JPH01241032A - Optical output monitoring device - Google Patents

Optical output monitoring device

Info

Publication number
JPH01241032A
JPH01241032A JP63066849A JP6684988A JPH01241032A JP H01241032 A JPH01241032 A JP H01241032A JP 63066849 A JP63066849 A JP 63066849A JP 6684988 A JP6684988 A JP 6684988A JP H01241032 A JPH01241032 A JP H01241032A
Authority
JP
Japan
Prior art keywords
light
monitor
optical output
waveguides
monitor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066849A
Other languages
Japanese (ja)
Inventor
Kazushi Mori
和思 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63066849A priority Critical patent/JPH01241032A/en
Publication of JPH01241032A publication Critical patent/JPH01241032A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Abstract

PURPOSE:To cause the title device to cope with a laser chip assembled by a junction-down system while occurrence of cross talks is prevented by forming light condensing grating couplers which lead monitor light to waveguides and, at the same time, light receiving elements at the positions to which each monitor is condensed. CONSTITUTION:Waveguides which propagate monitor light in the monitor light projecting direction on a substrate are provided and light condensing grating couplers 7 which lead the monitor light to the waveguides are formed on the waveguides. At the same time, light receiving elements 4 are formed in such a state where the elements 4 are respectively brought into contact with the waveguides at the positions to which each monitor light refracted by each grating coupler is condensed. Therefore, the junction-down system can be coped with this device and, as a result, deterioration of the performance of the light receiving elements 4 can be prevented because heat is easily diffused into the substrate. Thus the reliability of the light emitting device can be improved and occurrence of cross talks between the laser light and adjacent monitor light can be prevented.

Description

【発明の詳細な説明】 主業上夏肌里分立 本発明は、被照射物に照射される照射光の光出力に対応
した光出力を有するモニタ光を受光素子に集光させて照
射光の光出力を検出する光出力モニタ装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses monitor light having an optical output corresponding to the optical output of the irradiated light irradiated onto an irradiated object onto a light-receiving element. The present invention relates to a light output monitor device that detects light output.

災来■孜玉 近年、光デイスク装置の高性能化、多機能化に伴って、
マルチビーム半導体レーザの需要が増大している。該マ
ルチビーム半導体レーザでは個々のビーム出力を独立に
制御することを要するが、そのためにはそれぞれの光出
力を独立にモニタする必要がある。ところが、従来のマ
ルチビーム半導体レーザの光出力モニタ装置では、第4
図に示すように、半導体レーザ31から発せられるモニ
タ光330発光点32の間隔が通常100μmと狭いた
め、隣接するモニタ光33との間でクロストークが生じ
る。このため、それぞれのモニタ光33に対応する照射
光38の光量を受光素子37で正確に量ることができな
いという課題を有していた。そこで、第5図に示すよう
に、両端部のモニタ光33の光軸を略直角に曲げるセパ
レータ34を用いるようなものが提案されている。この
ような構造であれば、隣接するモニタ光33との間でク
ロストークが生じるのを防止することができるので、そ
れぞれの照射光38の光量を受光素子37で正確に量る
ことができる。
Disaster■ KogyokuIn recent years, as optical disk devices have become more sophisticated and multifunctional,
Demand for multibeam semiconductor lasers is increasing. In the multi-beam semiconductor laser, it is necessary to independently control each beam output, and for this purpose, it is necessary to independently monitor each optical output. However, in the conventional multi-beam semiconductor laser optical output monitor device, the fourth
As shown in the figure, since the interval between the light emitting points 32 of the monitor light 330 emitted from the semiconductor laser 31 is narrow, typically 100 μm, crosstalk occurs between the monitor light 33 and the adjacent monitor light 33 . For this reason, there was a problem in that the light receiving element 37 could not accurately measure the amount of irradiation light 38 corresponding to each monitor light 33. Therefore, as shown in FIG. 5, it has been proposed to use separators 34 that bend the optical axis of the monitor light 33 at both ends approximately at right angles. With such a structure, it is possible to prevent crosstalk from occurring between adjacent monitor lights 33, so that the light intensity of each irradiation light 38 can be accurately measured by the light receiving element 37.

ところで、上記の如くモノシリツク型マルチビーム半導
体レーザを用いた場合には、ビーム数が増えるに従って
熱的相互作用による素子性能の劣化を生じることが一般
に知られている。特に、第6図(a)に示すようなジャ
ンクションアップ方式でレーザチップ31を組み立てた
場合には、発光点32とサブマウント36との距離が大
きいため、サブマウント36に熱が拡散し難<、素子性
能の劣化が著しυ1゜そこで、素子性能の劣化を防止す
べく、第6図(b)に示すように、レーザチップをジャ
ンクションダウン方式で組立てることが望まれる。
By the way, when a monolithic multi-beam semiconductor laser is used as described above, it is generally known that as the number of beams increases, the device performance deteriorates due to thermal interaction. In particular, when the laser chip 31 is assembled using the junction-up method as shown in FIG. , the device performance deteriorates significantly, υ1°.Therefore, in order to prevent the device performance from deteriorating, it is desirable to assemble the laser chip by the junction-down method, as shown in FIG. 6(b).

O<”° しよ゛と るi。O<”°I will do it.

しかしながら、前記従来の構造では、セパレータ34の
加工時に端部にぼり等が生じるためサブマウント36近
傍の反射面を完全な鏡面とすることが困難であり、加え
て、セパレータ34の反射面を完全にサブマウント36
と直角に取り付けるのが困難である。このため、レーザ
チップ31のモニタ光33の光軸35がサブマウント3
6の表面すれすれに位置するようなジャンクションダウ
ン方式でレーザチップを組立てた場合には、モニタ光3
3がサブマウント36に入射してその一部がサブマウン
ト36に吸収される。この結果、モニタ光33の光量を
正確に量ることができず、レーザ出力の測定が困難とな
るという課題を有していた。
However, in the conventional structure described above, it is difficult to make the reflective surface near the submount 36 a perfect mirror surface because the edges of the separator 34 curl up during processing. Submount 36 to
It is difficult to install it at right angles. Therefore, the optical axis 35 of the monitor light 33 of the laser chip 31 is aligned with the submount 3.
If the laser chip is assembled using a junction-down method where the laser chip is located close to the surface of 3, the monitor light 3
3 is incident on the submount 36 and a part of it is absorbed by the submount 36. As a result, the amount of the monitor light 33 cannot be measured accurately, making it difficult to measure the laser output.

本発明は上記従来の課題を考慮してなされたものであっ
て、クロストークが生じるのを防止しつつ、ジャンクシ
ョンダウン方式で組み立てられたレーザチップに対応し
うる光出力モニタ装置の提供を目的とするものである。
The present invention has been made in consideration of the above-mentioned conventional problems, and an object of the present invention is to provide an optical output monitor device that can prevent crosstalk from occurring and is compatible with laser chips assembled using the junction-down method. It is something to do.

量   ”ン1 るための 本発明は上記目的を達成するために、基板上に設けられ
、被照射物に照射される複数の照射光及びこの照射光の
光出力にそれぞれ対応した光出力を有するモニタ光を発
する半導体レーザと、上記複数のモニタ光を個別的に検
出する複数の受光素子とを備えた光出力モニタ装置にお
いて、上記基板上のモニタ光照射方向にモニタ光を伝播
させる導波路を設け、この導波路上にモニタ光を導波路
に導く集光グレーティングカプラを形成すると共に、上
記集光グレーティングカプラで屈折された各モニタ光の
集光位置に上記導波路と接するよう前記受光素子を形成
したことを特徴とする。
In order to achieve the above object, the present invention is provided on a substrate and has a plurality of irradiation lights that irradiate an object to be irradiated and a light output corresponding to each of the light outputs of the irradiation light. In an optical output monitoring device comprising a semiconductor laser that emits monitor light and a plurality of light receiving elements that individually detect the plurality of monitor lights, a waveguide for propagating the monitor light in the direction of irradiation of the monitor light on the substrate is provided. A condensing grating coupler is formed on the waveguide to guide the monitor light to the waveguide, and the light receiving element is placed in contact with the waveguide at a condensing position of each monitor light refracted by the condensing grating coupler. It is characterized by the fact that it has been formed.

止−一一里 上記構成であれば、半導体レーザが設けられた基板上に
モニタ光を伝播させる導波路が設けられ、この導波路上
にモニタ光を導波路に導くグレーティングカプラが形成
されているので、発光点と基板との距離が短いジャンク
ションダウン方式に対応することが可能となる。したが
って、基板に熱が十分に拡散するので、素子性能の劣化
を防止することができる。
In the above configuration, a waveguide for propagating the monitor light is provided on the substrate on which the semiconductor laser is provided, and a grating coupler for guiding the monitor light to the waveguide is formed on the waveguide. Therefore, it becomes possible to support a junction down method in which the distance between the light emitting point and the substrate is short. Therefore, since heat is sufficiently diffused into the substrate, deterioration of device performance can be prevented.

また、マルチビーム半導体レーザの隣接する発光点の間
隔は、通常100μm以上となるように形成されている
ので、隣接するモニタ光が集光グレーティングカプラに
入射した場合であっても、このモニタ光は該集光グレー
ティングカプラに対応する受光素子に集光されることが
ない。したがって、隣接するモニタ光との間でクロスト
ークが生じるのを防止することができる。
Furthermore, since the distance between adjacent light emitting points of a multi-beam semiconductor laser is usually 100 μm or more, even if adjacent monitor lights are incident on the condensing grating coupler, this monitor light will The light is not focused on the light receiving element corresponding to the light collecting grating coupler. Therefore, it is possible to prevent crosstalk from occurring between adjacent monitor lights.

災−施一孤 (第1実施例) 本発明の一実施例を、第1図及び第2図に基づいて、以
下に説明する。
First Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

n型シリコンからなるサブマウント1の一方の端部には
ジャンクションダウン方式で組み立てられたレーザチッ
プ2が固定されている。このレーザチップ2は図示しな
いコンパクトディスク等の被照射物を照射する照射光1
0と、この照射光とは反対の面から発せられ照射光の光
出力に対応した光出力を有するモニタ光11とをそれぞ
れ3本づつ照射している。上記サブマウント1における
モニタ光11照射側の表面部には、上記n型シリコンを
熱酸化させることにより作製したSiO□バッファN3
が形成されており、このSiO□バッファ層3は上流側
バッファ層3aと下流側バッファ層3bとから構成され
ている。上記上流側バッファ層3aと下流側バッファ層
3bとの間(後述の集光グレーティングカプラ7で屈折
された各モニタ光の集光位置)のサブマウント1には、
n型シリコンを熱拡散させることにより作製したp型シ
リコンから成る受光素子4が形成されている。
A laser chip 2 assembled by a junction down method is fixed to one end of a submount 1 made of n-type silicon. This laser chip 2 is an irradiation light 1 that irradiates an object to be irradiated such as a compact disk (not shown).
0 and three monitor lights 11 emitted from the opposite side to the irradiation light and having a light output corresponding to the light output of the irradiation light. On the surface of the submount 1 on the side irradiated with the monitor light 11, there is a SiO□ buffer N3 made by thermally oxidizing the n-type silicon.
The SiO□ buffer layer 3 is composed of an upstream buffer layer 3a and a downstream buffer layer 3b. The submount 1 between the upstream buffer layer 3a and the downstream buffer layer 3b (the condensing position of each monitor light refracted by the condensing grating coupler 7 described later) includes:
A light receiving element 4 is formed of p-type silicon produced by thermally diffusing n-type silicon.

また、上記下流側バッファIJab上には、ワイヤボン
ディングしうる面積を有する電極5が蒸着法等により形
成されており、この電極5は上記受光素子4とリード8
により接続されている。上記リード8の表面と、受光素
子4の表面と、前記上流側バッファ層3aの表面とには
コーニング70594波N6がスパッタリング法等によ
り形成されており、このコーニング7059導波層6上
の前記レーザチップ2側には集光グレーティングカップ
ラ(以下FCCと称する)7が3つ並設されている。こ
れらのFGC7はそれぞれに対応する上記3つのモニタ
光11を屈折させて上記コーニング70591波層6に
結合させ、各々の受光素子4に個別的にモニタ光11を
集光させる機能を有している。
Further, on the downstream buffer IJab, an electrode 5 having an area that can be wire bonded is formed by vapor deposition or the like, and this electrode 5 is connected to the light receiving element 4 and the lead 8.
connected by. A Corning 70594 wave N6 is formed on the surface of the lead 8, the surface of the light receiving element 4, and the surface of the upstream buffer layer 3a by sputtering or the like, and the laser beam on the Corning 7059 waveguide layer 6 Three condensing grating couplers (hereinafter referred to as FCC) 7 are arranged in parallel on the chip 2 side. These FGCs 7 have a function of refracting the three corresponding monitor lights 11, coupling them to the Corning 70591 wave layer 6, and focusing the monitor lights 11 on each light receiving element 4 individually. .

上記の構成において、本発明の光出力モニタ装置を作動
させる場合には以下のようにして行われる。
In the above configuration, the optical output monitoring device of the present invention is operated as follows.

レーザチップ2からは被照射物を照射する照射光10と
、この照射光lOの光出力に対応した光出力を有するモ
ニタ光11とが発せられる。このモニタ光11の一部は
それぞれのレーザビーム発光点13に対応して形成され
たFGC7に入射した後屈折されて導波層6で結合され
る。その後モニタ光11はFGC7の集光機能により導
波層6内を伝播しつつそれぞれのモニタ光11に対応す
る受光素子4に集光される。
The laser chip 2 emits irradiation light 10 that irradiates an object to be irradiated, and monitor light 11 having an optical output corresponding to the optical output of this irradiation light IO. A part of this monitor light 11 is incident on the FGC 7 formed corresponding to each laser beam emission point 13, is refracted, and is combined in the waveguide layer 6. Thereafter, the monitor light 11 propagates within the waveguide layer 6 by the light focusing function of the FGC 7 and is focused on the light receiving element 4 corresponding to each monitor light 11.

ところで、FGC7によるレーザビームの導波層6への
結合効率は、FGC7とレーザビーム発光点13の位置
関係に強く依存しており、この位置関係が設計値から大
きくずれた場合には、結合効率が極端に低下することが
知られている。上記の場合、レーザチップ2の隣接する
発光点13の間隔は、熱的相互作用による素子性能の劣
化を考慮して通常100μm以上となるように形成され
ているので、隣接するモニタ光11がFGC7に入射し
た場合であってもこのモニタ光は該FGC7に対応する
受光素子4に集光されることがない。
By the way, the coupling efficiency of the laser beam to the waveguide layer 6 by the FGC 7 strongly depends on the positional relationship between the FGC 7 and the laser beam emission point 13, and if this positional relationship deviates significantly from the designed value, the coupling efficiency will decrease. is known to decrease dramatically. In the above case, the distance between adjacent light emitting points 13 of the laser chip 2 is usually 100 μm or more in consideration of deterioration of device performance due to thermal interaction, so that the adjacent monitor light 11 is Even if the monitor light is incident on the FGC 7, this monitor light is not focused on the light receiving element 4 corresponding to the FGC 7.

この結果、それぞれの受光素子4には対応するモニタ光
11のみが集光さることになる。
As a result, only the corresponding monitor light 11 is focused on each light receiving element 4.

(第2実施例) 本発明の第2実施例を、第3図に基づいて、以下に説明
する。
(Second Embodiment) A second embodiment of the present invention will be described below based on FIG. 3.

FGC7と受光素子4との間にそれぞれのモニタ光に対
応したグレーティングレンズ10を形成し、FGC7か
ら発せられたモニタ光11のうち両端のモニタ光11の
光軸を外方に傾ける以外は上記第1実施例と略同様の構
成である。
A grating lens 10 corresponding to each monitor light is formed between the FGC 7 and the light receiving element 4, and the optical axis of the monitor light 11 at both ends of the monitor light 11 emitted from the FGC 7 is tilted outward. The configuration is substantially the same as that of the first embodiment.

このようにすれば、受光素子4間の距離を発光点13の
間の距離より広くすることが可能となるので、各受光素
子4の面積を第1実施例よりも広く形成することができ
る。したがって、第1実施例と同様の効果を奏すると共
に、光出力モニタ装置の作製が容易となるという効果も
奏する。
In this way, the distance between the light receiving elements 4 can be made wider than the distance between the light emitting points 13, so the area of each light receiving element 4 can be made larger than in the first embodiment. Therefore, the same effects as in the first embodiment can be achieved, and the optical output monitoring device can also be manufactured easily.

尚、FGCT自体にモニタ光の光軸を傾けるような機能
を持たせた場合であっても、上記と同様の効果を奏する
ことは勿論である。
It goes without saying that even if the FGCT itself has a function of tilting the optical axis of the monitor light, the same effect as described above can be achieved.

また、前記第1実施例及び第2実施例では、レーザチッ
プ2からは3つのモニタ光11が発せられているが、こ
のような構造に限定されるものではなく、レーザチップ
2から2つのモニタ光11或いは4つ以上のモニタ光1
1が発せられている場合でも上記両実施例と同様の効果
を奏する。
Furthermore, in the first and second embodiments, three monitor lights 11 are emitted from the laser chip 2, but the structure is not limited to this, and two monitor lights 11 are emitted from the laser chip 2. Light 11 or 4 or more monitor lights 1
Even when 1 is issued, the same effects as in both of the above embodiments are achieved.

主尻皇四来 以上のように本発明によれば、ジャンクションダウン方
式に対応することが可能となるので、基板に熱が拡散し
易くなり素子性能の劣化を防止することができる。これ
により、発光装置の信頼性を格段に向上させることがで
きる。
As described above, according to the present invention, it becomes possible to support the junction down method, so that heat can be easily diffused into the substrate, and deterioration of element performance can be prevented. Thereby, the reliability of the light emitting device can be significantly improved.

また、隣接するモニタ光との間でクロストークが生じる
のを防止することができるので、光出力モニタ装置の検
出精度を飛躍的に向上させることができる等の効果を奏
する。
Furthermore, since it is possible to prevent crosstalk from occurring between adjacent monitor lights, it is possible to dramatically improve the detection accuracy of the light output monitor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の光出力モニタ装置におけるモニタ
光の伝播経路を示す平面図、第2図は第1実施例の光出
力モニタ装置の側面図、第3図は第2実施例の光出力モ
ニタ装置におけるモニタ光の伝播経路を示す平面図、第
4図及び第5図は従来の光出力モニタ装置を示す概略説
明図、第6図は半導体レーザの組み立て方法を示す側面
図である。 1・・・サブマウント、2・・・レーザチップ、4・・
・受光素子、6・・・コーニング7059導波層、7・
・・集光グレーティングカプラ。
FIG. 1 is a plan view showing the propagation path of monitor light in the optical output monitoring device of the first embodiment, FIG. 2 is a side view of the optical output monitoring device of the first embodiment, and FIG. 3 is a plan view of the optical output monitoring device of the second embodiment. FIG. 4 and FIG. 5 are schematic explanatory diagrams showing a conventional optical output monitoring device, and FIG. 6 is a side view showing a method for assembling a semiconductor laser. . 1...Submount, 2...Laser chip, 4...
- Light receiving element, 6... Corning 7059 waveguide layer, 7.
...Concentrating grating coupler.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に設けられ、被照射物に照射される複数の
照射光及びこの照射光の光出力にそれぞれ対応した光出
力を有するモニタ光を発する半導体レーザと、上記複数
のモニタ光を個別的に検出する複数の受光素子とを備え
た光出力モニタ装置において、 上記基板上のモニタ光照射方向にモニタ光を伝播させる
導波路を設け、この導波路上にモニタ光を導波路に導く
集光グレーティングカプラを形成すると共に、上記集光
グレーティングカプラで屈折された各モニタ光の集光位
置に上記導波路と接するよう前記受光素子を形成したこ
とを特徴とする光出力モニタ装置。
(1) A semiconductor laser that is provided on a substrate and emits a plurality of irradiation lights that are irradiated onto an object to be irradiated and a monitor light that has an optical output corresponding to each of the light outputs of the irradiation light, and a semiconductor laser that emits monitor light that has an optical output corresponding to each of the light outputs of the irradiation light, and the plurality of monitor lights that are individually transmitted. In an optical output monitoring device equipped with a plurality of light receiving elements for detecting the An optical output monitoring device characterized in that an optical grating coupler is formed, and the light receiving element is formed so as to be in contact with the waveguide at a condensing position of each monitor light refracted by the condensing grating coupler.
JP63066849A 1988-03-18 1988-03-18 Optical output monitoring device Pending JPH01241032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066849A JPH01241032A (en) 1988-03-18 1988-03-18 Optical output monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066849A JPH01241032A (en) 1988-03-18 1988-03-18 Optical output monitoring device

Publications (1)

Publication Number Publication Date
JPH01241032A true JPH01241032A (en) 1989-09-26

Family

ID=13327707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066849A Pending JPH01241032A (en) 1988-03-18 1988-03-18 Optical output monitoring device

Country Status (1)

Country Link
JP (1) JPH01241032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271586A (en) * 1989-04-12 1990-11-06 Mitsubishi Electric Corp Semiconductor laser device
US5446719A (en) * 1992-02-05 1995-08-29 Sharp Kabushiki Kaisha Optical information reproducing apparatus
JP2003289153A (en) * 2002-03-28 2003-10-10 Fujitsu Ltd Optical transmission device having wavelength stabilizing mechanism
DE102005016052B4 (en) * 2004-08-20 2010-10-07 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Self-monitoring light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208886A (en) * 1988-02-16 1989-08-22 Nec Corp Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208886A (en) * 1988-02-16 1989-08-22 Nec Corp Semiconductor laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271586A (en) * 1989-04-12 1990-11-06 Mitsubishi Electric Corp Semiconductor laser device
US5446719A (en) * 1992-02-05 1995-08-29 Sharp Kabushiki Kaisha Optical information reproducing apparatus
JP2003289153A (en) * 2002-03-28 2003-10-10 Fujitsu Ltd Optical transmission device having wavelength stabilizing mechanism
DE102005016052B4 (en) * 2004-08-20 2010-10-07 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Self-monitoring light-emitting device

Similar Documents

Publication Publication Date Title
KR100313298B1 (en) Optics
US6021238A (en) Optoelectronic module for bidirectional optical data transmission
US5195152A (en) Multichannel optical recording apparatus employing laser diodes
KR20040021027A (en) Integrated type optical head with coupler
JPH08316506A (en) Semiconductor photodetector and manufacturing method thereof
JP2009522805A (en) Monitor photodetector for integrated photonic devices
JPH07168040A (en) Semiconductor laser converging apparatus
JPS6273437A (en) Optical head device
JP2765793B2 (en) Mode separation element and pickup for magneto-optical disk
JPH02271586A (en) Semiconductor laser device
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH01241032A (en) Optical output monitoring device
US7111993B2 (en) Optical monitor module
JP2000121870A (en) Optical transmission and reception module, and its manufacture
JP2783806B2 (en) Optical output monitor
WO2020246042A1 (en) Surface-emitting optical circuit and surface-emitting light source using same
JPH0619847B2 (en) Optical information processing device
JPS6171430A (en) Optical information processor
JPH0453007B2 (en)
JPH0430581A (en) Semiconductor light receiving device
JPH1090561A (en) Multichannel optical module
JP2002280655A (en) Light outputting apparatus and lens element for it
JPS62275332A (en) Optical head
JP2723988B2 (en) Waveguide-type photodetector, optical integrated pickup, and optical integrated RF spectrum analyzer
JPH02213189A (en) Semiconductor laser device