JPH02213189A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH02213189A
JPH02213189A JP1034360A JP3436089A JPH02213189A JP H02213189 A JPH02213189 A JP H02213189A JP 1034360 A JP1034360 A JP 1034360A JP 3436089 A JP3436089 A JP 3436089A JP H02213189 A JPH02213189 A JP H02213189A
Authority
JP
Japan
Prior art keywords
photodiode
light
beam splitter
signal
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034360A
Other languages
Japanese (ja)
Inventor
Seiichi Nagai
永井 精一
Masayuki Kubota
雅之 久保田
Mitsuo Ishii
光男 石井
Kazuyoshi Hasegawa
長谷川 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1034360A priority Critical patent/JPH02213189A/en
Publication of JPH02213189A publication Critical patent/JPH02213189A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To lessen the number of components, to reduce position adjustment of the components as much as possible and also to reduce the cost by a method wherein a laser diode chip emitting a laser light to enter each beam splitter is formed in a submount and installed on a plane whereon photodiodes for signal regeneration and monitoring are formed or at a position higher than the plane. CONSTITUTION:An N-type semiconductor substrate 16 is used as a submount in which an LD chip 1 is incorporated, P-type diffused regions are formed in two places within the same plane of this semiconductor substrate 16, and these regions are made to be a photodiode(PD) 14 for signal regeneration and PD 4 for monitoring. Besides, beam splitters 17 and 18 are installed on the PD 14 for signal regeneration of the semiconductor substrate 16 and incorporated in a stem 5. An emitted laser light from the LD chip 1 is split into a rectilinear light and a 90 deg.-reflected light by the beam splitter 17, and the rectilinear light is turned to be a 90 deg.-reflected light by the beam splitter 18, made to enter the PD 4 and used for control of the laser light. The reflected light at the beam splitter 17 is applied to a disk, and the reflected light turned to be a signal light enters the beam splitter 17 and then the PD 14, whereby a signal is regenerated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、信号再生用フォトダイオード(以下、PD
と略す)とモニタ用PDとを内蔵した半導体レーザ装置
(以下、LDと略す)に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a signal reproducing photodiode (hereinafter referred to as PD).
The present invention relates to a semiconductor laser device (hereinafter abbreviated as LD) that incorporates a monitor PD (abbreviated as LD) and a PD for monitoring.

〔従来の技術〕[Conventional technology]

従来のLDの構成を第4図に示す。第4図において、L
Dチップ1は熱応力緩和材としてのサブマウント2を介
して放熱ブロック3に組立てられ、放熱ブロック3はモ
ニタ用PD4が組込まれたステム5に組立てられている
。LDチップ1およびモニタ用PD4はそれぞれ金線6
がボンディングされ、リード線7へ電気的に導通されて
いる。ステム5にはキャップ8が取り付けられ、LDl
ooが構成される。
FIG. 4 shows the configuration of a conventional LD. In Figure 4, L
The D-chip 1 is assembled to a heat radiation block 3 via a submount 2 serving as a thermal stress relaxation material, and the heat radiation block 3 is assembled to a stem 5 in which a monitor PD 4 is incorporated. LD chip 1 and monitor PD 4 each have gold wire 6
is bonded and electrically connected to the lead wire 7. A cap 8 is attached to the stem 5, and the LDl
oo is configured.

このLDlooはピックアップに組込まれ、オーディオ
ディスク、ビデオディスク等の光ディスクの読取り用光
源として使用される。
This LDloo is built into a pickup and used as a light source for reading optical discs such as audio discs and video discs.

次にピックアップの構成を第5図に示す。LD100の
前面にコリメートレンズ9が設置され、偏光ビームスプ
リッタ10,174波長板11゜対物レンズ12.Is
束レンズ13.信号再生用PD14および光ディスク1
5によりピックアップ200が構成されている。
Next, the configuration of the pickup is shown in FIG. A collimating lens 9 is installed in front of the LD 100, a polarizing beam splitter 10, a 174-wave plate 11° objective lens 12. Is
Bundle lens 13. PD14 for signal reproduction and optical disc 1
5 constitutes a pickup 200.

次に従来のLDlooおよびピックアップ200の動作
について説明する。
Next, the operation of the conventional LDloo and pickup 200 will be explained.

第4WJに示すLDlooは、リード線7に電圧が印加
されるとLDチップ1に電流が流れ、レーザ発振が始ま
I)、LDチップ1より二方向にレーザ光が図中矢印で
示す如く放射される。一方のレーザ光は光デイスク読取
り用光源として用いられ、他方のレーザ光はモニタ用P
D4に入射し、LD光出力の制御1こ用いられる。モニ
タ用PD4はレーザ光に対して傾斜しており、レーザ光
の入射光がモニタ用PD4で反射され、再びLDIへ入
射することのないように組立てられている。
In the LDloo shown in the 4th WJ, when a voltage is applied to the lead wire 7, a current flows to the LD chip 1 and laser oscillation starts (I), and laser light is emitted from the LD chip 1 in two directions as shown by the arrows in the figure. Ru. One laser beam is used as a light source for reading optical discs, and the other laser beam is used for monitoring P
The light enters D4 and is used to control the LD light output. The monitor PD 4 is inclined with respect to the laser beam, and is assembled so that the incident laser beam is reflected by the monitor PD 4 and does not enter the LDI again.

第5図に示すピックアップ200では、LDlooより
放射されたレーザ光がフリメートレンズ9を通り平行光
線となり、偏光ビームスビリツタ10で直spa光とな
り9さらに174波長板11を通って円偏光となる。対
物レンズ12で光デイスク15上で光スポットに絞られ
る。光スポットは光ディスク15のビットの部分では弱
められ、ランドの部分では弱められずに反射した光は対
物レンズ12を通過して平行光線となる。また、174
波長板11を通過すると、往きとは906帰先方向が異
なる直1JjIliil光になるなめ、偏光ビームスビ
リツタ10で反射された反射光は集束レンズ13を通性
信号再生用PD14に入射し、信号再生が行われる。
In the pickup 200 shown in FIG. 5, the laser light emitted from the LDloo passes through the frimate lens 9 and becomes parallel light, and then passes through the polarization beam stabilizer 10 and becomes direct spa light.9 It then passes through the 174 wavelength plate 11 and becomes circularly polarized light. . The objective lens 12 focuses the light onto an optical disk 15 into a light spot. The light spot is weakened at the bit portion of the optical disk 15, and the light reflected from the land portion without being weakened passes through the objective lens 12 and becomes a parallel beam. Also, 174
After passing through the wavelength plate 11, the reflected light becomes direct 1JjIliil light whose return direction is different from the outgoing direction, and the reflected light reflected by the polarizing beam stabilizer 10 enters the converging lens 13 into the PD 14 for facultative signal reproduction, and the signal Playback occurs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のピックアップ200では第5図に示すように部品
数が多くなり、価格が高くなる欠点があった。また、所
要の性能を得るため部品の位置調整を必要とする欠点が
あった。
As shown in FIG. 5, the conventional pickup 200 has the drawbacks of a large number of parts and a high price. Additionally, there is a drawback that position adjustment of parts is required to obtain the required performance.

この発明は、上記従来の欠点を解決するためになされた
もので、部品点数を少なくシ、部品の位置調整を極力減
らし、かつ安価な半導体し−ザ装置を得ることを目的と
している。
The present invention has been made to solve the above-mentioned conventional drawbacks, and aims to provide an inexpensive semiconductor laser device with a reduced number of parts and the need for positional adjustment of parts as much as possible.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザ装置は、熱応力緩和材とし
てのサブマウントの同一平面内に信号再生用フォトダイ
オードおよびモニタ用フォトダイす−ドを形成し、信号
再生用フォトダイオードおよびモニタ用フォトダイオー
ド上に各々ビームスブリフタを設け、信号再生用フォト
ダイオード上のビームスプリッタは入射光を信号再生用
フォトダイオードと反対方向に反射するように設置され
、モニタ用フォトダイオード上のビームスプリッタは入
射光がこのモニタ用フォトダイオードに入射するように
設置され、さらに、各ビームスプリッタに入射するレー
ザ光を出射するレーザダイオードチップをサブマウント
に形成された信号再生用フォトダイオードおよびモニタ
用フォトダイオードが形成された平面上または乙の平面
より高い所要位置に設置したものである。
In the semiconductor laser device according to the present invention, a signal reproducing photodiode and a monitoring photodiode are formed in the same plane of a submount as a thermal stress relaxation material, and a signal reproducing photodiode and a monitoring photodiode are formed on the same plane. The beam splitter on the signal regeneration photodiode is installed so that the incident light is reflected in the opposite direction to the signal regeneration photodiode, and the beam splitter on the monitor photodiode is installed so that the incident light is reflected in the opposite direction to the signal regeneration photodiode. A flat surface on which a signal regeneration photodiode and a monitor photodiode are formed, which is installed so that it is incident on the monitor photodiode, and a laser diode chip that emits laser light that is incident on each beam splitter is formed on a submount. It is installed at a required position above or higher than the plane of B.

〔作用〕[Effect]

この発明においては、モニタ用フォトダイオードと、信
号再生用フォトダイオードがサブマウント中に位置精度
が高く組込まれているため、ピックアップ組立て時の部
品の位置調整が減少する。
In this invention, since the monitoring photodiode and the signal reproducing photodiode are incorporated into the submount with high positional accuracy, the number of component position adjustments during pickup assembly is reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面ついて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す半導体レーザ装置の
ステムに組み込む前の構成図で、LDチップ1が組み込
まれるサブマウン)・とじてn型の半導体基板16を用
い、この半導体基板16の同一平面内に写真製版技術お
よび拡散技術を用いて2カ所にp型の拡散領域を形成し
、これを信号再生用PD14およびモニタ用PD4とす
る。
FIG. 1 is a configuration diagram of a semiconductor laser device showing an embodiment of the present invention before it is assembled into a stem. Two p-type diffusion regions are formed in the same plane using photolithography and diffusion techniques, and these are used as a signal reproducing PD 14 and a monitoring PD 4.

また、半導体基板16上にLDチ・ツブ1を組立て、半
導体基板16の信号再生用PD14上に各々ビームスプ
リッタ17.18を設置する。この後第2図に示す如(
ステム5に組み込む。
Further, the LD chip 1 is assembled on the semiconductor substrate 16, and beam splitters 17 and 18 are installed on each of the signal reproducing PDs 14 on the semiconductor substrate 16. After this, as shown in Figure 2 (
Incorporate into stem 5.

このように構成されるこの発明の半導体レーザ装置では
、サブマウントとしての半導体基板16の同一平面内に
信号再生用PD14およびモニタ用PDdが一体化され
て形成されており、L Dヂツブ1からの出射レーザ光
はビームスプリッタ17で直進光と90°の反射光に分
けられ、直進光はビームスプリッタ18で90°の反射
光となり、モニタ用PD4に入射し、レーザ光の制御に
用いられる。ビームスプリッタ17での反射光がディス
クに照射され、信号光となった反射光はビームスプリッ
タ17に入射し、信号再生用PD14に入射され、信号
が再生される。
In the semiconductor laser device of the present invention configured as described above, the signal reproducing PD 14 and the monitoring PDd are integrally formed within the same plane of the semiconductor substrate 16 as a submount, and the The emitted laser beam is divided into straight light and 90° reflected light by the beam splitter 17, and the straight light becomes 90° reflected light by the beam splitter 18, which enters the monitoring PD 4 and is used to control the laser light. The reflected light from the beam splitter 17 is irradiated onto the disk, and the reflected light, which has become signal light, is incident on the beam splitter 17 and then incident on the signal reproducing PD 14, where the signal is reproduced.

なわ、ビームスプリッタ17は反射光が信号再生用PD
14と反対方向に進むように設置し、ビームスプリ・ツ
タ18は反射光がモニタ用PD4に入射するように設置
する必要がある。
The beam splitter 17 uses reflected light as a PD for signal reproduction.
The beam splitter 18 must be installed so that the reflected light is incident on the monitor PD 4.

また、LDデツプ1からの出射光は、一方の端面からの
出力光が用いられるだけのため、他方の端面ば100%
の反射率を有するようにし、出力効率を高めろようにす
る。
In addition, since only the output light from one end face is used for the light emitted from the LD deep 1, the output light from the other end face is 100%
to increase the output efficiency.

さらに、ビームスプリッタ18も反射率を100%とし
、モニタ用PD4への入射効率を高めるとともに、ディ
スクからの信号光が再入射しないようにする。
Furthermore, the beam splitter 18 also has a reflectance of 100% to increase the incidence efficiency to the monitoring PD 4 and to prevent signal light from the disk from entering again.

また、半導体基板16としてはシリコンが適しており、
熱応力緩和材としても、また、両PD4゜14を作咋込
む場合にも適している。
Furthermore, silicon is suitable for the semiconductor substrate 16.
It is also suitable as a thermal stress relieving material and when using both PD4°14.

第3図(a)、(b)はこの発明の他の実施例を示す図
で、第1図の実施例が平坦状の半導体基板16の表面上
にLDチップ1を組み込んだのに対し、この実施例では
LDチップ1をサブマウントの表面より高い位置に組み
込んだものである。
3(a) and 3(b) are diagrams showing another embodiment of the present invention, in which the embodiment of FIG. 1 incorporates the LD chip 1 on the surface of a flat semiconductor substrate 16. In this embodiment, the LD chip 1 is installed at a position higher than the surface of the submount.

すなわち、実際にLDチップ1から出射されるレーザ光
は、広がりをもって出射され、LDチップ1の厚さは約
100μm程度であり、半導体基板16の表面でのレー
ザ光のけられを防止する必要がある。
That is, the laser light actually emitted from the LD chip 1 is emitted with a wide spread, and the thickness of the LD chip 1 is about 100 μm, so it is necessary to prevent the laser light from being vignetted on the surface of the semiconductor substrate 16. be.

このため、第3図(−)に示す実施例は、半導体基板1
6に凹部leaを設け、凹部t6aの面内にモニタ用P
D4および信号再生用PD14を形成し、この上にそれ
ぞれビームスプリッタ17゜18を設けたものである。
Therefore, in the embodiment shown in FIG. 3(-), the semiconductor substrate 1
6 is provided with a recess lea, and a monitor P is provided within the plane of the recess t6a.
A D4 and a PD 14 for signal reproduction are formed, and beam splitters 17 and 18 are respectively provided thereon.

また、第3図(b)に示す実施例は、半導体基板16に
補助用のサブマウンl−16bを設け、この補助用のサ
ブマウンI−16bを介してLDチップ1を組立て、L
・−ザ光のけられを防止するようにしたものである。
Further, in the embodiment shown in FIG. 3(b), an auxiliary sub-mount I-16b is provided on the semiconductor substrate 16, and the LD chip 1 is assembled via this auxiliary sub-mount I-16b.
- This is designed to prevent vignetting of the light.

なお、上記実施例ではサブマウントとじてn型の半導体
基板16を用いたが、p型の半導体基板を用い、これに
n型の拡散領域を形成してモニタ用PD4および信号再
生用PD171を形成しても同様の効果が得られる。
In the above embodiment, an n-type semiconductor substrate 16 was used as the submount, but a p-type semiconductor substrate was used and an n-type diffusion region was formed thereon to form the monitor PD 4 and the signal reproducing PD 171. The same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、熱応力緩和材としての
サブマウントの同一平面内に信号再生用フォトダイオー
ドおよびモニタ用フォトダイオードを形成し、信号再生
用フォトダイオードおよびモニタ用フォトダイオード上
に各々ビームスプリッタを設け、信号再生用フォトダイ
オード上のビームスプリッタは入射光を信号再生用フォ
トダイオードと反対方向に反射するように設置され、モ
ニタ用フォトダイオード上のビームスプリッタは入射光
がこのモニタ用フォi・ダイオードに入射するように設
置され、さらに、各ビームスプリッタに入射するレーザ
光を出射するレーザダイオードチップを前記サブマウン
トに形成された信号再生用フォトダイオードおよび再生
用フォトダイオードが形成された平面上またはこの平面
より高い所要位置に設置したので、信号再生用フォトダ
イオードおよびモニタ用フォトダイオードが同一基板の
同一平面内に形成され、ピックアップとして部品点数が
少なくてすみ、かつ小型化でき、安価となる。さらに、
この発明では、信号再生用フォトダイオード、モニタ用
フォトダイオードは写真製版技術を用いて形成され、高
い位置精度を有するため、ピックアップ組立て時の調整
が少なくてすむ等の利点を有する。
As explained above, in the present invention, a signal regeneration photodiode and a monitor photodiode are formed in the same plane of a submount as a thermal stress relaxation material, and beams are placed on the signal regeneration photodiode and the monitor photodiode, respectively. The beam splitter on the signal reproducing photodiode is installed so as to reflect the incident light in the opposite direction to the signal reproducing photodiode, and the beam splitter on the monitor photodiode reflects the incident light in the opposite direction to the signal reproducing photodiode.・A laser diode chip that is installed so as to be incident on the diode and emits the laser light that is incident on each beam splitter is placed on the plane where the signal reproducing photodiode and the reproducing photodiode are formed on the submount. Or, since it is installed at a required position higher than this plane, the signal reproducing photodiode and the monitoring photodiode are formed on the same board on the same plane, which reduces the number of components required for the pickup, making it smaller and cheaper. . moreover,
In this invention, the signal reproducing photodiode and the monitoring photodiode are formed using photolithography and have high positional accuracy, which has advantages such as requiring less adjustment during pickup assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す半導体レーザ装置の
ステムに組み込む前の構成図、第2図は同じくステムに
組み込む前の構成図、第3図(a)。 (b)はこの発明の半導体レーザ装置の他の実施例を示
すステムに組み込んだ構成図、第4図は従来の半導体レ
ーザ装置の構成図、第5図は従来のビツクアップを示す
構成図である。 図において、1はLDチップ、4はモニタ用PD、14
は信号再生用PD、16はサブマウン!・とじての半導
体基板、16aは凹部、tabは補助用のサブマウンl
−117,18はビームスプリッタ、100はLDであ
る。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of a semiconductor laser device showing an embodiment of the present invention before being assembled into a stem, FIG. 2 is a block diagram of the same before being assembled into a stem, and FIG. 3(a). (b) is a configuration diagram showing another embodiment of the semiconductor laser device of the present invention incorporated in a stem, FIG. 4 is a configuration diagram of a conventional semiconductor laser device, and FIG. 5 is a configuration diagram showing a conventional backup. . In the figure, 1 is an LD chip, 4 is a monitor PD, and 14
is the PD for signal reproduction, and 16 is the submount!・Finding semiconductor substrate, 16a is a recess, tab is an auxiliary sub-mount l
-117 and 18 are beam splitters, and 100 is an LD. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  熱応力緩和材としてのサブマウントの同一平面内に信
号再生用フォトダイオードおよびモニタ用フォトダイオ
ードを形成し、前記信号再生用フォトダイオードおよび
モニタ用フォトダイオード上に各々ビームスプリッタを
設け、前記信号再生用フォトダイオード上のビームスプ
リッタは入射光を信号再生用フォトダイオードと反対方
向に反射するように設置され、前記モニタ用フォトダイ
オード上のビームスプリッタは入射光がこのモニタ用フ
ォトダイオードに入射するように設置され、さらに、前
記各ビームスプリッタに入射するレーザ光を出射するレ
ーザダイオードチップを前記サブマウントに形成された
信号再生用フォトダイオードおよびモニタ用フォトダイ
オードが形成された平面上またはこの平面より高い所要
位置に設置したことを特徴とする半導体レーザ装置。
A signal reproducing photodiode and a monitoring photodiode are formed in the same plane of a submount serving as a thermal stress relaxation material, and a beam splitter is provided on each of the signal reproducing photodiode and the monitoring photodiode, and a beam splitter is provided on each of the signal reproducing photodiode and the monitoring photodiode. The beam splitter on the photodiode is installed so as to reflect the incident light in the opposite direction to the signal reproducing photodiode, and the beam splitter on the monitor photodiode is installed so that the incident light enters the monitor photodiode. Further, a laser diode chip that emits the laser light incident on each beam splitter is placed on the plane where the signal reproducing photodiode and the monitoring photodiode formed on the submount are formed, or at a required position higher than this plane. A semiconductor laser device characterized in that it is installed in.
JP1034360A 1989-02-14 1989-02-14 Semiconductor laser device Pending JPH02213189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034360A JPH02213189A (en) 1989-02-14 1989-02-14 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034360A JPH02213189A (en) 1989-02-14 1989-02-14 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH02213189A true JPH02213189A (en) 1990-08-24

Family

ID=12411997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034360A Pending JPH02213189A (en) 1989-02-14 1989-02-14 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH02213189A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015017A1 (en) * 1996-09-30 1998-04-09 Siemens Aktiengesellschaft Opto-electronic module for bi-directional optical data transmision
JP2010045274A (en) * 2008-08-18 2010-02-25 Seiko Epson Corp Laser light source device, projector, and monitoring device
US20180331495A1 (en) * 2016-02-22 2018-11-15 Mitsubishi Electric Corporation Laser light source device and method of manufacturing laser light source device
KR20220093949A (en) 2020-12-28 2022-07-05 주식회사 엘에스네트웍스 Outsole and shoe comprising the outsole

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015017A1 (en) * 1996-09-30 1998-04-09 Siemens Aktiengesellschaft Opto-electronic module for bi-directional optical data transmision
JP2010045274A (en) * 2008-08-18 2010-02-25 Seiko Epson Corp Laser light source device, projector, and monitoring device
US20180331495A1 (en) * 2016-02-22 2018-11-15 Mitsubishi Electric Corporation Laser light source device and method of manufacturing laser light source device
US10868404B2 (en) * 2016-02-22 2020-12-15 Mitsubishi Electric Corporation Laser light source device and method of manufacturing laser light source device
KR20220093949A (en) 2020-12-28 2022-07-05 주식회사 엘에스네트웍스 Outsole and shoe comprising the outsole

Similar Documents

Publication Publication Date Title
KR100852567B1 (en) Mounting method for optical device and optical head equipment
JPH08235663A (en) Optical element
JP2533871B2 (en) Semiconductor laser device
JPS6273437A (en) Optical head device
US20010022768A1 (en) Optical pickup apparatus and laser diode chip
JPH04199890A (en) Semiconductor laser device
US6816450B2 (en) Optical pickup apparatus that emits two light beams having two different wavelengths
KR100366870B1 (en) Optical head and method for monitoring light source output in optical head
JPH02213189A (en) Semiconductor laser device
US6912234B2 (en) Optical pickup apparatus and laser diode chip
JP4590660B2 (en) Optical pickup device
KR100513734B1 (en) Slim optical pickup
US7023787B2 (en) Optical pickup device
JPH02253687A (en) Semiconductor laser device
JPH01281787A (en) Semiconductor laser device
JP2000151006A (en) Semiconductor laser device
JP4376578B2 (en) Optical head for optical recording / reproducing apparatus
JPH1027374A (en) Semiconductor laser module
JP3157596B2 (en) Light head
JPH0376033A (en) Semiconductor laser device
JPH08339570A (en) Optical head for optical recording and reproducing device
JPH0821754B2 (en) Optical device
JPH04350948A (en) Optical element
KR20050008767A (en) Two-wavelength optical element
JPH07192299A (en) Optical pickup device