JPH01239973A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH01239973A
JPH01239973A JP63068959A JP6895988A JPH01239973A JP H01239973 A JPH01239973 A JP H01239973A JP 63068959 A JP63068959 A JP 63068959A JP 6895988 A JP6895988 A JP 6895988A JP H01239973 A JPH01239973 A JP H01239973A
Authority
JP
Japan
Prior art keywords
layer
type
mesa
substrate
matched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63068959A
Other languages
Japanese (ja)
Inventor
Isao Watanabe
功 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63068959A priority Critical patent/JPH01239973A/en
Publication of JPH01239973A publication Critical patent/JPH01239973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize a high-speed response and to reduce a dark current by a method wherein a periphery of a photodetecting part is filled with a dielectric insulator layer whose lattice is matched with a semiconductor substrate. CONSTITUTION:An n-type buffer layer 2, a light absorption layer 3 and an n<+>-type cap layer 4 are formed one after another on an n<+>-type semiconductor substrate 1. Then, while a photodetecting region is left, an etching operation reaching the substrate 1 is executed; a mesa is formed. Then, a dielectric buried layer 5 whose lattice is matched with the substrate 1 is formed at a periphery of the photodetecting region. This element is subjected to a limit of a CR time constant due to a junction capacitance; when a diameter of the mesa is made much smaller in this structure, this element can be made much speedier. It is possible to obtain a semiconductor element whose dark current is small and whose reliability is excellent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高速大容量の光通信システム等で用いて好適な
半導体受光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light-receiving element suitable for use in high-speed, large-capacity optical communication systems and the like.

(従来の技術) 高速・大容量光通信システムを可能にするには、20G
 b / S程度の超高速で応答する半導体受光素子が
必要であり、近年、シリカファイバの低損失波長域1〜
1.6uInに適応できるI nGaAs/InP系p
in型フォ)・タイオードの高速化か活発となっている
。ウェイタ(D、Wake)等は、エレクトロニクス・
レター(Electron。
(Conventional technology) To enable high-speed, large-capacity optical communication systems, 20G
Semiconductor photodetectors that respond at ultra-high speeds of b/s are required, and in recent years, silica fibers have been developed in the low-loss wavelength range 1 to 1.
InGaAs/InP system p applicable to 1.6uIn
In-type diodes are becoming increasingly faster. Waiter (D, Wake) etc. are electronics/
Letter (Electron.

Lett、)第23巻、415〜416ページ(198
7年)において、1〜1.6gm帯、InGaAs/I
nP系高速pin型フォトダイオードを発表している。
Lett,) Volume 23, pages 415-416 (198
7 years), 1-1.6 gm band, InGaAs/I
We have announced an nP-based high-speed pin type photodiode.

その典型的構造を第2図に示す。半絶縁性InP基板1
の上にn+導伝型InPバッファ層2、n−型1 no
、53Gao、a7As光吸1[i、層3、p十導伝型
キャップ層4を順次に成長した陸、受光部5をメサ状に
形成し、n側電極6及びエアブリッジ型P !lFI電
1fI 7を設けている。この4M mでは、受光部の
メサ径を〜301JInΦに縮少することで接合容量C
jを削除し、また、半絶縁性基板とエアブリ・ソジ配線
を用いることで配線容量Cを削除し、CR時定数制限を
改善している。
Its typical structure is shown in FIG. Semi-insulating InP substrate 1
n+ conductivity type InP buffer layer 2, n- type 1 no
, 53Gao, a7As light absorption 1[i, layer 3, p10 conduction type cap layer 4 is sequentially grown, light receiving part 5 is formed in a mesa shape, n side electrode 6 and air bridge type P! 1FI 7 is provided. With this 4Mm, the junction capacitance C can be reduced by reducing the mesa diameter of the light receiving part to ~301JInΦ.
By eliminating j and using a semi-insulating substrate and air-bridging wiring, the wiring capacitance C is eliminated and the CR time constant limit is improved.

(発明か解決しようとする課題) しかし、前述の従来のpin型フォトダイオードではメ
サ形成による表面リークt=、暗電流の増加、エアブリ
ッジ配線による不安定性増加、(、a lli性低下か
問題となる。
(Problem to be solved by the invention) However, in the conventional pin-type photodiode described above, there are problems such as surface leakage t= due to mesa formation, increase in dark current, increase in instability due to air bridge wiring, (, decrease in alli property, etc.) Become.

本発明は、上述の欠点を解決し、高速に応答ししから信
頼性に代れた半導体受光素子を実現することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to realize a semiconductor light-receiving element that responds at high speed and has improved reliability.

(課題を解決するだめの手段) 本発明の、半導体受光素子は、受光領域の周囲か、半導
体基板と格子整合する誘電体絶縁物層によって埋込まれ
ていることを特徴とする。
(Means for Solving the Problems) The semiconductor light-receiving element of the present invention is characterized in that the light-receiving region is surrounded by a dielectric insulator layer that is lattice-matched to the semiconductor substrate.

(作用) 本発明は、上述の手段により従来の欠点を克服した。第
2図は後に詳しく説明する本発明の半導体受光素子の一
実施例を示す断面図である。図において、■はn4型半
導体基板、2はn型バッファー層、3は光吸収層、4は
p十型キャップ層、5は半導体基板と格子整合する誘電
体絶縁物理込み層、6は無反射コーテイング膜、7はp
側電極、8はn側室(5,9はリング電極(p側室優の
一部分)である。受光領域はメザ状に基板までエンチン
グされており、この受光領域の直径を微小化することで
接合容量を削減している。5の部分が本発明の特徴であ
り、半導体基板と格子整合する誘電体絶縁物理込み層で
ある。この誘電体層は格子整合しているのでメサ側面と
の界面にも界面準位は発生ぜず、このなめ界面リーク電
流による暗電流は極めて小さい。また誘電体層の厚さは
メサの高さ程度と厚いので、十分な耐圧があり、またM
IS配線容量は無視しうる程度となり、かつ、プレーナ
埋込みであるから、電極のパターニングが容易で、段差
部で生じやすい配線切れも生じない。
(Operation) The present invention overcomes the conventional drawbacks by the above-mentioned means. FIG. 2 is a sectional view showing an embodiment of the semiconductor light receiving element of the present invention, which will be explained in detail later. In the figure, ■ is an n4-type semiconductor substrate, 2 is an n-type buffer layer, 3 is a light absorption layer, 4 is a p-type cap layer, 5 is a dielectric insulating physical layer that is lattice matched to the semiconductor substrate, and 6 is a non-reflective layer. Coating film, 7 is p
side electrode, 8 is the n-side chamber (5 and 9 are ring electrodes (part of the p-side chamber) Part 5 is a feature of the present invention, and is a dielectric insulating physical layer that is lattice-matched to the semiconductor substrate.Since this dielectric layer is lattice-matched, the interface with the mesa side surface is also reduced. No interface states are generated, and the dark current caused by this smooth interface leakage current is extremely small.Also, the dielectric layer is as thick as the mesa height, so it has sufficient withstand voltage, and M
IS wiring capacitance is negligible, and since it is planar embedded, patterning of electrodes is easy, and wire breaks that tend to occur at stepped portions do not occur.

(実施例) 第1図は前述のとおり本発明の一実施例を示す断面図で
ある。この実施例はInGaAs/1nPpinフオト
ダイオードであるか、本発明は曲の半導体系例えばA 
4 G a A s / G a A s系、I nG
aAs系/AuInAs系等にも全く同じ様に適用でき
る。
(Embodiment) As described above, FIG. 1 is a sectional view showing an embodiment of the present invention. This embodiment may be an InGaAs/1nP pin photodiode, or the present invention may be applied to a semiconductor system such as an InGaAs/1nP pin photodiode.
4 G a As / G a As system, InG
It can be applied in exactly the same way to aAs-based/AuInAs-based, etc.

第1図に示ず半導1水受光素子は以下の工程によって作
成した。:iず、n+型1nP基[1上に、n+型1n
Pバッファ層2を1”pm厚に、キャリア濃度〜2 X
 10” am−’のn−型1 n o、 s3G a
 0.47A、s層3を1μm厚に〜キャリア濃度0.
5〜1×10+90づのρ−InP層4を〜1μ凱厚に
順次に有機金属気相成長法を用いて成長した後、30μ
mΦの受光領域を残して、基板に達するまでエツチング
し、高さ〜3μmのメサを形成した0次に3X10−’
Pa以下の高真空で5rFt  (格子定数5.80人
)、BaF2 (格子定数6.20人)を分子ビーム成
長法により蒸着した。(ネ)この成長方法は、浅野らが
、J、J、A、P 22 p、1474  (1983
年)で、S1系においてCaF2、SrF2、B−aF
zの成長をすでに行っている。InPの格子定数は5.
86人であり、これら3結晶とも立方晶型であることか
ら、両フッ化物の混晶(Sr、Ba)F2はInPに格
子整合することが可能である。このため、メサ側面の埋
込み界面に界面準位は発生しない。成長に際しては、予
め受光領域メサ上部だけに、プラズマCVDで堆積させ
たアモルファスSiN膜のマスクを形成しておき、メサ
部以外のflJt域に(Sr、Ba)F2を選択的にエ
ピタキシャル成長し、その厚みを〜3μmとメサの高さ
と同じにすることで一プレーナ埋込みを実現した。最後
にP、n両+1IIJ t Kを各々、AuZn、Au
Ge で形成した。
A semiconductor single-water photodetector, not shown in FIG. 1, was fabricated by the following steps. : izu, n+ type 1nP group [on 1, n+ type 1n
The P buffer layer 2 has a thickness of 1”pm, and the carrier concentration is ~2×
10” am-' n-type 1 no, s3G a
0.47A, S layer 3 1 μm thick ~ carrier concentration 0.
5 to 1×10+90 ρ-InP layers 4 were sequentially grown to a thickness of ~1 μm using metal organic vapor phase epitaxy, and then 30 μm thick.
A 0-order 3X10-' mesa with a height of ~3 μm was formed by etching until it reached the substrate, leaving a light-receiving area of mΦ.
5 rFt (lattice constant: 5.80 m) and BaF2 (lattice constant: 6.20 m) were deposited by molecular beam growth in a high vacuum of Pa or less. (ne) This growth method was described by Asano et al., J, J, A, P 22 p, 1474 (1983
), CaF2, SrF2, B-aF in S1 system
We are already growing z. The lattice constant of InP is 5.
Since these three crystals are all cubic crystals, the mixed crystal (Sr, Ba) of both fluorides (F2) can be lattice matched to InP. Therefore, no interface states are generated at the buried interface on the side surface of the mesa. During growth, a mask of an amorphous SiN film deposited by plasma CVD is formed in advance only on the upper part of the mesa in the light receiving area, and (Sr, Ba)F2 is selectively epitaxially grown in the flJt region other than the mesa. One planar embedment was achieved by making the thickness ~3 μm, which is the same as the mesa height. Finally, P, n + 1IIJ t K, AuZn, Au
It was formed from Ge.

この実施例において、メサ径30μmΦ、10Vバイア
ス時接合容量Cj =0.15p F以下に対して(ポ
ンディングパッド50umΦにおいて)配線容量Cpa
d =0.04p F以下であり、配線容量は無視しう
′る値となった。このため、50Ω負荷抵抗時のCR時
定数によるカットオフ周波数は21GHzとなる。一方
、キャリアの空乏層走行時間制限によるカットオフ周波
数が30GHzであることから、本素子は接合容量によ
るCR時定数制限を受けており、本構造においてメサ径
をさらに微小化することだけでさらに高速化できる。ま
た、暗電流は、10Vバイアス時において70pA以下
と、従来のプレーナ型素子と較べても低い値であった。
In this example, when the mesa diameter is 30 μmΦ and the junction capacitance at 10 V bias is less than Cj = 0.15 pF (at the bonding pad of 50 μmΦ), the wiring capacitance Cpa
d = 0.04 pF or less, and the wiring capacitance was a negligible value. Therefore, the cutoff frequency due to the CR time constant when the load resistance is 50Ω is 21GHz. On the other hand, since the cutoff frequency is 30 GHz due to the carrier depletion layer transit time limit, this device is subject to the CR time constant limit due to the junction capacitance. can be converted into Further, the dark current was 70 pA or less at a bias of 10 V, which was a low value even compared to conventional planar elements.

(発明の効果) 以上に実施例を挙げて詳し・く説明したように、本発明
によれば、高速に応答し、暗電流が小さく、1言1“n
性に優れた半導体受光素子を得ることかでき、その価値
は大きい。
(Effects of the Invention) As described above in detail with reference to embodiments, the present invention provides high-speed response, small dark current, and
It is possible to obtain a semiconductor light-receiving element with excellent properties, which is of great value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のJt4造を示す断面図、第
2図は従来の半導体受光素子の構造を示す断面図である
。 図において、1はn+型半導体基板、2はn型パンファ
ー層、3は光吸収層、4はp十型キャップ層、5は半導
体基板と格子整合する誘電体絶縁物理込み層、6は無反
射コーテイング膜、7はP !pIJ電、(支)、8は
n側電極、9はリング電極(p側電極の一部)、11は
半絶縁性InP基板、12はn+型InPバッファ層、
13はn−型Ina、ssG a O47A S光吸収
層、14はp+型キャップ層、15は受光部、16はn
側室優、17はエアブリッジ型91則電極て゛ある。
FIG. 1 is a sectional view showing a Jt4 structure according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional semiconductor light receiving element. In the figure, 1 is an n+ type semiconductor substrate, 2 is an n-type breadth layer, 3 is a light absorption layer, 4 is a p-type cap layer, 5 is a dielectric insulating physically embedded layer that is lattice matched to the semiconductor substrate, and 6 is a non-reflective layer. Coating film, 7 is P! pIJ electrode (support), 8 is an n-side electrode, 9 is a ring electrode (part of the p-side electrode), 11 is a semi-insulating InP substrate, 12 is an n + type InP buffer layer,
13 is an n-type Ina, ssG a O47A S light absorption layer, 14 is a p+ type cap layer, 15 is a light receiving part, and 16 is an n
Concubine Yu, 17 is an air bridge type 91 rule electrode.

Claims (1)

【特許請求の範囲】[Claims]  受光領域の周囲が、半導体基板と格子整合する誘電体
絶縁物層によって埋込まれていることを特徴とする半導
体受光素子。
1. A semiconductor light-receiving element characterized in that the periphery of a light-receiving region is embedded with a dielectric insulator layer that is lattice-matched to a semiconductor substrate.
JP63068959A 1988-03-22 1988-03-22 Semiconductor photodetector Pending JPH01239973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068959A JPH01239973A (en) 1988-03-22 1988-03-22 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068959A JPH01239973A (en) 1988-03-22 1988-03-22 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH01239973A true JPH01239973A (en) 1989-09-25

Family

ID=13388720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068959A Pending JPH01239973A (en) 1988-03-22 1988-03-22 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH01239973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224460A (en) * 1993-01-26 1994-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector and its manufacture
KR20010094513A (en) * 2000-03-31 2001-11-01 윤종용 Method for fabricating waveguide photodetectors based on selective area growth technology
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device
US8035187B2 (en) 2008-02-06 2011-10-11 Sony Corporation Semiconductor light receiving element and optical communication system
JP2012124404A (en) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Photodiode and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224460A (en) * 1993-01-26 1994-08-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector and its manufacture
KR20010094513A (en) * 2000-03-31 2001-11-01 윤종용 Method for fabricating waveguide photodetectors based on selective area growth technology
US7307250B2 (en) 2003-02-06 2007-12-11 Seiko Epson Corporation Light-receiving element and manufacturing method of the same, optical module and optical transmitting device
US8035187B2 (en) 2008-02-06 2011-10-11 Sony Corporation Semiconductor light receiving element and optical communication system
JP2012124404A (en) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Photodiode and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
JP3141847B2 (en) Avalanche photodiode
JPH022691A (en) Semiconductor light receiving device
CN110931575B (en) Waveguide photodetector monolithically integrated with DBR cladding and reflector
US5494833A (en) Backside illuminated MSM device method
US20070057299A1 (en) Systems and methods having a metal-semiconductor-metal (msm) photodetector with buried oxide layer
JPH01239973A (en) Semiconductor photodetector
JP4861388B2 (en) Avalanche photodiode
Olsen Low-leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7 µm photodiodes
US6791152B2 (en) Photodetector device and method for manufacturing the same
JPS61229371A (en) Photo diode
JPH04342174A (en) Semiconductor photoelectric receiving element
JPH07202254A (en) Semiconductor photodetector
JPS6231179A (en) Manufacture of semiconductor photodetector
KR20010009571A (en) Photo-detector device and method manufacturing thereof
JPS63122180A (en) Pin-type semiconductor photodetector
KR20030060309A (en) Photodiode detector and fabrication method thereof
JPH01179467A (en) Semiconductor photodetector
JP2004158763A (en) Semiconductor photo detector
JPH0265279A (en) Semiconductor photodetecting element
JP2638445B2 (en) Semiconductor light receiving element
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPH10270741A (en) Semiconductor photoreceptor
JPH04137565A (en) Optical semiconductor element
JPS6065580A (en) Semiconductor photodetector