JPH01240697A - Anodic oxidation of titanium or titanium alloy material - Google Patents

Anodic oxidation of titanium or titanium alloy material

Info

Publication number
JPH01240697A
JPH01240697A JP6318588A JP6318588A JPH01240697A JP H01240697 A JPH01240697 A JP H01240697A JP 6318588 A JP6318588 A JP 6318588A JP 6318588 A JP6318588 A JP 6318588A JP H01240697 A JPH01240697 A JP H01240697A
Authority
JP
Japan
Prior art keywords
anode
cathode
titanium
plate
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6318588A
Other languages
Japanese (ja)
Inventor
Hideaki Fukai
英明 深井
Hiroyoshi Suenaga
末永 博義
Kuninori Minagawa
邦典 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6318588A priority Critical patent/JPH01240697A/en
Publication of JPH01240697A publication Critical patent/JPH01240697A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To form a uniform colored film on a worked product of a Ti material with high work efficiency by interposing an electrolyte soln. holder between electrodes when the product is used as the anode, the cathode is moved back and forth at a uniform interval between the electrodes and anodic oxidation is carried out. CONSTITUTION:A worked product 12 such as a Ti plate is fixed on an anode plate 11 to constitute an anode part 10. A cathode part 20 having a cathode plate 21 laid opposite and parallel to the product 12 is placed above the part 10. Power source cables 13a, 13b are connected to the anode plate 11 and the cathode plate 21 is supported in a horizontal direction by electrically conductive supports 22a, 22b. The plate 21 is then enclosed with an electrolyte soln. holder 30 made of a sponge brush contg. a large amt. of an electrolyte soln., the entire underside of the holder 30 is brought into contact with the surface of the product 12 and the soln. is replenished from pipes 31a, 31b. The contact surface of the product 12 is anodically oxidized while moving the holder 30 and the cathode plate 21 in the directions of arrows at a prescribed uniform interval S between the plate 21 and the product 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、チタン又はチタン合金材に包理のない均一
な着色皮膜を形成する陽極酸化法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an anodizing method for forming a uniform colored film without inclusions on titanium or titanium alloy material.

〔従来の技術〕[Conventional technology]

特開昭50−110946号等でチタン又はチタン合金
材の表面に着色皮膜を形成するF、% +i酸化法の提
案が行なわれている。この方法は、チタン又はチタン合
金材からなる加工物に対し、その表面の脱脂、酸洗、洗
浄等の前処理を行なった後、第4図に示すように、該加
工物を陽極(1)として電解質溶液中にこの陽極(1)
及び陰極(2)を浸漬すると共に、これらを固定し両極
間に電流を流して陽極(1)表面の酸化処理を行なうも
のである。
JP-A-50-110946 and other publications propose an F,%+i oxidation method for forming a colored film on the surface of titanium or titanium alloy material. In this method, a workpiece made of titanium or a titanium alloy material is subjected to pretreatment such as degreasing, pickling, and cleaning of the surface, and then the workpiece is placed on an anode (1) as shown in Figure 4. This anode (1) in electrolyte solution as
The anode (1) surface is oxidized by immersing the anode (2) and the cathode (2), fixing them, and passing a current between the two electrodes.

ところが、このような処理を行なう場合、陰極(2)の
面積を陽極(1)の面積以上とする必要があり、定電流
密度で処理を行なう陽極酸化では。
However, when performing such a treatment, the area of the cathode (2) must be larger than the area of the anode (1), and in anodization where the treatment is performed at a constant current density.

大型のチタン又はチタン合金材に着色皮膜を形成する時
には、大型の電源を必要とし、加工物の寸法に制限を生
じていた。一方チタン又はチタン合金材の陽極酸化にお
いては電圧による色彩の変動が大きく、たとえ陰極(2
)面積を大きくとるとしても、通電ケーブルとの接点が
電極に局在している場合に、その局在に起因する色環が
大型の上記チタン材で生じ易いという欠点があった。
When forming a colored film on a large titanium or titanium alloy material, a large power source is required, which limits the size of the workpiece. On the other hand, in anodizing titanium or titanium alloy materials, the color changes greatly depending on the voltage, and even if the cathode (2
) Even if the area is large, there is a drawback that if the contact point with the current-carrying cable is localized on the electrode, a color ring due to the localization is likely to occur in the large titanium material.

そのため本発明者等は、両電極間の間隙を一定に保ちな
がら、これらを相対的に移動させて陽極酸化処理を施す
構成を新たに創案した。
Therefore, the present inventors have devised a new configuration in which the anodic oxidation process is performed by moving the two electrodes relative to each other while keeping the gap between the two electrodes constant.

又、一方、チタン又はチタン合金材の陽極酸化処理では
、陽極酸化前の該陽極表面の状態が影響し、表面に酸洗
むら等がある場合は着色皮膜中に色環となって現われ、
均一な着色皮膜が得られないことが多い。
On the other hand, in the anodizing treatment of titanium or titanium alloy materials, the condition of the anode surface before anodizing is affected, and if there is uneven pickling on the surface, it will appear as a colored ring in the colored film.
A uniformly colored film is often not obtained.

そのため本発明者等は、チタン又はチタン合金材を陽極
酸化した後、研磨することによってその表面性状を均一
にし、もう−度改めて陽極酸化処理を行なうことで均一
な着色皮膜を得る構成についても創案した。以上の処理
のうち、陽極酸化処理を行なう場合に、前述した両極の
相対的な移動による陽極酸化処理を行なう構成を組合せ
ることもできる。
Therefore, the present inventors have devised a structure in which a titanium or titanium alloy material is anodized, then polished to make its surface uniform, and then anodized again to obtain a uniformly colored film. did. Among the above-mentioned processes, when anodizing is performed, it is also possible to combine the above-described configuration in which the anodic oxidizing is performed by relative movement of both electrodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前者の電極移動型の方法の実施に当っては1例
えば電解槽内に陽極を沈めてその上からこれと平行に陰
極を動かし通電を行なうような形式となるため、板材等
の両面に着色皮膜を形成しようとする場合、片面の皮膜
形成が終了した後、−旦、槽外に取り出して反転せしめ
、再び電解槽内に沈めて同様な操作を繰り返すことにな
る。そのため槽への出し入れによる作業効率の悪化が問
題となっていた。
However, when implementing the former method of moving electrodes, for example, the anode is submerged in an electrolytic tank and the cathode is moved parallel to it from above to conduct electricity, so both sides of the plate, etc. When a colored film is to be formed, after the film formation on one side is completed, it must be taken out of the tank, turned over, and immersed in the electrolytic tank again to repeat the same operation. Therefore, there was a problem of deterioration of work efficiency due to loading and unloading the tank.

又、2回の陽極酸化処理と研磨を行なう後者の方法の実
施に当り、陽極酸化処理時に上記の電極移動型の方法を
実施しようとすれば、途中で処理表面の研磨のために必
ずチタン材は槽外に取り出さなければならず、作業効率
の低下はここにおいても同じである。
In addition, when implementing the latter method, which involves two times of anodizing and polishing, if you try to implement the above-mentioned moving electrode method during anodizing, you will have to use titanium material during the process to polish the treated surface. must be taken out of the tank, and the same reduction in work efficiency occurs here as well.

本発明は以上のような問題を解決するためになされたも
ので、処理途中でチタン材等の加工物を電解槽から出し
入れする作業をなくそうという発想から発展して、電解
槽そのものを廃して電極移動型による陽極酸化処理を実
施できるようにしようとするものである。
The present invention was made to solve the above problems, and was developed from the idea of eliminating the work of taking processed materials such as titanium materials into and out of the electrolytic cell during processing, and thereby eliminating the need for the electrolytic cell itself. This is intended to enable anodic oxidation treatment using a moving electrode type.

〔問題点を解決するための手饅〕[Hands to solve problems]

そのため本発明は、チタン又はチタン合金材を陽極とし
、該陽極と陰極との電極間隙を一定に保持しつつ、陽極
及び/又は陰極を移動させて陽極酸化処理を実施するに
当り、陽極と陰極の間に、雨間を電解質溶液で満たすこ
とのできる電解質溶液保持体を介在せしめて陽極酸化処
理を行なうようにしたことを基本的特徴としている。
Therefore, the present invention uses titanium or a titanium alloy material as an anode, and when carrying out anodization treatment by moving the anode and/or cathode while maintaining a constant electrode gap between the anode and the cathode, the anode and the cathode are The basic feature is that an anodizing treatment is performed by interposing an electrolyte solution holder that can fill the rain gap with an electrolyte solution.

又、第2発明は、陽極酸化処理後、研磨し再び陽極酸化
処理を施す方法を実施するに当り、上記のように両極間
を一定に保ちながら両極を相対的に動かして陽極酸化処
理を行なう方法で、陽極と陰極の間に雨間を電解質溶液
で満たすことのできる電解質溶液保持体を介在せしめ、
これらの電極間隙を一定に保持しつつ、陽極及び/又は
陰極を移動させて陽極酸化処理を行なうようにすること
を特徴としている。
Furthermore, in carrying out the method of polishing and re-anodizing after the anodizing treatment, the second invention performs the anodizing treatment by relatively moving the two electrodes while keeping the distance between the two electrodes constant as described above. In this method, an electrolyte solution holder capable of filling the rain gap with an electrolyte solution is interposed between the anode and the cathode,
The method is characterized in that the anode and/or cathode are moved while maintaining a constant gap between these electrodes to carry out the anodic oxidation process.

上記した電解質溶液保持体は、相対的な移動がなされる
陰極と陽極との間に介在して、該陰極と、この陰極に対
向する陽極の対向面間を電解質溶液で満たすようにする
ために用いられるものであって、上記溶液を吸収保持し
つつ両極を常時濡れた状態に保持できるようにするため
、スポンジタワシ等の多孔質体で形成される。この電解
質溶液保持体は、大気中における両極間での電解を可能
にするもので、上記の陽極酸化処理の際に電解質溶液を
入れる電解槽を不要とすることができる。
The above-mentioned electrolyte solution holder is interposed between a cathode and an anode that are moved relative to each other, and is used to fill the space between the opposing surfaces of the cathode and the anode facing the cathode with the electrolyte solution. It is made of a porous material such as a sponge scrubber in order to absorb and retain the solution and keep both electrodes wet at all times. This electrolyte solution holder enables electrolysis between the two electrodes in the atmosphere, and makes it possible to eliminate the need for an electrolytic bath containing an electrolyte solution during the above-mentioned anodic oxidation treatment.

尚、第2発明の実施に当っては最初の陽極酸化処理の印
加電圧は3v以上30V以下にするのが好ましい。即ち
、陽極酸化によって陽極表面には酸化皮膜が形成される
が、この陽極酸化処理皮膜の形成は次工程である研磨工
程での作業性向上及び均一表面の成長を助ける。この際
、印加電圧に応じて一定の膜厚を有する酸化皮膜が形成
されることになるが、印加電圧が30Vより大きい場合
、次工程である研磨工程に長時間を要することになると
共に、厚い酸化皮膜の形成を行なった場合には、チタン
又はチタン合金材の表面性状に対応した酸化度膜厚の変
動が研磨後の表面性状にも反映され、2回目の陽極酸化
処理の後でも包理を生じることがある。又、印加電圧が
3vより小さい場合、酸化皮膜の形成がほとんどなく、
陽極の表面性状を均一にすることが難しくなる。このよ
うな理由から上記の印加電圧は3v以上30V以下とす
るのが良い。
In carrying out the second invention, it is preferable that the applied voltage for the first anodizing treatment be 3 V or more and 30 V or less. That is, an oxide film is formed on the anode surface by anodic oxidation, and the formation of this anodic oxidation film helps improve workability and grow a uniform surface in the next polishing step. At this time, an oxide film having a constant thickness is formed depending on the applied voltage, but if the applied voltage is greater than 30V, the next polishing process will take a long time and will be thicker. When an oxide film is formed, variations in the degree of oxidation film thickness corresponding to the surface texture of the titanium or titanium alloy material will be reflected in the surface texture after polishing, and even after the second anodic oxidation treatment, embedding will not occur. may occur. Moreover, when the applied voltage is less than 3V, there is almost no formation of an oxide film,
It becomes difficult to make the surface quality of the anode uniform. For this reason, it is preferable that the above applied voltage is 3V or more and 30V or less.

〔実施例〕〔Example〕

以下本発明の具体的実施例を添付図面に基づいて説明す
る。
Hereinafter, specific embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明法を実施するための陽極酸化処理装置の
一例を示している。
FIG. 1 shows an example of an anodizing treatment apparatus for carrying out the method of the present invention.

本装置では、陽極板(11)の上にチタン板等の加工物
(12)を静置して陽極部(10)を構成し、これと対
向して平行に横架された陰極板(21)を有する陰極部
(20)をその上方に設けている。
In this device, a workpiece (12) such as a titanium plate is placed on an anode plate (11) to constitute an anode part (10), and a cathode plate (21) is hung horizontally in parallel with the anode part (10). ) is provided above the cathode section (20).

そのうち陽極板(11)には、図示しない電源より延出
する電源ケーブル(13a)(13b)がつなげられて
おり、これによってプラスに帯電される。
The anode plate (11) is connected to power cables (13a) (13b) extending from a power source (not shown), thereby being positively charged.

又、陰極部(20)は前記陰極板(21)と、該陰極板
(21)への通電及びこれを水平方向に支持する通電支
柱体(22a) (22b)で構成されており、しかも
この陰極板(21)は通電支柱体(22a) (22b
)を介して図示しない駆動装置により加工物(12)に
対し常に間隙Sを保持しつつ矢視方向に移動することが
できるようになっている。
The cathode section (20) is composed of the cathode plate (21) and current-carrying struts (22a) (22b) that supply electricity to the cathode plate (21) and support it in the horizontal direction. The cathode plate (21) is a current-carrying column body (22a) (22b
), the workpiece (12) can be moved in the direction of the arrow by a drive device (not shown) while always maintaining a gap S with respect to the workpiece (12).

更に本装置では、電解質溶液を多量に含むスポンジタワ
シからなる電解質溶液保持体(30)が、第1回及び第
2図に示すように、陰極板(21)を取り凹むと共に、
その下面総てが加工物(12)表面に接触する状態に取
付けられている。この電解質溶液保持体(30)には2
本のパイプ(31a)(31b)が接続されていて、電
解質溶液が補給され°、陰極板(21)と陽極たる加工
物(12)の間は、該電解質溶液保持体(30)が介在
している限り、電解質溶液で満たされることになる。
Furthermore, in this device, the electrolyte solution holder (30), which is made of a sponge scrubbing brush containing a large amount of electrolyte solution, dents the cathode plate (21) as shown in the first and second figures.
It is attached so that its entire lower surface is in contact with the surface of the workpiece (12). This electrolyte solution holder (30) has 2
Two pipes (31a) and (31b) are connected to supply the electrolyte solution, and the electrolyte solution holder (30) is interposed between the cathode plate (21) and the workpiece (12) serving as the anode. As long as it is, it will be filled with electrolyte solution.

従って前記駆動装置により電解質溶液保持体(30)と
共に陰極板(21)を矢視方向に動かしながら、電源ケ
ーブル(13a) (13b)及び通電支柱体(22a
) (22b)によって該陰極板(21)と陽極板(1
1)上の加工物(12)に通電がなされれば、陰極板(
21)の移動中も電解質溶液保持体(30)によって加
工物(12)接触面の陽極酸化処理がなされ、大気中で
加工物(12)全面に均一な着色皮膜を形成できる。
Therefore, while moving the cathode plate (21) together with the electrolyte solution holder (30) in the direction of the arrow by the driving device, the power cables (13a) (13b) and the current-carrying support column (22a) are moved.
) (22b), the cathode plate (21) and the anode plate (1
1) When the upper workpiece (12) is energized, the cathode plate (
21), the contact surface of the workpiece (12) is anodized by the electrolyte solution holder (30), and a uniform colored film can be formed on the entire surface of the workpiece (12) in the atmosphere.

次に画電極を、その間隙を一定に保ちながら相対的に移
動せしめて行なわれる陽極酸化法を、上記の装置と電解
槽を使用する装置を用いて夫々実験した。この時、30
0mm(Q)X 300nrn(w)Xlam(t)の
大きさのチタン板をアルカリ脱脂した後、25℃の3重
量%フッfi−7重量%過酸化水素の混合水溶液中に2
分間浸漬して表面を酸洗し、脱脂、洗浄したものを加工
物たる試料として用いた。又、電解質溶液保持体(30
)及び電解槽に補給する電解質溶液には1重量%リン酸
水溶液を用いた。このような条件下で320no(Q)
X10mm(w)Xinn(t)の大きさの陰極板(2
1)を2 tx / secの速度で加工物上を平行移
動させ、20Vの陽極酸化電圧を印加し、電流密度10
mA/a&で着色せしめた。その後、上記装置では加工
物(12)を陽極板(11)の上から引き出して皮膜形
成面を研磨し、再び陽極板(11)上に戻して上記と同
様な条件で再度陽極酸化処理を行なった。又、電解槽を
用いた装置では加工物(12)を電解槽内から取り出し
、皮膜形成面を研磨した後、更に電解槽内に戻して該電
解槽内で再び陽極酸化処理を施した。
Next, an anodic oxidation method in which the picture electrodes are moved relative to each other while keeping the gap constant was tested using the above-mentioned apparatus and an apparatus using an electrolytic cell. At this time, 30
After degreasing a titanium plate with a size of 0 mm (Q) x 300 nrn (w)
The surface was soaked for a minute, the surface was pickled, degreased, and washed, and the product was used as a processed sample. In addition, an electrolyte solution holder (30
) and a 1% by weight phosphoric acid aqueous solution was used as the electrolyte solution supplied to the electrolytic cell. Under these conditions 320no(Q)
Cathode plate (2
1) was moved in parallel over the workpiece at a speed of 2 tx/sec, an anodizing voltage of 20 V was applied, and a current density of 10
It was colored with mA/a&. After that, in the above device, the workpiece (12) is pulled out from above the anode plate (11), the film-forming surface is polished, and the workpiece (12) is placed back on the anode plate (11) and anodized again under the same conditions as above. Ta. In addition, in an apparatus using an electrolytic cell, the workpiece (12) was taken out of the electrolytic cell, the surface on which the film was formed was polished, and then returned to the electrolytic cell and anodized again in the electrolytic cell.

これらの各処理が終了した後、JIS  Z8729に
準拠してカラー計測機で、第3図に示す加工物(12)
のA乃至Gの各部につき、色相と彩度を表わすB*、 
b*を求めた。その結果、両試料ともA乃至Gの各部に
よる色相と彩度の変化はほとんど見られなかった。
After each of these processes is completed, the workpiece (12) shown in Fig. 3 is measured using a color measuring machine in accordance with JIS Z8729.
For each part of A to G, B*, which represents hue and saturation,
b* was calculated. As a result, almost no changes in hue and saturation were observed in each part of A to G in both samples.

しかし、両方法で大きく異なるのは、研磨処理に伴う加
工物(12)の取り出しに掛る時間と手間である。即ち
、研磨作業そのものは両方法とも約20分要したが、陽
極酸化処理終了後研磨作業開始までに要する時間及び研
磨作業終了後2回目の陽極酸化処理開始までに要する時
間は、上記の装置を用いる限り、夫々5分と5分で済む
が、電解槽を使用する装置では、電解槽中に沈んだ加工
物を取るための電解質溶液の排出及び新たなる注入をし
なければならないため、夫々20分と20分掛ることに
なる。
However, the major difference between the two methods is the time and effort required to take out the workpiece (12) during the polishing process. In other words, the polishing work itself took about 20 minutes for both methods, but the time required from the end of the anodizing process to the start of the polishing process and the time required from the end of the polishing process to the start of the second anodizing process were As long as they are used, it only takes 5 minutes and 5 minutes, respectively, but in equipment that uses an electrolytic bath, it takes 20 minutes each because the electrolyte solution must be drained and freshly injected to remove the workpiece that has sunk in the electrolytic bath. It will take 20 minutes.

又、本発明法を実施する上記装置では、電解槽を使わず
に均一な着色皮膜を形成できる陽極酸化処理ができるの
で、長尺物でも処理が可能となり、しかもそのような長
尺物を処理する場合に、容量の大きい電解槽が不要とな
るため、設備費の削減及びそれに伴う設置スペースの縮
小化が達成できる。
In addition, the above-mentioned apparatus for carrying out the method of the present invention can perform anodizing treatment to form a uniformly colored film without using an electrolytic bath, making it possible to process even long objects; In this case, a large-capacity electrolytic cell is not required, so that equipment costs can be reduced and the installation space can be reduced accordingly.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明法によれば、電解槽を用いずに均一
な着色皮膜の得られる陽極酸化処理ができるため、両面
にこのような着色皮膜を形成する場合や、処理途中で着
色皮膜の研磨を行なうような処理をする場合に、作業効
率を向上せしめることができ、又、電解槽不要化に伴っ
て長尺物の陽極酸化処理が容易になり、且つ設備費の削
減、設置スペースの縮小化も可能となる。
According to the method of the present invention described in detail above, it is possible to perform anodizing treatment that produces a uniform colored film without using an electrolytic bath, so it is possible to form such a colored film on both sides, or to remove the colored film during the process. When performing processing such as polishing, work efficiency can be improved, and with the elimination of the need for an electrolytic bath, it becomes easier to anodize long objects, and it also reduces equipment costs and saves installation space. It also becomes possible to downsize.

【図面の簡単な説明】 第1図は本発明法を実施するための陽極酸化処理装置の
一例を示す説明図。第2図は電解質溶液保持体の付設状
態を示す説明図、第3図は実験においてカラー計測機で
色相と彩度を計測した時に試料のどの部分を計測したか
を示す平面図、第4図は従来の陽極酸化法を実施した場
合の実施状態を示す説明図である。 図中、(1)は陽極、(2)は陰極、(10)は陽極部
、(11)は陽極板、(12)は加工物、(20)は陰
極部、(21)は陰極板、(30)は電解質溶液保持体
を各示す。 第  1  図 第2図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an example of an anodizing treatment apparatus for carrying out the method of the present invention. Figure 2 is an explanatory diagram showing the attached state of the electrolyte solution holder, Figure 3 is a plan view showing which part of the sample was measured when hue and saturation were measured with a color measuring device in the experiment, and Figure 4. FIG. 2 is an explanatory diagram showing a state in which a conventional anodic oxidation method is carried out. In the figure, (1) is an anode, (2) is a cathode, (10) is an anode part, (11) is an anode plate, (12) is a workpiece, (20) is a cathode part, (21) is a cathode plate, (30) each represents an electrolyte solution holder. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)チタン又はチタン合金材を陽極とし、該陽極と陰
極との電極間隙を一定に保持しつつ、陽極及び/又は陰
極を移動させて陽極酸化処理を行なうチタン又はチタン
合金材の陽極酸化法において、陽極と陰極の間に、両間
を電解質溶液で満たすことのできる電解質溶液保持体を
介在せしめて陽極酸化処理を行なうことを特徴とするチ
タン又はチタン合金材の陽極酸化法。
(1) An anodizing method for titanium or titanium alloy material, in which titanium or titanium alloy material is used as an anode, and anodization is performed by moving the anode and/or cathode while maintaining a constant electrode gap between the anode and cathode. An anodizing method for a titanium or titanium alloy material, characterized in that the anodizing treatment is performed by interposing an electrolyte solution holder between the anode and the cathode, which can fill the space between the anode and the cathode with an electrolyte solution.
(2)チタン又はチタン合金材を陽極としてこれに陽極
酸化処理を施し、研磨後、再び陽極酸化処理を施すチタ
ン又はチタン合金材の陽極酸化法において、最初の陽極
酸化処理と2回目の陽極酸化処理の時に、又は2回目の
陽極酸化処理の時に、陽極と陰極の間に、両間を電解質
溶液で満たすことのできる電解質溶液保持体を介在せし
め、これらの電極間隙を一定に保持しつつ、陽極及び/
又は陰極を移動させて陽極酸化処理を行なうことを特徴
とするチタン又はチタン合金材の陽極酸化法。
(2) In the anodizing method of titanium or titanium alloy material, which uses titanium or titanium alloy material as an anode and performs anodization treatment on it, and then performs anodization treatment again after polishing, the first anodization treatment and the second anodization treatment are performed. At the time of the treatment or the second anodization treatment, an electrolyte solution holder is interposed between the anode and the cathode, which can fill the space between the two with an electrolyte solution, and the gap between these electrodes is maintained constant. Anode and/or
Or an anodic oxidation method for titanium or titanium alloy material, which is characterized by performing anodic oxidation treatment by moving a cathode.
JP6318588A 1988-03-18 1988-03-18 Anodic oxidation of titanium or titanium alloy material Pending JPH01240697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318588A JPH01240697A (en) 1988-03-18 1988-03-18 Anodic oxidation of titanium or titanium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318588A JPH01240697A (en) 1988-03-18 1988-03-18 Anodic oxidation of titanium or titanium alloy material

Publications (1)

Publication Number Publication Date
JPH01240697A true JPH01240697A (en) 1989-09-26

Family

ID=13221928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318588A Pending JPH01240697A (en) 1988-03-18 1988-03-18 Anodic oxidation of titanium or titanium alloy material

Country Status (1)

Country Link
JP (1) JPH01240697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106088A (en) * 1991-10-16 1993-04-27 Nippon Alum Co Ltd Method for iridescently coloring long-sized material made of ti or ti alloy
KR100587980B1 (en) * 2005-08-18 2006-06-14 주식회사 한텍 Anodizing surface treatment apparatus and method thereof
US7897725B2 (en) 1997-04-04 2011-03-01 Millenium Pharmaceuticals Delta3 (tango24) protein and nucleic acid molecules and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124289A (en) * 1985-11-21 1987-06-05 Mitsubishi Electric Corp Formation of metallic film onto transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124289A (en) * 1985-11-21 1987-06-05 Mitsubishi Electric Corp Formation of metallic film onto transparent conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106088A (en) * 1991-10-16 1993-04-27 Nippon Alum Co Ltd Method for iridescently coloring long-sized material made of ti or ti alloy
US7897725B2 (en) 1997-04-04 2011-03-01 Millenium Pharmaceuticals Delta3 (tango24) protein and nucleic acid molecules and uses thereof
KR100587980B1 (en) * 2005-08-18 2006-06-14 주식회사 한텍 Anodizing surface treatment apparatus and method thereof

Similar Documents

Publication Publication Date Title
US3632486A (en) Method and arrangement for continuous etching and anodizing of aluminum
CN110983415B (en) Magnesium-lithium alloy surface composite oxidation treatment method
US3923610A (en) Method of copper plating gravure cylinders
US2428141A (en) Process for cleaning, stripping, and polishing metal surfaces
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
JPH01240697A (en) Anodic oxidation of titanium or titanium alloy material
JPS59173293A (en) Electrochemical treating method and apparatus of elongated metal product
JPH01118489A (en) Method of manufacturing aluminum support for print
JPH0548317B2 (en)
US2729601A (en) Electroplating on beryllium
JPS6356320B2 (en)
US4808280A (en) Method for electrolytic coloring of aluminim or aluminum alloys
JPS607039B2 (en) Electrodeposition coating method for aluminum or aluminum alloys
JPH01240696A (en) Anodic oxidation for titanium or titanium alloy
US3829367A (en) Electrolytic polishing of metals
JPH01240695A (en) Anodic oxidation of titanium or titanium alloy material
JPH02270999A (en) Method for removing weld burn of stainless steel
JPH0219493A (en) Various anodic treatments of aluminum member
JPH0548319B2 (en)
RU2082837C1 (en) Method of treating surface of aluminium and aluminium alloy parts before applying galvanic coatings
JPS5589500A (en) Electrolytic multi-coloration for aluminum or aluminum alloy anode oxide film
JPS5943560B2 (en) Patterned coloring method for aluminum or aluminum alloys
JPS61163297A (en) Electrodeposition coating method and its coating device
JP2966567B2 (en) Cleaning method for precision processed products
JP2966584B2 (en) PR electrolytic cleaning method for precision processed products