JPH01240638A - Manufacture of nb3al super conducting member to which teritary element is added - Google Patents

Manufacture of nb3al super conducting member to which teritary element is added

Info

Publication number
JPH01240638A
JPH01240638A JP29775988A JP29775988A JPH01240638A JP H01240638 A JPH01240638 A JP H01240638A JP 29775988 A JP29775988 A JP 29775988A JP 29775988 A JP29775988 A JP 29775988A JP H01240638 A JPH01240638 A JP H01240638A
Authority
JP
Japan
Prior art keywords
alloy
added
alloy sheet
sheet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29775988A
Other languages
Japanese (ja)
Other versions
JP2815373B2 (en
Inventor
Kyoji Tachikawa
恭治 太刀川
Hidemoto Suzuki
鈴木 英元
Yoshimasa Kamisada
神定 良昌
Haruto Noro
治人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP63297759A priority Critical patent/JP2815373B2/en
Publication of JPH01240638A publication Critical patent/JPH01240638A/en
Application granted granted Critical
Publication of JP2815373B2 publication Critical patent/JP2815373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture the present member having excellent super conducting characteristics such as critical electric current density in a high magnetic field by wrapping an Nb (alloy) sheet and an Al alloy sheet having a lot of feedthrough parts one on top of the other, disposing a stabilizer, etc., to the outside, thereafter subjecting it to face-reduction working and furthermore to heat treatment. CONSTITUTION:An Nb (alloy) sheet and an Al alloy sheet are wrapped one on top of the other to the outside of a reinforcing member and are charged to a tube of a diffusion barrier; a tube of a stabilizer is disposed to the outside of the composite body to seal its both ends. After that, the composite body is subjected to hydrostatic pressurizing and hydrostatic extruding, and furthermore to face-reduction working such as rolling and wire drawing. The stabilizer on the outermost layer is then appropriately removed, and the composite body is subjected to suitable heat treatment. The Nb-based alloy sheet and/or Al alloy sheet is preferably formed by the addition of Ge and/or Si. The reinforcing member is moreover preferably constituted of Nb (alloy), the diffusion barrier of Ta (alloy) and further the stabilizer of Cu (alloy).

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はNb3Al、超電導部材の製造方法に係り、特
にGeやSi等の第三元素の添加により改善された性質
を有する超電導線に好適する部材の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing Nb3Al, a superconducting member, which has improved properties particularly by adding a third element such as Ge or Si. The present invention relates to a method of manufacturing a member suitable for superconducting wire.

(従来の技術) Nb、SnやNb3Al等の化合物系の超電導材料は、
一般にNb−Ti合金等の合金系超電導材料に比較して
優れた超電導特性を有しており、特にNb3AlはNb
、Snに比較して上部臨界磁界(He、)が高い上、機
械的性質に優れる等の利点を有するが、Nb3Alの生
成温度が高く、かつ長時間の熱処理を必要とする難点が
ある。Nb−Al系合金の拡散過程に関する研究によれ
ば、Nb−Alの拡散速度は極めて小さく、例えば80
0セ前後で数μ箇のNb3AlNjJを生成するために
極めて長時間の拡散時間を要することが知られている。
(Prior art) Compound-based superconducting materials such as Nb, Sn, and Nb3Al are
In general, it has superior superconducting properties compared to alloy-based superconducting materials such as Nb-Ti alloys, and in particular, Nb3Al has
, has advantages such as a higher upper critical magnetic field (He, ) and superior mechanical properties than Sn, but has disadvantages such as a high Nb3Al formation temperature and the need for a long heat treatment. According to research on the diffusion process of Nb-Al alloys, the diffusion rate of Nb-Al is extremely low, e.g.
It is known that an extremely long diffusion time is required to generate several μ of Nb3AlNjJ around 0 cells.

しかしながら、NbがAl中に微細に多数存在すれば、
粒界拡散が支配的となり熱処理条件を改善することがで
きるため実用レベルの超電導部材を製造することが可能
となる。
However, if a large number of fine Nb exist in Al,
Since grain boundary diffusion becomes dominant and heat treatment conditions can be improved, it becomes possible to manufacture superconducting members at a practical level.

このような観点から、現在Nb3Al超電導線の製造方
法としてシェリー・ロール法(jelly−roll 
technique)と粉末法が知られている。
From this point of view, the jelly-roll method is currently being used as a manufacturing method for Nb3Al superconducting wire.
techniques) and powder methods are known.

シェリー・ロール法は、NbシートとAlレシート重ね
巻きするものであり、シングル線の加工々程とこれらの
組込み工程が省略される利点番有する。
The sherry roll method involves overlapping Nb sheets and Al receipts, and has the advantage of omitting the single wire processing steps and their assembling steps.

一方、粉末法は、金属管内にNbとAlの混合粉末を充
填し、これらを成型後熱処理を施すものである。
On the other hand, in the powder method, a metal tube is filled with a mixed powder of Nb and Al, which is then heat-treated after being molded.

このようなNb3Alの超電導特性(He2および高磁
界における臨界電流密度;Jc)はSiやGe等の第三
元素の添加により向上することが急冷法による試料に関
する実験結果として報告されている(Appl、Phy
s、Lett、 、vol、47.No、6.15Se
ptember 1985)。この粉末法への適用とし
て。
It has been reported that the superconducting properties (critical current density in He2 and high magnetic field; Jc) of Nb3Al can be improved by adding a third element such as Si or Ge as an experimental result on a sample using a rapid cooling method (Appl. Phy
s, Lett, , vol, 47. No, 6.15Se
ptember 1985). As an application to this powder method.

例えばGe粉末をNb3Alの粉末と混合して、これを
テープ状に加工した後、電子ビーム照射を含めた2段熱
処理を施す方法が検討されているが、Ge粉末の加工性
が低いため、その初期粒径によって加工度が限定され実
用的でない。
For example, a method is being considered in which Ge powder is mixed with Nb3Al powder, processed into a tape shape, and then subjected to two-step heat treatment including electron beam irradiation, but since Ge powder has low workability, The degree of processing is limited by the initial particle size, making it impractical.

(発明が解決しようとする課題) 本発明は上記の難点、即ち第三元素の添加されたNb3
Al超電導部材の加工性を改善し。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned difficulties, namely, Nb3 to which a third element is added.
Improved workability of Al superconducting members.

He2や高磁界でのJc等の超電導特性に優れた超電導
部材の製造方法を提供することをその目的とする。
The object of the present invention is to provide a method for manufacturing a superconducting member having excellent superconducting properties such as He2 and Jc in a high magnetic field.

[発明の構成] (課題を解決するための手段) 本願第1の発明の第三元素添加Nb3Al超電導部材の
製造方法は、補強部材の外側に、多数の貫通部を有する
NbまたはNb基合金シートと、A4合金シートを積層
しながら巻回し、この巻回層の外側に拡散障壁および安
定化材を順次配置した後減面加工を施し、次いでNb3
Al生成の熱処理を施すことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) A method for manufacturing a third element-added Nb3Al superconducting member according to the first invention of the present application includes an Nb or Nb-based alloy sheet having a large number of penetration parts on the outside of a reinforcing member. Then, A4 alloy sheets were layered and wound, and after sequentially arranging a diffusion barrier and a stabilizing material on the outside of this wound layer, surface reduction processing was performed, and then Nb3
It is characterized by applying heat treatment to generate Al.

さらに本願第2の発明の第三元素添加Nb3Al超電導
部材の製造方法は、補強部材の外側に、多数の貫通部を
有するNbまたはNb基合金シートと、A0合金シート
を積層しながら巻回し、この巻回層の外側に金属管を配
置した後減面加工を施し、次いでNb3Al生成の熱処
理を施すことを特徴としている。
Furthermore, the method for manufacturing a third element-added Nb3Al superconducting member according to the second invention of the present application includes laminating and winding a Nb or Nb-based alloy sheet having a large number of penetration parts and an A0 alloy sheet on the outside of a reinforcing member. The method is characterized in that a metal tube is placed outside the wound layer and then subjected to surface reduction processing, and then subjected to heat treatment to generate Nb3Al.

本願発明における補強部材としては、強度が大きく、か
つ構成部材として適度の加工性を有するものであれば使
用し得るが、このようなものとしてNbまたはNb基合
金を上げることができる。
As the reinforcing member in the present invention, any material can be used as long as it has high strength and suitable workability as a constituent member, and Nb or a Nb-based alloy can be used as such material.

また本願発明における第三元素は、予め、1に添加し、
これをシート状に加工したAI2合金シートとして用い
られるが、同時に第三元素を添加したNb基合金シート
を用いることもできる。
Further, the third element in the present invention is added to 1 in advance,
This is used as an AI2 alloy sheet processed into a sheet shape, but at the same time, a Nb-based alloy sheet to which a third element is added can also be used.

上記の第三元素としてはGe、Siが適する。Ge and Si are suitable as the third element.

これらの添加元素はそれぞれ単独に添加される場合には
、 Ge= (0,5〜35)at% Si= (0,1〜15)at% の範囲であることが好ましく、さらに同時にAl合金シ
ートあるいはNb基合金シートに添加して用いることも
できる。この場合の添加量は、 (Ge+Si)= (0,1〜35)at%の範囲が好
適する。この添加量の範囲は超電導特性と加工性の2点
から選定されるものである。
When these additive elements are added individually, it is preferable that the ranges are Ge = (0,5 to 35) at% Si = (0,1 to 15) at%, and at the same time, the Al alloy sheet Alternatively, it can be used by adding it to a Nb-based alloy sheet. In this case, the addition amount is preferably in the range of (Ge+Si)=(0,1 to 35) at%. The range of this addition amount is selected from two points: superconducting properties and workability.

即ち、添加量が少ないとHe、およびJc内向上効果が
小さく、添加量が多くなると加工性が低下する。
That is, when the amount added is small, the effect of improving He and Jc is small, and when the amount added is large, the workability is reduced.

Geおよび/またはSiの量が、上記範囲内の高濃度、
即ち共晶点近傍の場合には1例えばAl金合金対して1
0’℃/min以上の冷却速度で凝固させ、共晶組織を
微細にして加工性を改善させる方法を用いる。
A high concentration in which the amount of Ge and/or Si is within the above range,
That is, in the vicinity of the eutectic point, 1 for example, 1 for Al-gold alloy.
A method is used in which the material is solidified at a cooling rate of 0'° C./min or more to refine the eutectic structure and improve workability.

上記以外の組成の場合には、基本的には加工性を低下さ
せない程度の固溶体を主として若干の共晶組織を含む組
成が適する。
In the case of a composition other than the above, a composition containing mainly a solid solution and some eutectic structure is basically suitable to the extent that it does not reduce workability.

この場合のGe、Siの量は、それぞれ単独に添加され
る場合には、 Ge= (1〜9)at% Si=(0,1〜3)at% の範囲であることが好ましく、さらに同時にAf1合金
シートあるいはNb基合金シートに添加される場合には (Ge+Si)= (0,1〜9)at%の範囲が好ま
しい。
In this case, the amounts of Ge and Si are preferably in the range of Ge = (1 to 9) at% Si = (0,1 to 3) at% when each is added individually, and furthermore, at the same time When added to an Af1 alloy sheet or a Nb-based alloy sheet, the range of (Ge+Si)=(0,1-9)at% is preferable.

本願発明におけるNbまたはNb基合金シートの厚さは
3Al合金シートの厚さの0.5〜10倍の範囲である
ことが好ましい。この理由は上記の厚さの比が0.5未
満であると超電導性を示さないAlに富むNb−/l化
合物、例えばNbAll、NbAl、Nb2Al等が多
く生成し、Nb。
The thickness of the Nb or Nb-based alloy sheet in the present invention is preferably in the range of 0.5 to 10 times the thickness of the 3Al alloy sheet. The reason for this is that if the above-mentioned thickness ratio is less than 0.5, a large amount of Al-rich Nb-/l compounds that do not exhibit superconductivity, such as NbAll, NbAl, Nb2Al, etc., are generated, and Nb.

Alの生成量が低下するためであり、またこの比が10
を越えるとA15型のNb3Al化合物中のAl量が不
足するとともにその生成量が低下して、いずれの場合に
も超電導特性の向上が認められないことによる6 上記のNbまたはNb基合金シートには多数の貫通部が
形成されており、これによりNbフィラメントの微細化
と同様の効果を得ることができる。このようなシートは
、シートに多数の細孔を打抜加工により形成するか、あ
るいは同一直線上に位置する多数の短いスリットをその
横方向の位置を相互にずらせて平行に多数形成したシー
トを横方向に伸張させることにより得られる。
This is because the amount of Al produced decreases, and when this ratio is 10
If the above Nb or Nb-based alloy sheet A large number of penetrating portions are formed, and thereby an effect similar to that of miniaturization of Nb filaments can be obtained. Such sheets are made by forming a large number of pores in the sheet by punching, or by forming a large number of short slits located on the same straight line in parallel with each other with their lateral positions shifted. Obtained by stretching in the lateral direction.

さらに本願第1の発明における拡散障壁としてはNb、
Taあるいはこれらの合金が適しており1通常管体とし
て用いられる。
Furthermore, as a diffusion barrier in the first invention of the present application, Nb,
Ta or an alloy thereof is suitable and is usually used as the tube.

同様に、安定化材としてはCuまたはCu合金を採用す
ることが好ましい。
Similarly, it is preferable to use Cu or a Cu alloy as the stabilizing material.

(実施例) 実施例1 厚さ0 、5mm、 @300II+m、長さ1260
關のAl−4,8at%Ge合金シートと厚さQ、3+
nmで上記と同一の幅および長さを有するNbメツシュ
シートとを外径14mmφのNbロッドの外周に重ね巻
きし、これを内径42a+w+φ、外径45mmφのN
b管内に収容した後、その外側に厚さ4.5mmのCu
管を配置した。
(Example) Example 1 Thickness 0, 5mm, @300II+m, length 1260
Related Al-4,8at%Ge alloy sheet and thickness Q, 3+
A Nb mesh sheet having the same width and length as above in nm is wrapped around the outer circumference of an Nb rod with an outer diameter of 14 mmφ, and this is wrapped around an Nb rod with an inner diameter of 42a + w + φ and an outer diameter of 45 mmφ.
b After being accommodated in the tube, a 4.5 mm thick Cu layer is placed on the outside of the tube.
The tube was placed.

このようにして得られた長さ300關、外径55mmφ
の複合体の両端を密封した後、静水圧加圧および静水圧
押出加工を施して外径15mmφの複合線を製作した。
The length obtained in this way is 300 mm, and the outer diameter is 55 mmφ.
After sealing both ends of the composite, it was subjected to hydrostatic pressing and hydrostatic extrusion to produce a composite wire with an outer diameter of 15 mmφ.

この複合線に縮径加工を施して外径1.40+wφの線
材とし、さらに圧延加工を施した後硝酸中に浸漬して最
外mのCuを除去し厚さ0.2順のテープを製造した。
This composite wire is subjected to diameter reduction processing to obtain a wire rod with an outer diameter of 1.40 + wφ, and after further rolling processing, it is immersed in nitric acid to remove the outermost m of Cu to produce tapes with a thickness of 0.2. did.

このテープに1200℃で1分間の均質化処理を施した
後、750℃で40間の熱処理を施して超電導テープを
製造した。
This tape was subjected to homogenization treatment at 1200° C. for 1 minute and then heat treated at 750° C. for 40 minutes to produce a superconducting tape.

このようにして得られたテープの臨界電流密度(Jc)
は13Tで340A/n+n+2.18Tで272A/
關2であった。これに対しAl−Ge合金シートの代り
にAlレシート用いて同様の方法によりv5造したテー
プのJcは13Tで540A/n+n+”、18TでI
LOA/111111”であった。
Critical current density (Jc) of the tape thus obtained
is 13T and 340A/n+n+2.18T and 272A/
It was the second time. On the other hand, the Jc of the v5 tape made by the same method using Al receipt instead of the Al-Ge alloy sheet was 540A/n+n+'' at 13T, and I at 18T.
LOA/111111”.

実施例2 実施例1で得た外径15mmφの複合線に伸線加工を施
して平行面間距12.1+amの断面六角形の線材を製
造した。この線材の301本を厚さ4.5朋、内径40
ルφのCu管中に稠密に充填してその両端を密封した後
、静水圧押出加工を施し、次いでスウェージング加工お
よび伸線加工を施して外径1.0關φの線材を製造した
Example 2 The composite wire with an outer diameter of 15 mmφ obtained in Example 1 was subjected to wire drawing to produce a wire rod having a hexagonal cross section with a distance between parallel planes of 12.1+am. 301 of these wires have a thickness of 4.5 mm and an inner diameter of 40 mm.
After densely filling a Cu tube with a diameter of 1.0 mm and sealing both ends, hydrostatic extrusion was performed, followed by swaging and wire drawing to produce a wire rod with an outer diameter of 1.0 mm.

この線材に950℃で1分間および750℃で4日間の
二段熱処理を施して超電導線を製造した。
This wire was subjected to two-step heat treatment at 950° C. for 1 minute and at 750° C. for 4 days to produce a superconducting wire.

このようにして得られた線材のJcは13Tで125A
/am”、 18 Tで100A/mm2であった。
The Jc of the wire obtained in this way is 13T and 125A.
/am”, 100 A/mm2 at 18 T.

これに対しAl−Geシートの代りにAlレシート用い
て同様の方法により製造した線材のJcは13Tで18
0A/ml112.18Tで36A/mm2であった。
On the other hand, the Jc of the wire manufactured by the same method using Al receipt instead of Al-Ge sheet is 13T and 18
It was 36A/mm2 at 0A/ml112.18T.

実施例3 実施例1のAl−Ge合金シートの代りに、Al−0,
26at%Si合金シートを用いた他は同様の方法によ
り超電導テープを製造した。このテープのJcは13T
で260A/nus”、18Tで208A/mm”であ
った。
Example 3 Instead of the Al-Ge alloy sheet of Example 1, Al-0,
A superconducting tape was manufactured in the same manner except that a 26 at % Si alloy sheet was used. Jc of this tape is 13T
It was 260A/nus" at 18T, and 208A/mm" at 18T.

実施例4 実施例1のAl−Ge合金シートの代りに。Example 4 Instead of the Al-Ge alloy sheet of Example 1.

A Q−0,26at%Si合金シートを用いて、実施
例2と同様の方法で超電導線を製造した。この線材のJ
cは13Tで80 A / R111”、18Tで64
A/mm”であった。
A superconducting wire was manufactured in the same manner as in Example 2 using a Q-0,26 at% Si alloy sheet. J of this wire
c is 80 A/R111” for 13T, 64 for 18T
A/mm".

実施例5 急冷法により製造した厚さ0.1 m(@150mo+
Example 5 Thickness 0.1 m (@150mo+
.

長さ2030mmのA Q−25,3at%Ge合金シ
ートと厚さ0.3nnで上記と同一の輻および長さを有
するNbメツシュシートとを外径10關φのNbロッド
の外周に重ね巻きし、これを内径40mmφ、外径45
IIIIIIφのNb管内に収容した後、その外周に厚
さ4 、5 mmのCu管を配置した。
A Q-25,3 at% Ge alloy sheet with a length of 2030 mm and an Nb mesh sheet with a thickness of 0.3 nn and the same diameter and length as above were wrapped around the outer periphery of an Nb rod with an outer diameter of 10 mm, This has an inner diameter of 40mmφ and an outer diameter of 45mm.
After it was housed in a Nb tube of IIIIIIφ, a Cu tube with a thickness of 4 to 5 mm was placed around its outer periphery.

このようにして得られた長さ150mm、外径55mm
φの複合体の両端を密封した後、静水圧加圧および静水
圧押出加工を2回施して外径15關φの複合線を製造し
た。
The length obtained in this way is 150 mm, and the outer diameter is 55 mm.
After sealing both ends of the φ composite, hydrostatic pressing and hydrostatic extrusion were applied twice to produce a composite wire with an outer diameter of 15 mm.

この複合線に縮径加工を施して外径1.20關φの線材
とし1次いで硝酸中に浸漬して最外層のCuを除去し外
径1.0關φの線材を製造した。この線材に1250℃
で5分間の均質化処理を施した後、700℃で4日間の
熱処理を施して超電導線を製造した。
This composite wire was subjected to diameter reduction processing to obtain a wire rod with an outer diameter of 1.20 mm.Then, it was immersed in nitric acid to remove the outermost layer of Cu to produce a wire rod with an outer diameter of 1.0 mm. 1250℃ for this wire
After performing homogenization treatment for 5 minutes at , heat treatment was performed at 700° C. for 4 days to produce a superconducting wire.

このようにして得られた線材の臨界電流密度(Jc)は
13Tで442 A/mm”、 18 Tで280A/
mm2であった。
The critical current density (Jc) of the wire thus obtained was 442 A/mm" at 13 T and 280 A/mm at 18 T.
It was mm2.

実施例6 実施例5のAl−Ge合金シートの代りに、Al1.3
at%Si合金シートを用いた他は同様の方法により超
電導線材を製造した。この線材のJcは13Tで400
A / arm”、18Tで250A/ mm”であっ
た。
Example 6 Instead of the Al-Ge alloy sheet of Example 5, Al1.3
A superconducting wire was manufactured in the same manner except that an at% Si alloy sheet was used. The Jc of this wire is 13T and 400
A/arm", 250A/mm" at 18T.

実施例7 実施例5のAl−Ge合金シートの代りに、A114.
3at%Ge−4,8at%Si合金シートを用い、熱
処理を2段階で施した他は同様の方法により超電導線を
製造した。1段目の熱処理は電子ビーム照射(60W/
ms”)で施し、2段目の熱処理は700℃で100時
間施した。この線材のJcは13Tで500A/mll
”、18Tで450A/龍2であった。
Example 7 Instead of the Al-Ge alloy sheet of Example 5, A114.
A superconducting wire was manufactured in the same manner except that a 3 at% Ge-4,8 at% Si alloy sheet was heat treated in two stages. The first heat treatment is electron beam irradiation (60W/
The second heat treatment was performed at 700℃ for 100 hours.The Jc of this wire was 13T and 500A/ml.
”, it was 450A/Ryu 2 at 18T.

[発明の効果] 以上述べたように本発明によれば、多数の貫通部を有す
るNbまたはNb基合金シートと。
[Effects of the Invention] As described above, according to the present invention, an Nb or Nb-based alloy sheet having a large number of penetration parts.

AΩ合金シートを用いることにより、極細多心構造を容
易に達成することができ、かつ超′FL導特性および加
工性改善のための第三元素の添加されたNb3Al超電
導部材を容易に製造することができる。この超電導部材
は上部臨界磁界(HO2)や高磁界における臨界電流密
度(Jc)等の超電導特性に優れ、超電導マグネット形
成用の実用線材として好適する。
By using an AΩ alloy sheet, an ultra-fine multicore structure can be easily achieved, and an Nb3Al superconducting member to which a third element is added to improve super-FL conductivity and workability can be easily manufactured. Can be done. This superconducting member has excellent superconducting properties such as upper critical magnetic field (HO2) and critical current density (Jc) in a high magnetic field, and is suitable as a practical wire material for forming superconducting magnets.

代理人 弁理士  守 谷 −雄Agent Patent Attorney Moriya - Yu

Claims (9)

【特許請求の範囲】[Claims] (1)補強部材の外側に、多数の貫通部を有するNbま
たはNb基合金シートと、Al合金シートを積層しなが
ら巻回し、この巻回層の外側に拡散障壁および安定化材
を順次配置した後減面加工を施し、次いでNb_3Al
生成の熱処理を施すことを特徴とする第三元素添加Nb
_3Al超電導部材の製造方法。
(1) A Nb or Nb-based alloy sheet having a large number of penetration parts and an Al alloy sheet were laminated and wound on the outside of the reinforcing member, and a diffusion barrier and a stabilizing material were sequentially arranged on the outside of this wound layer. After surface reduction processing, Nb_3Al
Third element-added Nb characterized by being subjected to heat treatment for formation
_3 Method of manufacturing Al superconducting member.
(2)補強部材の外側に、多数の貫通部を有するNbま
たはNb基合金シートと、Al合金シートを積層しなが
ら巻回し、この巻回層の外側に金属管を配置した後減面
加工を施し、次いで、Nb_3Al生成の熱処理を施す
ことを特徴とする第三元素添加Nb_3Al超電導部材
の製造方法。
(2) A Nb or Nb-based alloy sheet having a large number of penetration parts and an Al alloy sheet are laminated and wound around the outside of the reinforcing member, and a metal tube is placed outside of this wound layer, followed by surface reduction processing. A method for manufacturing a third element-added Nb_3Al superconducting member, characterized in that a heat treatment is performed to generate Nb_3Al.
(3)補強部材はNbまたはNb合金よりなる特許請求
の範囲第1項あるいは第2項記載の第三元素添加Nb_
3Al超電導部材の製造方法。
(3) The reinforcing member is made of Nb or a Nb alloy, and the third element added Nb according to claim 1 or 2 is
3Al superconducting member manufacturing method.
(4)Nb基合金シートおよび/またはAl合金シート
はGeおよび/またはSiが添加されてなる特許請求の
範囲第1項あるいは第2項記載の第三元素添加Nb_3
Al超電導部材の製造方法。
(4) The Nb-based alloy sheet and/or the Al alloy sheet is formed by adding Ge and/or Si to the third element added Nb_3 according to claim 1 or 2.
A method for manufacturing an Al superconducting member.
(5)Geおよび/またはSiの添加量は Ge=0.5〜35at% Si=0.1〜15at% (Ge+Si)=0.1〜35at% の範囲である特許請求の範囲第4項記載の第三元素添加
Nb_3Al超電導部材の製造方法。
(5) The amount of Ge and/or Si added is in the following ranges: Ge=0.5 to 35 at% Si=0.1 to 15 at% (Ge+Si)=0.1 to 35 at% A method for manufacturing a third element-added Nb_3Al superconducting member.
(6)Geおよび/またはSiの添加量は Ge=(1〜9)at% Si=(0.1〜3)at% (Ge+Si)=(0.1〜9)at% の範囲である特許請求の範囲第4項記載の第三元素添加
Nb_3Al超電導部材の製造方法。
(6) A patent in which the amount of Ge and/or Si added is in the range of Ge=(1-9) at% Si=(0.1-3) at% (Ge+Si)=(0.1-9) at% A method for manufacturing a third element-added Nb_3Al superconducting member according to claim 4.
(7)NbまたはNb基合金シートの厚さは、Al合金
シートの0.5〜10倍である特許請求の範囲第1項乃
至第6項いずれか1項記載の第三元素添加Nb_3Al
超電導部材の製造方法。
(7) The thickness of the Nb or Nb-based alloy sheet is 0.5 to 10 times that of the Al alloy sheet.
A method for manufacturing a superconducting member.
(8)拡散障壁はNb、Taあるいはこれらの合金より
なる特許請求の範囲第1項、第3項乃至第7項いずれか
1項記載の第三元素添加Nb_3Al超電導部材の製造
方法。
(8) A method for manufacturing a third element-added Nb_3Al superconducting member according to any one of claims 1, 3 to 7, in which the diffusion barrier is made of Nb, Ta, or an alloy thereof.
(9)安定化材はCuまたはCu合金よりなる特許請求
の範囲第1項、第3項乃至第8項いずれか1項記載の第
三元素添加Nb_3Al超電導部材の製造方法。
(9) A method for manufacturing a third element-added Nb_3Al superconducting member according to any one of claims 1, 3 to 8, in which the stabilizing material is made of Cu or a Cu alloy.
JP63297759A 1987-12-28 1988-11-25 Method for producing third element-added Nb (3) A (1) superconducting member Expired - Lifetime JP2815373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63297759A JP2815373B2 (en) 1987-12-28 1988-11-25 Method for producing third element-added Nb (3) A (1) superconducting member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33299087 1987-12-28
JP62-332990 1987-12-28
JP63297759A JP2815373B2 (en) 1987-12-28 1988-11-25 Method for producing third element-added Nb (3) A (1) superconducting member

Publications (2)

Publication Number Publication Date
JPH01240638A true JPH01240638A (en) 1989-09-26
JP2815373B2 JP2815373B2 (en) 1998-10-27

Family

ID=26561222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297759A Expired - Lifetime JP2815373B2 (en) 1987-12-28 1988-11-25 Method for producing third element-added Nb (3) A (1) superconducting member

Country Status (1)

Country Link
JP (1) JP2815373B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140521A (en) * 1987-08-25 1989-06-01 Natl Res Inst For Metals Manufacture of nb3al compound superconductive wire rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140521A (en) * 1987-08-25 1989-06-01 Natl Res Inst For Metals Manufacture of nb3al compound superconductive wire rod

Also Published As

Publication number Publication date
JP2815373B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
CH616775A5 (en)
DE3531770A1 (en) MULTIFILAMENT SUPRALE LADDER WIRE, CONSTRUCTED FROM FILAMENTS OF NB (ARROW DOWN) 3 (ARROW DOWN) SN OR V (ARROW DOWN) 3 (ARROW DOWN) 3 (ARROW DOWN) GA WITH THE PROPELLATION
JP3433937B2 (en) Method of manufacturing superconducting alloy
JPH01240638A (en) Manufacture of nb3al super conducting member to which teritary element is added
JPH02148620A (en) Manufacture of nb3al superconductive wire
JPH02177217A (en) Manufacture of nb3al superconducting wire
JP3187829B2 (en) Superconductor and manufacturing method
JPH01292709A (en) Manufacture of nb3al superconductor member
US3868769A (en) Method of making superconductors
EP0609804A1 (en) Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JP3108496B2 (en) Superconducting wire manufacturing method
JP2861545B2 (en) Method for producing Nb-based compound superconducting coil
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPH03136400A (en) Manufacture of nb-ti superconducting magnetic shielding material
EP0196473B1 (en) High field superconductor with an armature, and method of making and using this superconductor
JPH05101720A (en) Compound superconductive wire and manufacture thereof
JPH06290651A (en) Nb3x type superconductive wire rod and its manufacture
JPS59198614A (en) Method of producing nb3sn superconductive wire
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH0652743A (en) Manufacture of nb3al compound
JPH03230421A (en) Manufacture of nb3al superconducting wire
JPS6213429B2 (en)