JPH01240740A - Gas turbine control device - Google Patents

Gas turbine control device

Info

Publication number
JPH01240740A
JPH01240740A JP6355588A JP6355588A JPH01240740A JP H01240740 A JPH01240740 A JP H01240740A JP 6355588 A JP6355588 A JP 6355588A JP 6355588 A JP6355588 A JP 6355588A JP H01240740 A JPH01240740 A JP H01240740A
Authority
JP
Japan
Prior art keywords
pressure
fuel
gas
control
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6355588A
Other languages
Japanese (ja)
Other versions
JP2612023B2 (en
Inventor
Hitoshi Karasawa
唐澤 仁志
Kazue Nagata
永田 一衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63063555A priority Critical patent/JP2612023B2/en
Publication of JPH01240740A publication Critical patent/JPH01240740A/en
Application granted granted Critical
Publication of JP2612023B2 publication Critical patent/JP2612023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the running reliability of the device in the title by controlling a pressure so that it may return back within a prescribed range, when the pressure on the upstream side from a fuel control value of fuel gas varies beyond the prescribed range. CONSTITUTION:A pressure control circuit consisting of a pressure setting apparatus 15, a subtracter 42 and the like is added to the speed load control unit 31 of a fuel control valve 13 for controlling the flow of fuel gas. When the variation between the set value of the pressure setting apparatus 15 and the upstream side pressure signal 16 of the fuel control valve 13 increases beyond the unsensible zone width of an unsensible zone circuit 17, the pressure control signal is added to the output of a load controller 4 and the pressure is controlled so as to be restrained within the set value. Thereby, even when the generating ability of fuel gas is low, the gas pressure and the load are controlled cooperatively and the running reliability can be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガス燃料を燃焼してタービン発電機を駆動す
るガスタービンの制御装置に関し、特に、ガス発生能力
が低い、あるいは追従性が悪い、又、ガスボリュームが
小さく、ガス圧力がガスタービンでの燃料ガス消費変化
に敏感に対応して変化する様な、ガス発生設備と連結さ
れたガスタービンの制御に適した制御装置に関するもの
である。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a control device for a gas turbine that burns gas fuel to drive a turbine generator, and particularly relates to a control device for a gas turbine that burns gas fuel to drive a turbine generator. Alternatively, control is suitable for controlling gas turbines connected to gas generation equipment that have poor followability, have small gas volumes, and whose gas pressure changes sensitively in response to changes in fuel gas consumption in the gas turbine. It is related to the device.

(従来の技術) 従来技術における一般的なガスタービンの制御システム
を第5図に示す0本例は、ガス燃料で駆動されるガスタ
ービンシステムを示している。
(Prior Art) A typical gas turbine control system in the prior art is shown in FIG. 5. This example shows a gas turbine system driven by gas fuel.

ガスタービン14は、圧縮機81.燃焼器82.タービ
ン83より構成され、これらは各々複雑な特性及び、高
温、回転体であるがゆえの運転制限を有し、その制御装
置も複雑である。
The gas turbine 14 includes a compressor 81. Combustor 82. The turbine 83 is composed of turbines 83, each of which has complicated characteristics, high temperatures, and operational limitations due to being a rotating body, and its control device is also complicated.

燃料ガス発生部12は、ガスタービン燃焼器82に送る
燃料ガスを発生する部分で、天然ガス(NG)焚きの場
合はLNG気化設備であり、近年の高炉排ガス焚きガス
タービンの場合は高炉となる。又、将来の石炭ガス化コ
ンバインドサイクルで考えれば5石炭ガスを生成、精製
するガス化炉及び、ガス精製設備を指す。この燃料ガス
発生部12より送出される燃料ガスは、ガスタービン設
備の燃料制御弁13を介してガスタービンの燃焼器82
に送られ、燃焼ガスとなって、タービン83およびそれ
に結合された発電機84を駆動する。
The fuel gas generation unit 12 is a part that generates fuel gas to be sent to the gas turbine combustor 82, and in the case of natural gas (NG) firing, it is LNG vaporization equipment, and in the case of recent blast furnace exhaust gas fired gas turbines, it is a blast furnace. . Also, when considering the future coal gasification combined cycle, it refers to gasifiers and gas purification equipment that generate and purify coal gas. The fuel gas sent out from the fuel gas generating section 12 is sent to the combustor 82 of the gas turbine via the fuel control valve 13 of the gas turbine equipment.
The combustion gas is sent to the turbine 83 and becomes combustion gas to drive the turbine 83 and the generator 84 coupled thereto.

ガスタービン14の制御装置は、大別して3つの制御部
と位置優先器11とから構成される。それらは、起動時
の点火燃料制御、ウオーミング、定格速度速の昇速制御
を司る起動制御部9、タービン翼金属が許し得る温度制
限内の運転となる様に、他の制御信号に優先して制御介
入する温度制御部6、タービンの回転数と負荷を目標値
に制御するための速度・負荷制御部30である。速度・
負荷制御部30は、速度コントローラIOおよびその上
流の回路を有し、速度制御機能と負荷制御機能を有する
。速度コントローラIOを出た信号は、低値優先器ti
で温度制御部6からの信号と比較され、温度制限中でな
い場合は、速度コントローラIOからの信号が燃料制御
信号となって、燃料制御弁13に与えられ、燃料流量が
調整され、速度及び負荷の制御が行なわれる。
The control device for the gas turbine 14 is roughly divided into three control sections and a position priority device 11. They are given priority over other control signals so that the startup control section 9, which controls ignition fuel control at startup, warming, and control of increasing the rated speed, operates within the temperature limits allowable by the turbine blade metal. These include a temperature control section 6 that intervenes in control, and a speed/load control section 30 that controls the rotation speed and load of the turbine to target values. speed·
The load control unit 30 includes a speed controller IO and a circuit upstream thereof, and has a speed control function and a load control function. The signal leaving the speed controller IO is passed to the low value priority device ti
The signal from the speed controller IO is compared with the signal from the temperature control unit 6, and if the temperature is not limited, the signal from the speed controller IO becomes a fuel control signal and is given to the fuel control valve 13, the fuel flow rate is adjusted, and the speed and load are adjusted. control is performed.

この速度・負荷制御部30の動作をもう少し詳細に説明
すると以下のとおりである。
The operation of this speed/load control section 30 will be explained in more detail below.

負荷設定器1の設定信号は、減算器2で負荷信号3との
偏差が演算され、負荷コントローラ(比例積分要素)4
へ入力される。負荷コントローラ4では比例・積分演算
が行なわれ、負荷偏差を解消するための制御出力を加算
器5に与える。加算器5では、速度設定器7(通常は5
0王又は60七)と速度信号8(系統に併入されている
時は、501(z又は60Hzの一定周波数)の速度偏
差が加算され、速度コントローラ10へ与えられる。こ
の速度偏差と速度コントローラ(比例要素)10はガバ
ナーと呼ばれている部分で、系統周波数の変動のない場
合は動作せず、この時は、負荷コントローラ4の信号に
より、燃料制御即ちタービン発電機84の出力制御が行
なわれる。
The setting signal of the load setter 1 is calculated by a subtracter 2 to calculate the deviation from the load signal 3, and then sent to a load controller (proportional integral element) 4.
is input to. The load controller 4 performs proportional/integral calculations and provides the adder 5 with a control output for eliminating load deviation. Adder 5 uses speed setter 7 (usually 5
0 King or 607) and the speed deviation of the speed signal 8 (when connected to the system, 501 (z or constant frequency of 60Hz)) is added and given to the speed controller 10.This speed deviation and the speed controller (Proportional element) 10 is a part called a governor, which does not operate when there is no fluctuation in the system frequency. At this time, the fuel control, that is, the output control of the turbine generator 84 is performed by the signal from the load controller 4. It will be done.

(発明が解決しようとする課題) 従来の技術で説明した様に、ガスタービン14の負荷制
御は、速度・負荷制御部30からの信号により、燃料制
御弁13の開度を!1111シて行なわれるが、従来の
様に、非常に安定して燃料ガスを送れる燃料ガス発生部
12例えばLNG基地等を有しているガスタービンの場
合、負荷指令にもとづき、燃料を増加・減少させても燃
料ガス発生部12の追従性には問題なく、常に安定した
圧力の燃料ガスの供給を受け、健全な負荷運用が可能で
ある。しかし、小規模のLNG気化設備と接続されたガ
スタービン、高炉ガス焚きガスタービン又は石炭ガス化
ガス焚きガスタービンの様に、限られたガス発生容量を
有している場合、燃料ガスの送出能力(追従性)に制限
のある場合は、ガスタービン側の燃料ガス要求に追従で
きずに、ガス圧力の変動を招く恐れがある。
(Problem to be Solved by the Invention) As explained in the related art, load control of the gas turbine 14 is performed by controlling the opening degree of the fuel control valve 13 based on a signal from the speed/load control section 30. 1111, but as in the past, in the case of a gas turbine that has a fuel gas generation unit 12 that can send fuel gas very stably, for example an LNG base, the fuel is increased or decreased based on the load command. Even if this is done, there is no problem with the followability of the fuel gas generating section 12, and the fuel gas is always supplied at a stable pressure, allowing healthy load operation. However, if the gas turbine has a limited gas generation capacity, such as a gas turbine connected to a small-scale LNG vaporization facility, a blast furnace gas-fired gas turbine, or a coal gasification gas-fired gas turbine, the fuel gas delivery capacity is If there is a limit to (followability), it may not be possible to follow the fuel gas demand on the gas turbine side, leading to fluctuations in gas pressure.

即ち、ガスタービン14側で、大きな負荷変化幅で、し
かも高い変化率で燃料増又は減を行なうと。
That is, if fuel is increased or decreased on the gas turbine 14 side with a large load change range and at a high rate of change.

燃料増の場合は燃料制御弁13を継続的に開操作するこ
とになり、燃料ガス発生部12の追従能力が低い場合は
、ガス圧力の低下をもたらす。又逆に負荷減少の場合は
、ガス圧力の上昇をもたらす。
In the case of an increase in fuel, the fuel control valve 13 must be opened continuously, and if the follow-up ability of the fuel gas generating section 12 is low, this results in a decrease in gas pressure. Conversely, when the load decreases, the gas pressure increases.

ガス圧力の高・低変動はガスタービン14の安定燃焼上
からも好ましくなく、ガス圧力が成る規定値を越えた場
合は、ガス燃料から助燃燃料(ディーゼル油等)に切換
えるインターロックもガスタービン14側は有している
High and low fluctuations in gas pressure are undesirable from the perspective of stable combustion in the gas turbine 14, and if the gas pressure exceeds a specified value, an interlock that switches from gas fuel to auxiliary fuel (diesel oil, etc.) is also installed in the gas turbine 14. The side has.

ガス圧力の高・低変動は燃料ガス発生部12へも悪い影
響を与える0例えば石炭ガス化設備等の燃料ガス発生部
12の場合は、ロックホッパによる燃料の安定供給上の
問題があり、圧力が異常に上昇した場合は、余剰ガスを
フレアースタックに逃がし、燃焼後大気放出する方法を
とっている。
High and low fluctuations in gas pressure also have a negative effect on the fuel gas generation section 12.For example, in the case of the fuel gas generation section 12 such as coal gasification equipment, there is a problem with stable fuel supply due to the lock hopper, and the pressure When the amount of gas rises abnormally, the excess gas is released into the flare stack and released into the atmosphere after combustion.

以上の様に、従来のガスタービンには、燃料ガス圧力の
制御要素がガスタービンの燃料制御に一切考慮されてお
らず、圧力高低で燃料切替となった場合は、失火トリッ
プの危険性があるし、燃料切替が成功しても、負荷の変
化を中止し、再度燃料従切替(液体燃料からガス燃料へ
の)をしなければならない、又、上記1石炭ガス化設備
を燃料ガス発生部12に有する例では、圧力高時に、圧
力を規定値に抑えるべくフレアーにガスを逃がすため、
省エネルギー上も好ましくない、従って、ガスタービン
側の制御に、燃料ガス圧力制御の要素も加味した、燃料
ガス圧力と負荷を協調して制御する方法が調く望まれる
As mentioned above, in conventional gas turbines, the fuel gas pressure control element is not considered at all in the fuel control of the gas turbine, and if the fuel is switched depending on the pressure level, there is a risk of a misfire trip. However, even if the fuel switching is successful, the load change must be stopped and the fuel switching (from liquid fuel to gas fuel) must be performed again. In this example, when the pressure is high, gas is released into the flare in order to keep the pressure to a specified value.
This is also unfavorable in terms of energy saving, and therefore, a method of controlling the fuel gas pressure and load in a coordinated manner that takes into account the element of fuel gas pressure control in the control on the gas turbine side is desired.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、燃料ガスをガスタービンの燃焼器に供給する
流量を燃料制御弁により制御するガスタービン制御装置
であって、通常時にはガスタービンの速度および負荷が
それぞれの所定値に近づくように制御し、燃料ガスの燃
料制御弁上流側圧力が所定幅以上に変動した場合にのみ
その圧力をその所定幅以内にもどすように制御すること
を特徴とするものである。
(Means for Solving the Problems) The present invention is a gas turbine control device that controls the flow rate of fuel gas supplied to a combustor of a gas turbine using a fuel control valve, in which the speed and load of the gas turbine are normally controlled. is controlled to approach a predetermined value, and only when the pressure on the upstream side of the fuel control valve of fuel gas fluctuates by more than a predetermined range, the pressure is controlled to return to within the predetermined range. .

(作 用) 速度・負荷制御中に、ガス圧力が所定幅を越えて変動し
た場合は、圧力の引き戻し操作を行なうことができる。
(Function) If the gas pressure fluctuates beyond a predetermined range during speed/load control, the pressure can be pulled back.

これにより運転信頼性が向上する。This improves operational reliability.

(実施例) 以下、本発明の第1の実施例を第1図に基づいて説明す
る。同図において、第5図に示した従来技術と共通部分
には同一符号を付して説明を省略する。速度負荷制御部
31には、以下に述べる圧力制御要素付加のための制御
回路が追加されている。
(Example) Hereinafter, a first example of the present invention will be described based on FIG. In this figure, parts common to those of the prior art shown in FIG. 5 are given the same reference numerals and their explanations will be omitted. A control circuit for adding a pressure control element, which will be described below, is added to the speed load control section 31.

それらは、燃料ガス圧力の規定値を設定する圧力設定器
15、圧力信号16(燃料ガス圧力信号)との偏差を演
算する減算器42、圧力偏差の幅がある一定値以内では
圧力制御機能を活かさない様にするための不感帯回路1
7、不感帯回路17を出た圧力偏差を解消する様に動作
する圧力コントローラ(比例要素または比例積分要素)
18.圧力コントローラ18の信号を負荷コントローラ
(比例積分要素)4の出力信号に加算するための加算器
5である。
They include a pressure setting device 15 for setting the specified value of fuel gas pressure, a subtractor 42 for calculating the deviation from the pressure signal 16 (fuel gas pressure signal), and a pressure control function when the pressure deviation is within a certain value. Dead band circuit 1 to prevent it from being used
7. Pressure controller (proportional element or proportional-integral element) that operates to eliminate the pressure deviation leaving the dead band circuit 17
18. This is an adder 5 for adding the signal of the pressure controller 18 to the output signal of the load controller (proportional-integral element) 4.

第1図に基づいて、この実施例の作用及び効果を説明す
る。ガス圧力の変動がない状態で、負荷制御中に大きな
負荷変化率がガスタービン14に課せられた場合、又燃
料ガス発生部12の方がガスタービン14の燃料制御に
追従できなくなり、ガス圧力が変動し、圧力偏差が不感
帯回路17の不感帯幅を越えた場合は、この圧力偏差が
圧力コントローラ18に入力し、圧力制御信号が、圧力
コントローラ18より加算器45に入力され、負荷コン
トローラ4の出力信号に加算され、負荷コントローラ4
の信号を打ち消す様に働く。
The operation and effects of this embodiment will be explained based on FIG. 1. If a large load change rate is imposed on the gas turbine 14 during load control in a state where there is no fluctuation in gas pressure, the fuel gas generation section 12 will be unable to follow the fuel control of the gas turbine 14, and the gas pressure will increase. If the pressure deviation exceeds the dead band width of the dead band circuit 17, this pressure deviation is input to the pressure controller 18, a pressure control signal is input from the pressure controller 18 to the adder 45, and the output of the load controller 4 is input to the adder 45. is added to the signal and the load controller 4
It works to cancel the signal of

この圧力コントローラ18の動作により、低値優先器1
1から燃料制御弁13に与えられる燃料ガス制御信号は
、負荷制御のみの信号から圧力も加味した制御信号に変
わり、圧力を規定値内に抑える様に変化する。しかる後
、圧力偏差が戻り、圧力コントローラ18の出力がなく
なると、元の負荷コントローラ4のみの負荷制御に移り
負荷制御が継続される。
Due to the operation of this pressure controller 18, the low value priority device 1
The fuel gas control signal given from 1 to the fuel control valve 13 changes from a signal only for load control to a control signal that also takes pressure into account, and changes so as to suppress the pressure within a specified value. Thereafter, when the pressure deviation returns and the output of the pressure controller 18 disappears, the load control returns to the original load control using only the load controller 4 and continues the load control.

以上の動作により、負荷変化中に圧力偏差が大きくなっ
ても、負荷制御を継続しながら、燃料が圧力偏差を解消
する様に適切な燃料制御弁開度指令となる様に修正され
、円滑な負荷制御運転が実現される。
Through the above operations, even if the pressure deviation becomes large during a load change, the load control is continued and the fuel control valve opening command is corrected to be appropriate to eliminate the pressure deviation, resulting in smooth operation. Load control operation is realized.

次に第2の実施例を第2図により説明する。この場合、
速度負荷制御部32において、負荷コントローラ4のあ
とに、加算器45の代わりに低値優先器61を使用する
。低値優先器61以外は第1図と同じである。本実施例
の場合は、負荷制御により燃料制御弁13を開操作して
いる時に、燃料ガス圧力が規定値以下に下った場合は、
負荷制御指令(負荷コントローラ4の出力)に優先して
燃料制御弁13を圧力コントローラ18の信号により制
御する様、圧力コントローラ18の信号を低値優先器6
1を介して選択する。
Next, a second embodiment will be explained with reference to FIG. in this case,
In the speed load control section 32, a low value priority device 61 is used after the load controller 4 instead of the adder 45. The components other than the low value priority device 61 are the same as in FIG. In the case of this embodiment, if the fuel gas pressure falls below the specified value while opening the fuel control valve 13 due to load control,
The signal from the pressure controller 18 is passed to the low value priority device 6 so that the fuel control valve 13 is controlled by the signal from the pressure controller 18 with priority over the load control command (output from the load controller 4).
Select via 1.

次に第3の実施例を第3図により説明する。これは、速
度負荷制御部33において、負荷制御と圧力制御を切替
回路19で切替えて、負荷制御を圧力制御に換える方法
である。
Next, a third embodiment will be explained with reference to FIG. This is a method in which the speed load control section 33 switches between load control and pressure control using the switching circuit 19 to change load control to pressure control.

この切替は、切替選択回路20からの指令で、切替回路
19により、負荷コントローラ4の信号を使うか、圧力
コントローラ18の信号をガスタービン制御に使うかの
選択を行なうものである。切替選択回路19で、負荷制
御か圧力制御かの手動選択をするか、あるいは圧力が異
常に変動して負荷制御ができなくなり、圧力制御に切り
替えたい時、圧力偏差大等で自動的に圧力制御選択とす
る様な使い方をする。
This switching is a command from the switching selection circuit 20, and the switching circuit 19 selects whether to use the signal from the load controller 4 or the signal from the pressure controller 18 for gas turbine control. You can use the switching selection circuit 19 to manually select either load control or pressure control, or when the pressure fluctuates abnormally and load control is no longer possible and you want to switch to pressure control, the pressure is automatically controlled due to a large pressure deviation, etc. Use it as if it were a choice.

次に第4の実施例を第4図により説明する。Next, a fourth embodiment will be explained with reference to FIG.

上記第1〜第3の実施例は、ガスタービンの速度制御系
、即ち速度偏差演算部分(第1図の7゜52,5の構成
要素)と速度コントローラ10より成るいわゆるガバナ
一部分の上流に切替あるいは選択回路を設けて、負荷コ
ントローラ4と圧力コントローラ18の協調制御あるい
は切替選択制御をしていた。ここで説明する方法は、速
度負荷制御部34において、負荷制御と圧力制御の切替
を速度コントローラ10の下流側で行なうもので、第1
〜3図で説明した加算、低値優先、切替の機能を有する
選択切替回路21で、これを実現する方法である。
The first to third embodiments described above are switched upstream of the speed control system of the gas turbine, that is, the so-called governor part consisting of the speed deviation calculation part (component 7° 52, 5 in FIG. 1) and the speed controller 10. Alternatively, a selection circuit has been provided to perform cooperative control or switching selection control between the load controller 4 and the pressure controller 18. The method described here is to switch between load control and pressure control in the speed load control section 34 on the downstream side of the speed controller 10.
This is a method of realizing this using the selection switching circuit 21 having the addition, low value priority, and switching functions described in FIGS.

負荷コントローラ4の2次側でなく、速度コントローラ
10の下流で選択切替を行なう目的は、上記第3の実施
例の様に、完全に圧力コントローラ18の信号でガスタ
ービン14を圧力制御しても、速度制御系が後にある場
合、ガバナー信号の影響を受け、燃料制御弁13への信
号が変動し、安定した圧力制御が出来ない場合があるか
らである。
The purpose of performing selection switching not on the secondary side of the load controller 4 but on the downstream side of the speed controller 10 is that even if the pressure of the gas turbine 14 is completely controlled by the signal from the pressure controller 18 as in the third embodiment, This is because if the speed control system is located later, the signal to the fuel control valve 13 may fluctuate due to the influence of the governor signal, and stable pressure control may not be possible.

この方法によれば、上記第1〜第3の実施例より更に安
定した圧力制御が期待出来る。
According to this method, more stable pressure control can be expected than in the first to third embodiments.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係るガスタービン制御装置
によれば、燃料ガス発生設備のガス発生能力(追従性)
が悪い場合にも、燃料ガス圧力とガスタービン負荷を協
調して制御する機能をガスタービン制御装置に付加する
ことにより、運転信頼性、経済性が大幅に向上する。
As explained above, according to the gas turbine control device according to the present invention, the gas generation capacity (followability) of the fuel gas generation equipment
Even in cases where the fuel gas pressure and gas turbine load are unfavorable, adding a function to the gas turbine control device to coordinately control the fuel gas pressure and the gas turbine load greatly improves operational reliability and economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す系統図、第2図は
第2の実施例を示す系統図、第3図は第3の実施例を示
す系統図、第4図は第4の実施例を示す系統図、第5図
は従来のガスタービン制御方法を示す系統図である。 1・・・負荷設定器 2.42.52・・・減算器 3・・・負荷信号 4・・・負荷コントローラ 5.45・・・加算器 6・・・温度制御部 7・・・速度設定器 8・・・速度信号 9・・・起動制御部 10・・・速度コントローラ 11、61・・低値優先器 12・・・燃料ガス発生部 13・・・燃料制御弁 14・・・ガスタービン 15・・・圧力設定器 1G・・・圧力信号 17・・・不感帯回路 18・・・圧力コントローラ 82・・・燃焼器 代理人 弁理士  則 近 憲 佑 同     第子丸   健 L−−−−+++     J L  =−−−−−m−−−−J 1−  ++   ++  −−−+11   “ノ
Fig. 1 is a system diagram showing a first embodiment of the present invention, Fig. 2 is a system diagram showing a second embodiment, Fig. 3 is a system diagram showing a third embodiment, and Fig. 4 is a system diagram showing a third embodiment. FIG. 5 is a system diagram showing the conventional gas turbine control method. 1...Load setter 2.42.52...Subtractor 3...Load signal 4...Load controller 5.45...Adder 6...Temperature control section 7...Speed setting device 8...Speed signal 9...Start control section 10...Speed controller 11, 61...Low value priority device 12...Fuel gas generation section 13...Fuel control valve 14...Gas turbine 15...Pressure setting device 1G...Pressure signal 17...Dead band circuit 18...Pressure controller 82...Combustor agent Patent attorney Nori Chika Ken Yudo Daishimaru Ken L-----+++ J L =−−−−−m−−−−J 1− ++ ++ −−−+11 “ノ

Claims (1)

【特許請求の範囲】[Claims] 燃料ガスをガスタービンの燃焼器に供給する流量を燃料
制御弁により制御するガスタービン制御装置において、
通常時にはガスタービンの速度および負荷がそれぞれの
所定値に近づくように制御し、上記燃料ガスの燃料制御
弁上流側圧力が所定幅以上に変動した場合にのみその圧
力をその所定幅以内にもどすように制御することを特徴
とするガスタービン制御装置。
In a gas turbine control device that controls the flow rate of fuel gas supplied to a combustor of a gas turbine using a fuel control valve,
Under normal conditions, the speed and load of the gas turbine are controlled so that they approach their respective predetermined values, and only when the pressure on the upstream side of the fuel control valve for the fuel gas fluctuates by more than a predetermined range, the pressure is returned to within the predetermined range. A gas turbine control device characterized by controlling.
JP63063555A 1988-03-18 1988-03-18 Gas turbine control device Expired - Lifetime JP2612023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063555A JP2612023B2 (en) 1988-03-18 1988-03-18 Gas turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063555A JP2612023B2 (en) 1988-03-18 1988-03-18 Gas turbine control device

Publications (2)

Publication Number Publication Date
JPH01240740A true JPH01240740A (en) 1989-09-26
JP2612023B2 JP2612023B2 (en) 1997-05-21

Family

ID=13232584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063555A Expired - Lifetime JP2612023B2 (en) 1988-03-18 1988-03-18 Gas turbine control device

Country Status (1)

Country Link
JP (1) JP2612023B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546019A (en) * 1978-09-27 1980-03-31 Hitachi Ltd Fuel flow controller for gas turbine
JPS5557627A (en) * 1978-10-20 1980-04-28 Hitachi Ltd Control device of gas turbine
JPS5797023A (en) * 1980-10-17 1982-06-16 Gen Electric Power plant, operation and control method thereof and control system thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546019A (en) * 1978-09-27 1980-03-31 Hitachi Ltd Fuel flow controller for gas turbine
JPS5557627A (en) * 1978-10-20 1980-04-28 Hitachi Ltd Control device of gas turbine
JPS5797023A (en) * 1980-10-17 1982-06-16 Gen Electric Power plant, operation and control method thereof and control system thereof

Also Published As

Publication number Publication date
JP2612023B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
JP3062207B2 (en) Integrated boost compressor / gas turbine controller
US5896736A (en) Load rejection rapid acting fuel-air controller for gas turbine
US4160362A (en) Gas turbine and combined cycle power plant having reduced emission of nitrogen oxide and improved coolant injection flow control system therefor
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
JPH04232311A (en) Method and device to predict and control excess speed of composite cycle turbine
JP2001123852A (en) Gas turbine power generation control device
US3948043A (en) Combined cycle electric power plant and a gas turbine and afterburner having coordinated fuel transfer
JP3226957B2 (en) Gas turbine engine and operating method thereof
Rowen Operating characteristics of heavy-duty gas turbines in utility service
JPH01240740A (en) Gas turbine control device
JP2778820B2 (en) Gas turbine control device
JPH0216040Y2 (en)
JPH0996227A (en) Pressure controller of gasification plant
US3965674A (en) Combined cycle electric power plant and a gas turbine having a backup control system with an improved feedforward analog speed/load control
JP4025206B2 (en) Control device for biomass gas turbine
JP2692974B2 (en) Control method for combined cycle power plant
JPH08218897A (en) Gas turbine control device
JPS6246681B2 (en)
JPH03290006A (en) Gas turbine control unit of combined cycle power plant
JPS622129B2 (en)
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JPH0374525A (en) Gas turbine control method
JP3784947B2 (en) Turbine speed control method
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPH0586810A (en) Load control method for composite power generating plant and device therefor