器内に正極、負極、電解質等の電池構成要素が収容され
たものである。
The lithium battery of the present invention has battery components such as a positive electrode, a negative electrode, and an electrolyte housed in a battery container in which the thin wall portion is formed.

ここで1本発明のリチウム電池の負極としては、放電時
にリチウムイオンを放出するものであればいかなるもの
も使用し得1例えばリチウム金属、リチウム合金、リチ
ウム複合体又はリチウムを吸蔵、放出する炭素材料等を
挙げることができる。
Here, 1. As the negative electrode of the lithium battery of the present invention, any material can be used as long as it releases lithium ions during discharge.1 For example, lithium metal, lithium alloy, lithium composite, or carbon material that occludes and releases lithium. etc. can be mentioned.

ここで、リチウム合金の種類に特に制限はなく、例えば
リチウムとアルミニウム、マグネシウム、インジウム、
水銀、亜鉛、カドミウム、鉛、ビスマス、錫、アンチモ
ン等の1種又は2種以上との合金などを好適に使用し得
る。これらの中では、特にアルミニウムとリチウムとの
合金を用いることが負極特性、成形性の点で好ましい。
Here, there is no particular restriction on the type of lithium alloy; for example, lithium and aluminum, magnesium, indium,
An alloy of one or more of mercury, zinc, cadmium, lead, bismuth, tin, antimony, etc. can be suitably used. Among these, it is particularly preferable to use an alloy of aluminum and lithium in terms of negative electrode characteristics and formability.

なお、リチウム合金を使用する場合、リチウムと合金化
すべき金属のリチウム合金化は電池容器内で行なうこと
ができる。
Note that when a lithium alloy is used, lithium alloying of the metal to be alloyed with lithium can be performed within the battery container.

次に、正極としては、放電時にリチウムイオンを吸蔵す
るか、又は電解質の陰イオンを放出するものであればよ
く、種々のものを使用し得る。具体的には、有機導電性
材料、例えばポリアニリン。
Next, as the positive electrode, various types can be used as long as they occlude lithium ions or release anions of the electrolyte during discharge. Specifically, organic conductive materials such as polyaniline.

ポリアセチレン、ポリ−p−フェニレン、ポリベンゼン
、ポリピリジン、ポリチオフェン、ポリフラン、ポリピ
ロール、アントラセン、ポリナフタリン等及びこれらの
誘導体のポリマーなどが挙げられ、またフッ化炭素やM
 n O□+ va o、 lMoO3,Cr、○、、
CuO等の金属酸化物、MoS、、TiS、、FeS、
等の金属硫化物などを使用することもできる。
Examples include polyacetylene, poly-p-phenylene, polybenzene, polypyridine, polythiophene, polyfuran, polypyrrole, anthracene, polynaphthalene, etc., and polymers of these derivatives.
n O□+ va o, lMoO3,Cr,○,,
Metal oxides such as CuO, MoS, TiS, FeS,
It is also possible to use metal sulfides such as.

なお、正極基体の形態に特に制限はなく、例えば、繊維
、布、不織布、フィルム、板等の各種形態で使用できる
Note that there is no particular restriction on the form of the positive electrode substrate, and it can be used in various forms such as fiber, cloth, nonwoven fabric, film, and plate.

更に、電解質としては液体電解質又は固体電解質が用い
られる。液体電解質は、リチウムイオンを含む非水液体
溶媒からなるもので、そのリチウムイオン源としては、
特に制限されないが、LiCllO4,LiB F4.
 LiP F、、 LiS O,CF、。
Further, as the electrolyte, a liquid electrolyte or a solid electrolyte is used. The liquid electrolyte consists of a non-aqueous liquid solvent containing lithium ions, and the lithium ion source is:
Although not particularly limited, LiCllO4, LiB F4.
LiP F,, LiS O, CF,.

などが好適に用いられる。一方、非水溶媒としては、比
較的極性の大きい溶媒が好適に用いられ、具体的には、
プロピレンカーボネート、テトラヒドロフラン、エチレ
ンカーボネート、ジメトキシエタン、γ−ブチロラクト
ン、ジオキソラン、ブチレンカーボネート及びジメチル
ホルムアミドから選ばれた1種又は2種以上の混合有機
溶媒を挙げることができるが、これらに限定されるもの
ではない。
etc. are preferably used. On the other hand, as the non-aqueous solvent, relatively polar solvents are preferably used, specifically,
Examples include, but are not limited to, one or more mixed organic solvents selected from propylene carbonate, tetrahydrofuran, ethylene carbonate, dimethoxyethane, γ-butyrolactone, dioxolane, butylene carbonate, and dimethylformamide. do not have.

また、本発明の電池に使用し得る固体電解質としては、
上記液体電解質を例えばポリエチレンオキサイド、ポリ
プロピレンオキサイド、ポリエチレンオキサイドのイソ
シアネート架橋体、エチレンオキサイドオリゴマーを側
鎖にもつホスファゼンポリマー等の重合体に含浸させた
有機固体電解質、Li、N、LiBCfi、、Li4S
in、、Li、BO3等のリチウムガラスなどの無機固
体電解質が挙げられる。
In addition, solid electrolytes that can be used in the battery of the present invention include:
An organic solid electrolyte in which the liquid electrolyte is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, isocyanate crosslinked product of polyethylene oxide, phosphazene polymer having ethylene oxide oligomer in the side chain, Li, N, LiBCfi, Li4S
Examples include inorganic solid electrolytes such as lithium glass such as in, Li, BO3, etc.

なお、正負極間に電解質を介在させるに際し、両極間に
セパレータを介装することができる。この場合、セパレ
ータとしては多孔質で電解液を通したり含んだりするこ
とのできる材料、例えばポリテトラフルオロエチレン、
ポリプロピレンやポリエチレンなどの合成樹脂製の不織
布、織布、多孔体及び網等を使用することができる。
Note that when interposing the electrolyte between the positive and negative electrodes, a separator can be interposed between the two electrodes. In this case, the separator is made of a porous material that can pass or contain the electrolyte, such as polytetrafluoroethylene,
Nonwoven fabrics, woven fabrics, porous bodies, nets, etc. made of synthetic resins such as polypropylene and polyethylene can be used.

本発明リチウム電池は、上記正負極及び電解質、更に必
要によりセパレータを電池要素とし、その他電池の種類
に応じて用いる電池要素を上記電池容器内に収容し、封
口処理するものであるが、更に電池容器はシュリンクチ
ューブ等のvA林フィルムによって外装することができ
る。特に薄肉部を被覆することが好ましく、これにより
薄肉部圧壊後、外部に電解液がもれ出てしまうのを防止
し得る。
In the lithium battery of the present invention, the positive and negative electrodes, electrolyte, and if necessary a separator are used as battery elements, and other battery elements used depending on the type of battery are housed in the battery container and sealed. The container can be wrapped with vA Lin film, such as shrink tubing. It is particularly preferable to cover the thin-walled portions, thereby preventing the electrolyte from leaking outside after the thin-walled portions are crushed.

2曹Iす1呆 以上説明したように、本発明のリチウム電池は、平常時
には密閉性が高く、異常時即ち電池内でのガス発生に供
なう電池内圧の異常上昇時には、電池内圧が設定された
圧力に達した時点で電池内のガスを確実に電池外部へ排
出すると共に、ガス排出時及びガス排出後に電極が外部
に露出するようなことのない信頼性の高いものである。
As explained above, the lithium battery of the present invention has a high airtightness under normal conditions, and when there is an abnormality, that is, when the internal pressure of the battery rises due to gas generation within the battery, the internal pressure of the battery is reduced to the set level. The gas inside the battery is reliably discharged to the outside of the battery when the specified pressure is reached, and the electrodes are not exposed to the outside during and after the gas is discharged, making it highly reliable.

次に実施例及び比較例を示し、本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものではない。
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例〕〔Example〕

第1図及び第2図に示すように直径23un、高さ43
mmのステンレススチール製の有底筒状容器本体1と直
径22IIIl、肉厚0.3mmのステンレススチール
11蓋体2とからなる電池容器3を用意し、蓋体2の一
部に直径1.5m(面積1.and)の貫通孔をあけ、
蓋体2の下面から貫通孔を覆って肉厚0.003mmの
ステンレススチール板をエポキシ接若剤により接着し、
薄肉部4を形成した。
As shown in Figures 1 and 2, the diameter is 23 un and the height is 43 mm.
A battery container 3 consisting of a bottomed cylindrical container body 1 made of stainless steel with a diameter of 22 mm and a lid body 2 of stainless steel 11 with a wall thickness of 0.3 mm is prepared. Drill a through hole of (area 1.and),
A stainless steel plate with a wall thickness of 0.003 mm is bonded from the bottom surface of the lid body 2 to cover the through hole using an epoxy adhesive.
A thin wall portion 4 was formed.

次に、長さ180nw11.巾34m、厚さ200声の
アルミニウム板の両面に長さ180nw++、巾30I
、厚さ200pと長さ140mm、中30mm、厚さ2
00pのリチウム板をそれぞれ1枚ずつ積層して合金化
したりチウム−アルミニウム合金を負極に使用し、正極
にはステンレススチール上で電解重合したポリアニリン
を使用し、長さ200mm。
Next, the length is 180nw11. Width 34m, thickness 200 tones aluminum plate with length 180nw++ and width 30I on both sides
, thickness 200p, length 140mm, medium 30mm, thickness 2
The negative electrode is made by laminating and alloying 00p lithium plates or lithium-aluminum alloy, and the positive electrode is made of polyaniline electrolytically polymerized on stainless steel, with a length of 200 mm.

巾34mm、lさllll11のポリアニリンシートを
セパレータであるポリプロピレン製多孔質膜に袋詰めに
し、正極と負極とをアルミニウムの露出部分が一番外側
になるように巻き上げ、これを上記容器本体1に挿入し
た。
A polyaniline sheet with a width of 34 mm and a length of 11 mm is packed in a porous polypropylene membrane as a separator, and the positive and negative electrodes are rolled up so that the exposed aluminum part is the outermost part, and this is inserted into the container body 1. did.

次いで1貫通孔5を有する正極端子6と絶縁体7とから
なる正極端子部を上記蓋体2の透孔8に挿入した後、ス
ポット溶接し、該蓋体2を上記容器本体1の上端開口部
を覆って配設し、容器本体1と蓋体2とをYAGレーザ
ー溶接9により封口処理した。
Next, a positive terminal part consisting of a positive terminal 6 having a through hole 5 and an insulator 7 is inserted into the through hole 8 of the lid 2, and then spot welded, and the lid 2 is attached to the upper opening of the container body 1. The container body 1 and the lid 2 were sealed by YAG laser welding 9.

次に、正極端子6に設けた貫通孔5より電池容器3内を
1a+lIgの減圧にし、該減圧容器内へ311101
/QのL x B F4/プロピレンカーボネート・ジ
メトキシエタン1:1(容積比)W1解液を5.6mG
注液した。2日間放置し、水素ガスが発生しないことを
確認した後、貫通孔5内に直径0.7mm、長さ10■
のステンレススチールを挿入して貫通孔を充填した後、
レーザー溶接し、円筒型リチウム二次電池10を構成し
た。なお、上記作成作業は全てアルゴンガス不活性雰囲
気中で行なった。また、貫通孔5の直径は0.7amで
あった。この二次電池を60℃オーブン中で1週間真空
乾燥したところ重量減は全くなかった。
Next, the pressure inside the battery container 3 is reduced to 1a+lIg through the through hole 5 provided in the positive electrode terminal 6, and 311101
/Q L x B F4/propylene carbonate/dimethoxyethane 1:1 (volume ratio) W1 solution 5.6mG
I injected the liquid. After leaving it for 2 days and confirming that no hydrogen gas is generated, a hole with a diameter of 0.7 mm and a length of 10 cm is inserted into the through hole 5.
After inserting stainless steel to fill the through hole,
Laser welding was performed to construct a cylindrical lithium secondary battery 10. Note that all of the above preparation operations were performed in an argon gas inert atmosphere. Further, the diameter of the through hole 5 was 0.7 am. When this secondary battery was vacuum dried in a 60°C oven for one week, there was no weight loss at all.

次いで、この電池について異常ガスが発生する過充電試
験を行なった。試験方法は、電池の両極に5vを印加し
、電池全重量を測定した。更に。
Next, this battery was subjected to an overcharge test in which abnormal gas was generated. The test method was to apply 5V to both electrodes of the battery and measure the total weight of the battery. Furthermore.

正極端子部の貫通孔にステンレススチール棒を挿入する
代わりに正極端子部に異径ジヨイントを使用して0〜3
5kg/aJの範囲まで測定できる圧力センサーを接続
し、上記試験と同条件で内圧の変化を測定した。電池重
量の変化と内圧の変化を第3図に示す。
Instead of inserting a stainless steel rod into the through hole of the positive terminal, a different diameter joint is used in the positive terminal to
A pressure sensor capable of measuring up to 5 kg/aJ was connected, and changes in internal pressure were measured under the same conditions as the above test. Figure 3 shows changes in battery weight and internal pressure.

第3図に示した結果より、6日目まではガスもれによる
重量減がなく、密閉性が保たれており、電池内圧が20
kg/cdとなった時点で確実に薄肉部が圧壊され、内
部ガスが排出されたことが確認される。
From the results shown in Figure 3, there was no weight loss due to gas leakage until the 6th day, the airtightness was maintained, and the internal pressure of the battery was 20%.
When the pressure reached kg/cd, it was confirmed that the thin wall part was definitely crushed and the internal gas was discharged.

(比較例〕 実施例と同様の電池容器を用意し、薄肉部4を設ける代
わりに正極端子部6にシールド鉛蓄電池で常用されてい
るブンゼン型排気弁であるゴム栓を被せた以外は実施例
と同様にして円筒型リチウム二次電池を構成した。
(Comparative example) A battery container similar to that of the example was prepared, and the example except that instead of providing the thin wall portion 4, the positive electrode terminal portion 6 was covered with a rubber stopper, which is a Bunsen type exhaust valve commonly used in shielded lead-acid batteries. A cylindrical lithium secondary battery was constructed in the same manner.

次いで、この電池について実施例と同様にして5v印加
時の重量変化と内圧の変化を測定した。
Next, the weight change and the internal pressure change when 5V was applied to this battery were measured in the same manner as in the example.

結果を第4図に示す。The results are shown in Figure 4.

第4図に示した結果より、ゴム栓を用いた場合、O〜4
 kg/adの低内圧においてもガスもれが生じること
がわかる。また、10日経過後にゴム栓を観察したとこ
ろ、ゴム栓の膨潤が認められた。
From the results shown in Figure 4, when using a rubber stopper, O~4
It can be seen that gas leakage occurs even at low internal pressures of kg/ad. Further, when the rubber stopper was observed after 10 days, swelling of the rubber stopper was observed.

上記実施例から1本発明のリチウム電池は、平常時には
高い密閉性を維持すると共に、電池内でガスが発生し、
電池内圧が上昇する異常時に際しては、電池内圧が設定
された圧力に達した時点で電池内のガスを確実に外部へ
排出して電池内圧を低下させる安全性の高いものである
ことが確認された。
From the above examples, the lithium battery of the present invention maintains high airtightness under normal conditions, and gas is generated within the battery.
In the event of an abnormal situation where the internal battery pressure rises, it has been confirmed that this is a highly safe system that reliably exhausts the gas inside the battery to the outside and lowers the battery internal pressure once the battery internal pressure reaches the set pressure. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明リチウム電池の一実施例を示す斜視図、
第2図は同側電池を構成する蓋体を示し、Aは断面図、
Bは平面図、第3図は同側電池の過充電試験における電
池重量及び電池内圧の変化を示すグラフ、第4図は比較
例の電池の過充電試験における電池重量及び電池内圧の
変化を示すグラフである。 1・・・容器本体、 2・・・蓋体、 3・・・電池容
器、4・・・薄肉部、 6・・・正極端子、 7・・・
絶縁体、1o・・・リチウム電池。
FIG. 1 is a perspective view showing an embodiment of the lithium battery of the present invention;
Figure 2 shows the lid constituting the ipsilateral battery, A is a cross-sectional view,
B is a plan view, FIG. 3 is a graph showing changes in battery weight and battery internal pressure in an overcharge test for the same-side battery, and FIG. 4 is a graph showing changes in battery weight and battery internal pressure in an overcharge test for a comparative example battery. It is a graph. DESCRIPTION OF SYMBOLS 1... Container main body, 2... Lid body, 3... Battery container, 4... Thin wall part, 6... Positive electrode terminal, 7...
Insulator, 1o...lithium battery.

Claims (1)

【特許請求の範囲】[Claims] 1、電池容器の一部に電池内圧が所定以上に上昇した際
に破壊可能な面積が20mm^2以下の薄肉部を設けた
ことを特徴とするリチウム電池。
1. A lithium battery characterized in that a thin walled portion having an area of 20 mm^2 or less that can be destroyed when the battery internal pressure rises above a predetermined level is provided in a part of the battery container.
JP63068869A 1987-11-12 1988-03-23 Lithium storage battery Pending JPH01241750A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63068869A JPH01241750A (en) 1988-03-23 1988-03-23 Lithium storage battery
US07/269,449 US4939050A (en) 1987-11-12 1988-11-10 Electric cells
DE3838575A DE3838575A1 (en) 1987-11-12 1988-11-14 ELECTRIC CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068869A JPH01241750A (en) 1988-03-23 1988-03-23 Lithium storage battery

Publications (1)

Publication Number Publication Date
JPH01241750A true JPH01241750A (en) 1989-09-26

Family

ID=13386094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068869A Pending JPH01241750A (en) 1987-11-12 1988-03-23 Lithium storage battery

Country Status (1)

Country Link
JP (1) JPH01241750A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285859A (en) * 1987-05-19 1988-11-22 Hitachi Maxell Ltd Nonaqueous liquid active material battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285859A (en) * 1987-05-19 1988-11-22 Hitachi Maxell Ltd Nonaqueous liquid active material battery

Similar Documents

Publication Publication Date Title
US4939050A (en) Electric cells
KR100997941B1 (en) Ultracapacitor pressure control system
EP0975031B2 (en) Sheet for cell case and cell device
JP5080244B2 (en) Enclosure for sealed electrochemical cell
EP0631339B1 (en) Secondary battery
US7960048B2 (en) Electrode assembly for lithium ion secondary battery and lithium ion secondary battery using the same
US6475668B1 (en) Nonaqueous electrolyte battery sealed in a film case
US6045939A (en) Lithium secondary battery having thermal switch
CA2011720C (en) Battery in a vacuum sealed enveloping material and a process for making the same
EP0895296B1 (en) Sheet-like sealed non-aqueous electrolyte cell
KR100303826B1 (en) Secondary Battery Cap Assembly
US20030072999A1 (en) Method for manufacturing an electrode-separator assembly for galvanic elements
JP2792098B2 (en) Safety device for organic electrolyte battery
JP2000285892A (en) Nonaqueous electrolyte secondary battery
JPH09293490A (en) Sealed battery and manufacture thereof
JP3396990B2 (en) Organic electrolyte secondary battery
GB2101394A (en) Safety means or electrochemical cells
JPH10144352A (en) Non-aqueous electrolyte battery
JPH01241750A (en) Lithium storage battery
JPH06215760A (en) Nonaqueous electrolyte battery
KR100354247B1 (en) Lithium secondary batteries
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JPH01255157A (en) Lithium battery
JPH06196138A (en) Nonaqueous electrolyte battery
JPH11283599A (en) Lithium ion battery