JPH0934503A - Adjustment method for pid controller - Google Patents

Adjustment method for pid controller

Info

Publication number
JPH0934503A
JPH0934503A JP17972495A JP17972495A JPH0934503A JP H0934503 A JPH0934503 A JP H0934503A JP 17972495 A JP17972495 A JP 17972495A JP 17972495 A JP17972495 A JP 17972495A JP H0934503 A JPH0934503 A JP H0934503A
Authority
JP
Japan
Prior art keywords
value
time
minimum value
proportional gain
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17972495A
Other languages
Japanese (ja)
Inventor
Takehiro Shinzen
健裕 新膳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP17972495A priority Critical patent/JPH0934503A/en
Publication of JPH0934503A publication Critical patent/JPH0934503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the adjustment method which can easily decide the PID parameter of optimum value to design a stable control system and also can automatically adjust a PID controller by the simulation of computer application by adjusting even the gain of an integration term when the PID parameter is adjusted by the critical sensitivity method. SOLUTION: When the PID parameter is decided by the critical sensitivity method the integration time and the differentiation time are set at the maximum value (T1 =∞) and the minimum value (TD=0) respectively and the proportional gain Kp is increased up to its maximum value from the minimum value in a normal application range. If the difference (y) is negative between the 1st and 2nd peaks, the sustained oscillation is decided. Thus a 1st step is prepared to set the proportional gain at Kpm of the relevant time point together with a 2nd step where the integration time is reduced down to its minimum value from the maximum value in the normal application range and then set at T1 M that produces the least error against the input with the porportional gain and the differentiation time are set at 0.2Kpm and the minimum value (TD=0) respectively. Then the differentiation time TD is set at the value obtained by multiplying the value T1 M by a certain coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、限界感度法を用い
たPIDコントローラの調整法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting a PID controller using a limit sensitivity method.

【0002】[0002]

【従来の技術】周知のように、比例動作(P動作)、積
分動作(I動作)、微分動作(D動作)の三つの基本動
作を組み合わせたPIDコントローラ(制御器;調節計
とも呼ばれる)は、定常特性と速応性とを同時に改善で
きるために、各種の機器・装置、プラント等に多用され
ている。その際、最良の制御性能を期待できるようにP
IDパラメータ(比例ゲインKp,積分時間TI,微分
時間TD等)を調整することが必要となる。PIDコン
トローラの調整法としては、限界感度法がよく使われて
いる。限界感度法とは、積分時間を最大値に、微分時間
を最小値にして実質的にP動作のみとし、比例ゲインを
徐々に大きくして、制御量の定常振動状態(持続振動)
を生じさせ、この時の比例ゲインKpcと振動周期Tc
から、次の式に従ってPIDパラメータを決定する方法
である。
2. Description of the Related Art As is well known, a PID controller (controller; also called a controller) that combines three basic operations of proportional operation (P operation), integral operation (I operation), and derivative operation (D operation) is known. Since it is possible to improve steady state characteristics and quick response at the same time, it is widely used in various machines and equipment, plants and the like. At that time, P to ensure the best control performance
It is necessary to adjust the ID parameters (proportional gain Kp, integration time T I , differential time T D, etc.). The limiting sensitivity method is often used as the method for adjusting the PID controller. The limit sensitivity method is the steady oscillation state of the controlled variable (sustained oscillation) with the integral time set to the maximum value and the derivative time set to the minimum value to make the P operation practically only and the proportional gain gradually increased.
And the proportional gain Kpc and the vibration period Tc at this time are generated.
From the above, the PID parameter is determined according to the following equation.

【0003】Kp=Kpc/1.7 TI=0.5Tc TD=0.125TcKp = Kpc / 1.7 T I = 0.5Tc T D = 0.125Tc

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法でPIDパラメータを決定した場合、実際にプラント
でその値を使ってみると、人が調整した場合に比べて比
例ゲインが大きな値となり、応答が振動的になることが
あった。これは、プラントが複雑な特性を持つ場合に、
どの時点で持続振動になったかの判断が難しいためであ
る。
However, when the PID parameter is determined by such a method, when the value is actually used in the plant, the proportional gain becomes a large value as compared with the case where it is adjusted by a person. The response could be oscillatory. This is because if the plant has complex characteristics,
This is because it is difficult to determine at what point in time the continuous vibration occurred.

【0005】そこで本発明は、上記課題を解決し、安定
した制御系を設計できるPIDパラメータの調整法を提
供することを目的とする。
Therefore, an object of the present invention is to solve the above problems and provide a method of adjusting a PID parameter which enables a stable control system to be designed.

【0006】[0006]

【課題を解決するための手段】本発明は、PIDパラメ
ータを限界感度法を用いて決定する際、積分時間を最大
値(TI=∞)に、微分時間を最小値(TD=0)にし
て、比例ゲインKpを通常の使用範囲の最小値から最大
値まで(例えば、0.05〜25まで)増加させてい
き、1番目のピークと2番目のピークの差が負ならば持
続振動とみなし、比例ゲインをその時の値Kpmに決定
する第一段階と、比例ゲインを0.2Kpmに、微分時
間を最小値(TD=0)にして、積分時間を通常の使用
範囲の最大値から最小値まで(例えば、20秒から1秒
まで)減少させていき、積分時間を入力に対する誤差が
最も小さい時の値TIMに決定する第二段階との2段階調
整とし、微分時間TDをTIMにある係数(例えば、1/
20=0.05)を乗じた値に決定することを特徴とす
る。
According to the present invention, when the PID parameter is determined by using the limit sensitivity method, the integration time is set to the maximum value (T I = ∞) and the differentiation time is set to the minimum value (T D = 0). Then, the proportional gain Kp is increased from the minimum value to the maximum value (for example, 0.05 to 25) of the normal use range, and if the difference between the first peak and the second peak is negative, continuous vibration is generated. The first step of determining the proportional gain to the value Kpm at that time, the proportional gain to 0.2 Kpm, the derivative time to the minimum value (T D = 0), and the integral time to the maximum value in the normal use range. from to the minimum value (e.g., from 20 seconds to 1 second) will decrease, and two-step adjustment of the second stage of determining the value T IM when the error is smallest with respect to the input of the integral time, derivative time T D Is a coefficient in T IM (for example, 1 /
20 = 0.05).

【0007】[0007]

【発明の実施の形態】図1及び図2に本発明の一実施形
態を示す。図1はPIDパラメータを求めるフローチャ
ート、図2は制御ブロック図である。図2において、1
はPIDコントローラ、2は制御対象のプラント、Kp
は比例ゲイン、TIは積分時間、TDは微分時間、Gp
(s)はプラント2の伝達関数である。
1 and 2 show an embodiment of the present invention. FIG. 1 is a flowchart for obtaining PID parameters, and FIG. 2 is a control block diagram. In FIG. 2, 1
Is a PID controller, 2 is a plant to be controlled, Kp
Is proportional gain, T I is integration time, T D is derivative time, Gp
(S) is the transfer function of the plant 2.

【0008】PIDパラメータは、図1に示すフローチ
ャートの手順で求める。即ち、まず、比例ゲインKpを
増加させる。この時、積分時間TIを最大、微分時間TD
を最小(TD=0)とする(ステップS1)。比例ゲイ
ンKpを0.05から25まで(通常の使用範囲の最小
値から最大値まで)増加させていく過程で持続振動にな
ったか否かを判断する(S2)。その判断基準は、図3
に示すように1番目のピークと2番目のピークの差yが
負になることであり、その状態を持続振動とみなしてい
る。比例ゲインKpは、その時の値Kpmに決定する。
The PID parameter is obtained by the procedure of the flowchart shown in FIG. That is, first, the proportional gain Kp is increased. At this time, the integration time T I is the maximum and the differentiation time T D is
Is set to the minimum (T D = 0) (step S1). In the process of increasing the proportional gain Kp from 0.05 to 25 (from the minimum value to the maximum value in the normal use range), it is determined whether or not continuous vibration has occurred (S2). The criterion is shown in Fig. 3.
The difference y between the first and second peaks becomes negative as shown in, and the state is regarded as continuous oscillation. The proportional gain Kp is determined to the value Kpm at that time.

【0009】この後、積分項のゲインKIを調整する。
それには、比例ゲインKpを Kp=0.2Kpm とする(S3)。また、微分時間TDを最小(TD=0)
とする。この状態で積分時間TIを20秒から1秒まで
(通常の使用範囲の最大値から最小値まで)減少させて
いく(S4)。つまり、積分項のゲインKIを変化させ
ている。その間における入力に対する誤差が最も小さい
時の積分時間TIの値をTIMとする(S5〜S8)。
After that, the gain K I of the integral term is adjusted.
For that purpose, the proportional gain Kp is set to Kp = 0.2 Kpm (S3). Also, the differential time T D is the minimum (T D = 0)
And In this state, the integration time T I is reduced from 20 seconds to 1 second (from the maximum value to the minimum value in the normal use range) (S4). That is, the gain K I of the integral term is changed. The value of the integration time T I when the error with respect to the input during that time is the smallest is set to T IM (S5 to S8).

【0010】2段階調整後、PIDパラメータを以下の
値に決定する(S9)。
After the two-step adjustment, the PID parameter is determined to the following value (S9).

【0011】比例ゲインKp=Kpm 積分時間TI=TIM 微分時間TD=TIM・A (Aは係数であって、約1/20=0.05以下に選定
する。この係数が小さい程、D動作の関与が少なくな
り、PI動作主体の制御となる。) 調整中の振動波形を図4,図5に示す。図4は比例ゲイ
ンKp調整中、図5はゲインKI調整中の場合である。
Proportional gain Kp = Kpm Integration time T I = T IM Derivative time T D = T IM · A (A is a coefficient, and is selected to be about 1/20 = 0.05 or less. The smaller this coefficient is, , D movement is less involved, and PI movement is the main control.) Figures 4 and 5 show the vibration waveform during adjustment. 4 shows the case where the proportional gain Kp is being adjusted, and FIG. 5 shows the case where the gain K I is being adjusted.

【0012】なお、上記手順(図1のフローチャート)
は、コンピュータによるシミュレーションで実行してい
る。つまり、自動チューニングを行っている。
The above procedure (flow chart of FIG. 1)
Is running in a computer simulation. That is, automatic tuning is performed.

【0013】[0013]

【発明の効果】以上のように本発明によれば、限界感度
法によりPIDパラメータを調整する際、積分項のゲイ
ンをも調整対象とし2段階に調整するので、パラメータ
を最適値に容易に決定できるようになり、安定した制御
系を設計できる。しかも、コンピュータ使用のシミュレ
ーションにより、自動的に調整できる。
As described above, according to the present invention, when the PID parameter is adjusted by the limit sensitivity method, the gain of the integral term is also adjusted in two steps, so that the parameter can be easily determined to the optimum value. It becomes possible to design a stable control system. Moreover, it can be automatically adjusted by computer simulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すフローチャート。FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】本発明の一実施形態を示す制御ブロック図。FIG. 2 is a control block diagram showing an embodiment of the present invention.

【図3】本発明の一実施形態における持続振動の判断基
準を説明する波形図。
FIG. 3 is a waveform diagram illustrating criteria for determining continuous vibration according to an embodiment of the present invention.

【図4】本発明の一実施形態を示すKp調整中のグラ
フ。
FIG. 4 is a graph during Kp adjustment showing an embodiment of the present invention.

【図5】本発明の一実施形態を示すKI調整中のグラ
フ。
FIG. 5 is a graph during K I adjustment showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…PIDコントローラ 2…制御対象(プラント) Kp…比例ゲイン TI…積分時間 TD…微分時間1 ... PID controller 2 ... controlled object (plant) Kp ... proportional gain T I ... integral time T D ... derivative time

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 PIDパラメータを限界感度法を用いて
決定する際、積分時間を最大値(TI=∞)に、微分時
間を最小値(TD=0)にして、比例ゲインKpを通常
の使用範囲の最小値から最大値まで増加させていき、1
番目のピークと2番目のピークの差が負ならば持続振動
とみなし、比例ゲインをその時の値Kpmに決定する第
一段階と、比例ゲインを0.2Kpmに、微分時間を最
小値(TD=0)にして、積分時間を通常の使用範囲の
最大値から最小値まで減少させていき、積分時間を入力
に対する誤差が最も小さい時の値TIMに決定する第二段
階との2段階調整とし、微分時間TDをTIMにある係数
を乗じた値に決定することを特徴とするPIDコントロ
ーラの調整法。
1. When determining a PID parameter using a limiting sensitivity method, the proportional gain Kp is usually set by setting the integration time to a maximum value (T I = ∞) and the differentiation time to a minimum value (T D = 0). Increase from the minimum value to the maximum value of the usage range of 1
If the difference between the 2nd peak and the 2nd peak is negative, it is considered as continuous oscillation, and the first step of determining the proportional gain to the value Kpm at that time, the proportional gain to 0.2 Kpm, and the derivative time to the minimum value (T D = 0), the integration time is decreased from the maximum value to the minimum value in the normal use range, and the integration time is determined to the value T IM when the error with respect to the input is the smallest. And the differential time T D is determined to be a value obtained by multiplying T IM by a certain coefficient, and the adjustment method of the PID controller.
JP17972495A 1995-07-17 1995-07-17 Adjustment method for pid controller Pending JPH0934503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17972495A JPH0934503A (en) 1995-07-17 1995-07-17 Adjustment method for pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17972495A JPH0934503A (en) 1995-07-17 1995-07-17 Adjustment method for pid controller

Publications (1)

Publication Number Publication Date
JPH0934503A true JPH0934503A (en) 1997-02-07

Family

ID=16070769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17972495A Pending JPH0934503A (en) 1995-07-17 1995-07-17 Adjustment method for pid controller

Country Status (1)

Country Link
JP (1) JPH0934503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067187A1 (en) * 2000-03-06 2001-09-13 Kabushiki Kaisha Yaskawa Denki Method of detecting oscillation criticality of servo control system
JP2006293131A (en) * 2005-04-13 2006-10-26 Pentax Corp Camera with camera shake correction function
JP2011113111A (en) * 2009-11-24 2011-06-09 Saginomiya Seisakusho Inc Device and method for controlling pid
CN109839819A (en) * 2017-11-24 2019-06-04 深圳市科比特航空科技有限公司 A kind of pid parameter adjusting method, wireless terminal and terminal device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067187A1 (en) * 2000-03-06 2001-09-13 Kabushiki Kaisha Yaskawa Denki Method of detecting oscillation criticality of servo control system
JP2006293131A (en) * 2005-04-13 2006-10-26 Pentax Corp Camera with camera shake correction function
JP4681925B2 (en) * 2005-04-13 2011-05-11 Hoya株式会社 Camera with image stabilization function
JP2011113111A (en) * 2009-11-24 2011-06-09 Saginomiya Seisakusho Inc Device and method for controlling pid
CN109839819A (en) * 2017-11-24 2019-06-04 深圳市科比特航空科技有限公司 A kind of pid parameter adjusting method, wireless terminal and terminal device

Similar Documents

Publication Publication Date Title
WO2005019949A1 (en) Pid parameter adjustment device
JP2002023807A (en) Method for realizing feedback control for optimally and automatically removing disturbance and device for the same
JPH06119001A (en) Controller
JP2002182705A (en) Feedback controller
JPH0535309A (en) Model prediction control device
US5796608A (en) Self controllable regulator device
JPH0934503A (en) Adjustment method for pid controller
CN108227479B (en) PID control method and PID control system for multi-joint robot
JPH0651805A (en) Adaptive control method for plant and device for realizing the same
JP2891898B2 (en) Control device
JP3234109B2 (en) Process control equipment
JP2001290506A (en) Method for identifying controlled system and controller, using identification result thereof
JP3774376B2 (en) Method and apparatus for identifying limit gain and transfer function of control system
JP5200648B2 (en) Motor drive device
JP4378903B2 (en) PID adjustment device
JP2839679B2 (en) Automatic tuning device for control parameters
JPH03268103A (en) Automatic tuning controller
JPH10161706A (en) Simply adaptive controller
JP2003189653A (en) Electric motor control device and method of setting its gain
JPH1130108A (en) Turbine control device
JP3015523B2 (en) Process control equipment
JPH0926801A (en) Overshoot suppression controller
JPH0527804A (en) Optimum process controller
JP2002157002A (en) Process control unit
JPH10171504A (en) Adjustment device for backlash system controller