JPH01240903A - Method for deciding weight of evaluation function - Google Patents

Method for deciding weight of evaluation function

Info

Publication number
JPH01240903A
JPH01240903A JP6720688A JP6720688A JPH01240903A JP H01240903 A JPH01240903 A JP H01240903A JP 6720688 A JP6720688 A JP 6720688A JP 6720688 A JP6720688 A JP 6720688A JP H01240903 A JPH01240903 A JP H01240903A
Authority
JP
Japan
Prior art keywords
weight
evaluation function
solution
time
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6720688A
Other languages
Japanese (ja)
Inventor
Koichi Takahashi
孝一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6720688A priority Critical patent/JPH01240903A/en
Publication of JPH01240903A publication Critical patent/JPH01240903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a time required for the decision of weight by selecting the weight of an evaluation function so that the value of each matrix element equivalent to PI control can be set at almost the same value as a solution found according to the method of the PI control out of the optimum regulator solutions as rough weight at the time of deriving the optimum regulator solution after the designation of the weight. CONSTITUTION:In the selection of the 'weight' of the evaluation function at the time of deciding an integral type optimum regulator 'solution', the rough 'weight' is selected so as to be set a value equal to the solution found by the PI control without performing the response calculation of a state variable after deriving the 'solution', and after that, the 'weight' of the evaluation function is decided by a on-going system. In such a way, the selective criterion of the 'weight' of the evaluation function at the time of deciding the optimum regulator 'solution' can be offered, and the reduction of the response calculation time of the state variable at the time of selecting the 'weight' of the evaluation function can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、現代制御理論の分野に属するものであり、
成る評価関数を設定し、評価関数の直が最小となるよう
な状態フィードバックを施すという最適制御において、
評価関数の重みを決定する重み決定方法に関するもので
おる。
[Detailed Description of the Invention] [Field of Industrial Application] This invention belongs to the field of modern control theory.
In optimal control, the evaluation function is set and state feedback is applied so that the directivity of the evaluation function is minimized.
This paper relates to a weight determination method for determining the weight of an evaluation function.

更に詳しくは、この発明は、評価関数の1重み”選択手
法を用いて1重み”指定後の積分型最適レギュレータ1
解”導出段階において概略の′重み“選択手法を提供す
ることにより、評価関数の1重み”決定時の状態変数の
応答計算時間を削減する手法に関する。
More specifically, the present invention provides an integral optimal regulator 1 after specifying 1 weight of the evaluation function using a 1 weight selection method.
The present invention relates to a method for reducing the response calculation time of a state variable when determining one weight of an evaluation function by providing a method for selecting an approximate weight at the solution derivation stage.

〔従来の技術〕[Conventional technology]

この種の重み決定方法としては、評価関数の“重み”を
指定し積分型最適レギュレータ1解”導出後に、状態変
数の応答計算を行ないその応答より評価関数の1重み”
を決定するという手法がとられていた。
This type of weight determination method specifies the "weight" of the evaluation function, derives one solution of the integral type optimal regulator, calculates the response of the state variable, and uses the response to calculate the one weight of the evaluation function.
A method was used to determine.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、との手法では評価関数の1重み”指定変更のた
びに、応答計算まで行なう必要が1評価関数の“重み”
決定に時間を要するという欠点が6りた。
However, in this method, it is necessary to calculate the response every time the designation of one weight of the evaluation function is changed.
The disadvantage was that it took time to make a decision.

この発明は、上記欠点を除去し、積分型最適レギュレー
タ1解”決定に際しての評価関数の重み決定において、
重み決定に要する時間を削減すると、とのできる重み決
定方法を提供することを目的とする。
This invention eliminates the above-mentioned drawbacks, and in determining the weight of the evaluation function when determining the integral type optimal regulator 1 solution.
It is an object of the present invention to provide a weight determination method that can reduce the time required for weight determination.

〔課題を解決するための手段〕[Means to solve the problem]

この発明では、積分型最適レギュレータとPI制闘との
等価性に着目した。
This invention focuses on the equivalence between the integral type optimal regulator and PI control.

〔作用〕[Effect]

積分型最適レギュレータ6解”決定時の評価関数の1重
み”選択に2いて、1解”導出後の状態変数の応答計算
を行なわず、概略の1重み”をP工制御によシ求めた解
と同じになるように選択した後に、従来方式により評価
関数の1重み”を決定する。これによ)応答計算時間の
削減を図ることができる。
Integral type optimal regulator 6 solution ``1 weight of evaluation function at the time of determination'' was selected, and 1 solution ``1 weight approximately without calculating the response of the state variable after derivation'' was determined by P engineering control. After selecting it so that it is the same as the solution, the conventional method is used to determine the "1 weight" of the evaluation function.This makes it possible to reduce the response calculation time.

〔実施例〕〔Example〕

一般に、連続系における制御対象の状態方程式は次の様
に表現される。但し以下に記される諸量は状態ベクトル
でおる。
Generally, the state equation of a controlled object in a continuous system is expressed as follows. However, the quantities described below are state vectors.

文−AX+BU        ・・・・・・(1)上
式を離散直系の積分型最適レギュレータで設計する場合
(但し、式(1)は可制御・可観測でおる。)次の様に
表現される。
Sentence - AX + BU ...... (1) When the above equation is designed using a discrete direct system integral type optimal regulator (however, equation (1) is controllable and observable), it is expressed as follows. .

fllJm対、t  X(k+1)−A’X(k)+B
’U(k)   −・−・−(2)出力信号 Y(k)
−CXac)         =・・(3)誤差信号
 e (y、、> = YCk) −Rck)    
   ”” (4)〔R(k);設定置〕 但し A’(t)−、L−” I: S l −A )B’C
t)−f A’(τ)Bdτ ここで、 jX(k+1)=X(k+1)−XQc)      
     ・・・・・−(5ンΔυ(k)−υ(k)−
υ(sc−1)・・” C6)とおくと、次の様に離散
値形状態方程式が得られる。
fllJm pair, t X(k+1)-A'X(k)+B
'U(k) −・−・−(2) Output signal Y(k)
-CXac) =... (3) Error signal e (y,, > = YCk) -Rck)
"" (4) [R(k); Setting position] However, A'(t)-, L-" I: S l -A ) B'C
t)-f A'(τ)Bdτ Here, jX(k+1)=X(k+1)-XQc)
・・・・・・−(5nΔυ(k)−υ(k)−
υ(sc-1)...'' C6), the discrete value form equation of state is obtained as follows.

・・・・・・(7) X(k+1)−φxQc)+rΔυ□c)      
=” (8)式(8)に対して評価関数を次の様に定義
する。
・・・・・・(7) X(k+1)−φxQc)+rΔυ□c)
=” (8) The evaluation function for equation (8) is defined as follows.

式(9)の評価関数のもとて状態方程式(8)の最適レ
ギュレータ1解”は、次の様になる。
Based on the evaluation function of equation (9), the "optimal regulator 1 solution" of state equation (8) is as follows.

= f AXck>+にe(k)  ” (10)ここ
で F−−[R+z Pz)z Pφ    −・−・(1
1)ただし、Pは離散値形リカツチ方程式 %式%(12) を解くことで求められる。
= f AXck>+ to e(k) ” (10) Here, F−−[R+z Pz)z Pφ −・−・(1
1) However, P can be found by solving the discrete-valued Rikkatchi equation % formula % (12).

式(10)は、次の様にυ(k)について求めることが
できる。
Equation (10) can be obtained for υ(k) as follows.

・・・・・・(15) UQC)= f XQc)+ K 、X、 e (1)
式(13)と制御対象を表わす式(2)と組み合わせる
と、レギュレータ(最適制御系)は図の様になる。
...... (15) UQC) = f XQc) + K, X, e (1)
When formula (13) is combined with formula (2) representing the controlled object, the regulator (optimal control system) becomes as shown in the figure.

図において、1は離散値系制御対象を表わし、2A、2
Bはそれぞれ最適レギュレータ解を示す。
In the figure, 1 represents a discrete value controlled object, 2A, 2
B indicates the optimal regulator solution, respectively.

ここでPI制御と比較した場合、式(13)の第1項は
比例ゲイン、第2項は積分時間に相当する。
Here, when compared with PI control, the first term in equation (13) corresponds to a proportional gain, and the second term corresponds to an integral time.

式(15)は、次の様な各行列素で表わされ、ここでf
11〜ftm、に1.〜ktmの最適レギュレ−夕解の
うち従来のPI制御に相当する各行列要素の直が、PI
制御の方法に従って求めた解とほぼ同じ肱となる様に、
式(9)の評価関数の1重み”Q、Hの指定を行なえば
、概略の”重み”選択が可能となる。したがって、最適
レギュレータ解導出段階で、と僚価基準の1重み”選択
基準の手法を取9入れれば、状態変数の応答計算の削減
が図れる。
Equation (15) is expressed by each matrix element as follows, where f
11~ftm, 1. ~ktm's optimal regulation - The directivity of each matrix element corresponding to conventional PI control among the solutions is PI
So that the solution is almost the same as the one obtained according to the control method,
By specifying the 1 weight Q and H of the evaluation function in Equation (9), it becomes possible to roughly select the ``weight''. Therefore, in the optimal regulator solution derivation stage, the selection criteria By adopting the method 9, it is possible to reduce the number of state variable response calculations.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、最適レギュレータ1解”決定時の評
価関数の“重み”の選択基準が提供されることになシ、
評価関数の1重み”選択時の状態変数の応答計算時間の
削減が図れる。
According to the present invention, criteria for selecting the "weight" of the evaluation function when determining the "optimal regulator 1 solution" is provided.
It is possible to reduce the response calculation time of the state variable when selecting "1 weight" of the evaluation function.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の適用対象とするレギュレータを示すブロッ
ク図である。 符号の説明 1・・・・・・離散直系制御対象、2A、2B・・・・
・・最適レギュレータ解
The figure is a block diagram showing a regulator to which the present invention is applied. Explanation of symbols 1...Discrete direct control objects, 2A, 2B...
・Optimal regulator solution

Claims (1)

【特許請求の範囲】 1)積分型最適レギュレータ解決定に際しての評価関数
の重み決定において、 重み指定後の最適レギュレータ解導出段階の時点で、概
略の重みとして、最適レギュレータ解のうち、PI制御
に相当する各行列要素の値が、PI制御の方法に従つて
求めた解とほぼ同じ値となるように前記評価関数の重み
を選択してやることを特徴とする評価関数の重み決定方
法。
[Claims] 1) In determining the weight of the evaluation function when determining the integral type optimal regulator solution, at the stage of deriving the optimal regulator solution after specifying the weight, the approximate weight is set to PI control among the optimal regulator solutions. A method for determining the weight of an evaluation function, characterized in that the weight of the evaluation function is selected so that the value of each corresponding matrix element becomes approximately the same value as the solution obtained according to the PI control method.
JP6720688A 1988-03-23 1988-03-23 Method for deciding weight of evaluation function Pending JPH01240903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6720688A JPH01240903A (en) 1988-03-23 1988-03-23 Method for deciding weight of evaluation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6720688A JPH01240903A (en) 1988-03-23 1988-03-23 Method for deciding weight of evaluation function

Publications (1)

Publication Number Publication Date
JPH01240903A true JPH01240903A (en) 1989-09-26

Family

ID=13338203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6720688A Pending JPH01240903A (en) 1988-03-23 1988-03-23 Method for deciding weight of evaluation function

Country Status (1)

Country Link
JP (1) JPH01240903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348402A (en) * 1991-03-18 1992-12-03 Ricoh Co Ltd Optimum integration type regulator and image scanner using this regulator
JP2019109890A (en) * 2017-12-15 2019-07-04 オムロン株式会社 Control unit
JP2019125367A (en) * 2018-01-11 2019-07-25 オムロン株式会社 Method for setting control parameter for model prediction control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348402A (en) * 1991-03-18 1992-12-03 Ricoh Co Ltd Optimum integration type regulator and image scanner using this regulator
JP2019109890A (en) * 2017-12-15 2019-07-04 オムロン株式会社 Control unit
US11199822B2 (en) 2017-12-15 2021-12-14 Omron Corporation Control device
JP2019125367A (en) * 2018-01-11 2019-07-25 オムロン株式会社 Method for setting control parameter for model prediction control

Similar Documents

Publication Publication Date Title
JPH01240903A (en) Method for deciding weight of evaluation function
US7109608B2 (en) Advanced smooth transition switch
JPH0378003A (en) Fuzzy controller
JPS62182803A (en) Position controller
JPH0876811A (en) Process controller
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JP2683543B2 (en) Automatic control method
JPH0934503A (en) Adjustment method for pid controller
JPH047602A (en) Pid control method
JPH0588749A (en) Sliding mode control method
JPS6220005A (en) Feedback controller
JPS63253402A (en) Process controller
JP2867686B2 (en) Transmission power control method by fuzzy control
JPS6355602A (en) Feedback controller
JP2740618B2 (en) Looper control device
JPH04117011A (en) Gain controller
JP2915220B2 (en) Process control equipment
JPH09217701A (en) Vibration control method for structure
JPS61128301A (en) Process control device
JP2855644B2 (en) Controller
Konnur Attractor Bubbling, Control, and Desynchronization of Chaotic Systems
KR100340849B1 (en) Apparatus and method for conjecturing speed in stabilization system using gyroscope
JPH062402U (en) Cascade controller
JPH05119803A (en) Feedback controller
JPH09134203A (en) Distribution controller