JPH01239886A - Superconductive light receiving element - Google Patents

Superconductive light receiving element

Info

Publication number
JPH01239886A
JPH01239886A JP63066984A JP6698488A JPH01239886A JP H01239886 A JPH01239886 A JP H01239886A JP 63066984 A JP63066984 A JP 63066984A JP 6698488 A JP6698488 A JP 6698488A JP H01239886 A JPH01239886 A JP H01239886A
Authority
JP
Japan
Prior art keywords
photoconductor
type
light
receiving element
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066984A
Other languages
Japanese (ja)
Inventor
Hideki Kamachi
英樹 釜地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63066984A priority Critical patent/JPH01239886A/en
Publication of JPH01239886A publication Critical patent/JPH01239886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve further the sensitivity of a superconductive light receiving element, by equipping a photoconductor comprising n-type a-Si:H, i-type a-Si:H, and p-type a-SiC:H accumulated in this order from the side of a superconductive body and a transparent electrode accumulated on said photoconductor. CONSTITUTION:A light receiving element has a Josephson junction to control a superconductive current equipped at a part of a superconductive body 2. An electric charge generated from a photoconductor 81 upon irradiation of light is implanted to said junction to change the current-voltage characteristic of said superconductive body 2 and convert the light into an electric signal. Said light receiving element is equipped with a photoconductor 81 comprising n-type a-Si:H 7, i-type a-Si:H 6, and p-type a-SiC:H 51 accumulated in this order from the side of the superconductive body 2 and a transparent electrode 9 accumulated on said photoconductor 81. For example, a YBa2Cu3O6.6 film obtained by accumulating on an MgO substrate 1 by gammaf diode sputtering method and annealing at 900 deg.C is used as a superconductive body 2, a groove of 5mum width is made in said superconductive body 2 so that said YBa2Cu3O6.6 film may be 0.5mum thick, and then a photoconductor 81 is formed thereon.

Description

【発明の詳細な説明】 〔概要] 光センサやファクシミリ装置の画像入力部などに利用さ
れる受光素子、特に超電導体を使用した超電導受光素子
に関し、 超電導受光素子の感度を更に改善することを目的とし、 超電導体の一部に超電導電流を制御するジョセフソン結
合を持ち、その結合部に光導電体から光照射時に発生し
た電荷を注入することにより、その電流−電圧特性を変
化させ、光を電気信号に変換する受光素子において、 超電導体側からn型a−5t : 8%  i型a−S
i : H1p型a−SiC: Hの順に積層した光導
電体と、該光導電体上に積層した透明電極を有するよう
に構成する。
[Detailed Description of the Invention] [Summary] The purpose of the present invention is to further improve the sensitivity of a superconducting light receiving element used in optical sensors and image input units of facsimile machines, especially superconducting light receiving elements using superconductors. A part of the superconductor has a Josephson coupling that controls the superconducting current, and by injecting charge generated during light irradiation from the photoconductor into the coupling part, the current-voltage characteristics are changed and the light is emitted. In the light receiving element that converts into an electric signal, from the superconductor side: n type a-5t: 8% i type a-S
i: H1p type a-SiC: It is configured to have a photoconductor laminated in the order of H, and a transparent electrode laminated on the photoconductor.

〔産業上の利用分野] 本発明は、光センサやファクシミリ装置の画像入力部な
どに利用される受光素子、特に超電導体を使用した超電
導受光素子に関する。
[Industrial Application Field] The present invention relates to a light receiving element used in an optical sensor, an image input section of a facsimile machine, etc., and particularly to a superconducting light receiving element using a superconductor.

〔従来の技術〕[Conventional technology]

第3図に従来の超電導受光素子である光スイツチング素
子の断面構造を示す。この素子は、基板1上に超電導体
2を積層して一部を薄くし、そこに光導電体であるCd
5(3)を積層した構造となっている。光導電体に光を
照射したとき、Cd5(3)中に発生した電荷が超電導
体2に注入して一部超電導状態を破り、第4図に示した
ような電流−電圧特性の変化を発生する。すなわち光照
射により、超電導体2の薄肉部2aの超電導電流の流れ
る断面積が小さくなり、電流値が減少する。
FIG. 3 shows a cross-sectional structure of an optical switching device, which is a conventional superconducting light-receiving device. This element is made by laminating a superconductor 2 on a substrate 1 to make a part thinner, and then adding Cd as a photoconductor.
It has a structure in which 5 (3) are laminated. When the photoconductor is irradiated with light, the charges generated in Cd5(3) are injected into the superconductor 2, partially breaking the superconducting state and causing changes in current-voltage characteristics as shown in Figure 4. do. That is, by light irradiation, the cross-sectional area through which superconducting current flows in the thin portion 2a of the superconductor 2 becomes smaller, and the current value decreases.

この素子構造では、光照射時に発生した電荷は、電荷密
度の差によるドリフトで超電導体2中に注入されるが、
光に対する感度が小さく、光照射の開始・終了に対して
I−V特性が完全に安定するまでに多少時間がかかる。
In this device structure, charges generated during light irradiation are injected into the superconductor 2 due to drift due to the difference in charge density.
The sensitivity to light is low, and it takes some time for the IV characteristics to become completely stable at the start and end of light irradiation.

すなわちスイッチング速度がやや遅くなってしまう。ま
た光照射によってCd5(3)中に発生した電荷が、光
照射終了直後、すなわち光照射によって形成された電荷
が再結合しなくなるまでの間は、超電導体2中に少量で
はあるが電荷が注入され、ノイズの原因となっていた。
In other words, the switching speed becomes somewhat slow. In addition, the charges generated in Cd5(3) by light irradiation are injected into the superconductor 2, albeit in a small amount, immediately after the end of the light irradiation, that is, until the charges formed by light irradiation are no longer recombined. was causing noise.

さらにCdSは、波長約0.6μmで最も光感度(単位
光強度に対する電荷発生数)が大きく、光通信で用いら
れる、より長い波長光(0,7〜0.9μm)に対して
光感度が著しく低いといった問題を生じていた。
Furthermore, CdS has the highest photosensitivity (the number of charges generated per unit light intensity) at a wavelength of about 0.6 μm, and has the highest photosensitivity for longer wavelength light (0.7 to 0.9 μm) used in optical communications. The problem was that it was extremely low.

また、CdS中のCdは公害物質であり、工業生産をす
る場合、公害対策や作業員の安全対策が大規模となって
しまう。
Furthermore, Cd in CdS is a polluting substance, and when industrial production is carried out, pollution control and worker safety measures become extensive.

このような問題を解消し、高速かつ高感度の超電導受光
素子を実現するために、本発明の発明者は、特願昭63
−9388号において、第5図、第6図のような超電導
受光素子を提案した。
In order to solve these problems and realize a high-speed and highly sensitive superconducting photodetector, the inventor of the present invention filed a patent application filed in 1983.
In No. 9388, we proposed a superconducting photodetector as shown in FIGS. 5 and 6.

第5図は超電導受光素子の断面図である。この超電導受
光素子では、光導電体8として、超電導体2側からn型
a −S i : H(7)、i型a −S i : 
II (6)、p型a−s i: H(5)を積層した
ものである。このような層構成とすることにより、光導
電体8に、第6図に示したようなバンド構造が発生する
FIG. 5 is a sectional view of the superconducting light receiving element. In this superconducting light receiving element, as a photoconductor 8, from the superconductor 2 side, n-type a-S i : H(7), i-type a-S i :
II (6), p-type AS i: H (5) are stacked. With such a layer structure, a band structure as shown in FIG. 6 is generated in the photoconductor 8.

光導電体8をこのような層構造とすることで、光照射に
よって、光導電体8に発生した電荷が、自発的に超電導
体2中へ注入され、超電導体2中への電荷(電子)注入
効率を高めることができる。
By making the photoconductor 8 have such a layered structure, the charges generated in the photoconductor 8 by light irradiation are spontaneously injected into the superconductor 2, and the charges (electrons) into the superconductor 2 are Injection efficiency can be increased.

またホールは、透明電極9によって光導電体8の外部に
出されるため、光照射終了直後における光導電体8中の
残留電荷を少なくできる。
Furthermore, since the holes are taken out of the photoconductor 8 by the transparent electrode 9, the residual charge in the photoconductor 8 immediately after the completion of light irradiation can be reduced.

その結果、第6図に示すように、バンド図においてバン
ドギャップの位置がずれ、ポテンシャルの傾きが発生し
、電子が移動し易くなるため、光照射後の残留電荷が減
少することと相俟って、光照射時と非照射時のスイッチ
ング動作が確実かつ高速に行なわれ、ノイズも減少する
。さらに、光導電体8に用いるa−Si:Ifやa−S
i、−XGeX:Hは、CdSより波長0.7〜0.9
μmの光に対する感度が高く、光通信等に応用する場合
に有利となるばかりでなく、CdSのようにを害元素を
含まないため、装造工程における大規模な公害対策や作
業者の非接触対策が非常に容易になる。
As a result, as shown in Figure 6, the position of the band gap shifts in the band diagram, creating a potential slope and making it easier for electrons to move, which is coupled with a decrease in residual charge after light irradiation. Therefore, switching operations during light irradiation and non-irradiation are performed reliably and at high speed, and noise is also reduced. Furthermore, a-Si:If and a-S used for the photoconductor 8
i, -XGeX:H has a wavelength of 0.7 to 0.9 from CdS.
It has high sensitivity to μm light, which is not only advantageous when applied to optical communications, etc., but also contains no harmful elements like CdS, so it can be used to prevent large-scale pollution during the assembly process and to eliminate worker contact. Countermeasures become much easier.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、光通信などに利用される赤い光に対して感
度を高くすることができるが、本発明の技術的課題は、
このような要望に応えるべく、超電導受光素子の感度を
更に改存することにある。
In this way, it is possible to increase the sensitivity to red light used in optical communications, etc., but the technical problem of the present invention is to
In order to meet such demands, the aim is to further improve the sensitivity of superconducting light receiving elements.

〔課題を解決するための手段] 第1図は本発明による超電導受光素子の基本原理を説明
する断面図である。本発明の受光素子では、光導電体8
1として、超電導体(2)側からn型a−si:H(7
)、i型a−Si : H(6)、p型a−Si C:
 H(51)の順に積層した3層構造を用いる。
[Means for Solving the Problems] FIG. 1 is a sectional view illustrating the basic principle of a superconducting light receiving element according to the present invention. In the light receiving element of the present invention, the photoconductor 8
1, n-type a-si:H (7
), i-type a-Si: H(6), p-type a-Si C:
A three-layer structure in which H(51) is laminated in the order of H(51) is used.

すなわち透明電極9側の層51として、炭素Cを含むp
型a−SiC: Hを用いる。
That is, as the layer 51 on the transparent electrode 9 side, p containing carbon C is used.
Type a-SiC: H is used.

また、光導電体81上には、透明電極9を積層し、透明
電極9上に設けた電極43により接地する。
Further, a transparent electrode 9 is laminated on the photoconductor 81, and is grounded by an electrode 43 provided on the transparent electrode 9.

〔作用〕 本発明の受光素子は、光を光導電体81に照射した時に
・中間のi型a−Si : H(6)層中で発生する電
子を、超電導体2の膜厚を薄くしたジョセフソン結合部
2aに、効率良くしかも速く注入できるとともに、光照
射終了直後に光導電体81中に残った電子およびホール
をすばやく光導電体(81)の外に出すことができる。
[Function] The light-receiving element of the present invention is characterized in that when the photoconductor 81 is irradiated with light, the electrons generated in the intermediate i-type a-Si:H(6) layer are absorbed by reducing the thickness of the superconductor 2. In addition to being able to efficiently and quickly inject into the Josephson coupling portion 2a, electrons and holes remaining in the photoconductor 81 immediately after the completion of light irradiation can be quickly released from the photoconductor (81).

本発明の受光素子における光導電体81は、前記3層構
成とすることにより、第2図に示すバンド構造を持つ。
The photoconductor 81 in the light-receiving element of the present invention has the band structure shown in FIG. 2 by having the three-layer structure described above.

すなわち、ハンド構造は、光導電体中を通して伝導帯及
び価電子帯のエネルギレベルが、超電導体2側に向って
低くなる。この伝導帯と価電子帯の傾きは、伝導帯中の
電子を超電導体2方向へ、価電子帯中のホールを透明電
極9方向へそれぞれ動かす静電気力を生み出す。本発明
の受光素子は、この静電気力によって、前記目的を達成
するものである。
That is, in the hand structure, the energy levels of the conduction band and valence band decrease toward the superconductor 2 side throughout the photoconductor. This inclination of the conduction band and valence band generates an electrostatic force that moves electrons in the conduction band toward the superconductor 2 and holes in the valence band toward the transparent electrode 9, respectively. The light receiving element of the present invention achieves the above object by using this electrostatic force.

また、光導電体81に用いたa−Si : Hは、Cd
Sと比較して、波長0.7〜0.9μmの光に対して、
同じ光強度で、より多くの電子ホール対を発生でき、前
記波長域に発振波長を持つ半導体レーザを用いる場合に
有利となる。
In addition, a-Si:H used for the photoconductor 81 is Cd
Compared to S, for light with a wavelength of 0.7 to 0.9 μm,
More electron-hole pairs can be generated with the same light intensity, which is advantageous when using a semiconductor laser having an oscillation wavelength in the above wavelength range.

特に透明電極9側の層51の組成として、炭素を含むp
型a−SiC: Hを用いることで、中間層6のバンド
ギャップGlよりも、透明電極9例のバンドギャップG
2を広くできる。その結果、透明電極9側の層51にお
ける光吸収が抑制され、中間層6における光吸収効率が
向上する。そのため、光導電体81の感度が一層改善さ
れる。
In particular, the composition of the layer 51 on the transparent electrode 9 side is p containing carbon.
By using type a-SiC:H, the band gap G of the transparent electrodes 9 is lower than the band gap Gl of the intermediate layer 6.
2 can be made wider. As a result, light absorption in the layer 51 on the transparent electrode 9 side is suppressed, and the light absorption efficiency in the intermediate layer 6 is improved. Therefore, the sensitivity of the photoconductor 81 is further improved.

さらに、a−Si : Hは、CdSのような有害元素
を含まないため、製造工程における大規模な公害対策や
作業者の非接触対策が非常に少なくできる等、工業生産
的にも有利となる。
Furthermore, since a-Si:H does not contain harmful elements such as CdS, it is advantageous in terms of industrial production, such as the need for large-scale pollution control measures and non-contact measures for workers during the manufacturing process. .

〔実施例〕〔Example〕

本発明による超電導受光素子の実施例と製造方法を説明
する。超電導体2は、温度を300°Cに保ったMgo
 4板1上に、γfダイオードスパッタ法で堆積した後
、900°Cでアニールして得られたYBazCu30
b、 b膜を用いた。スパッタは、Ar40mTorr
Examples and manufacturing method of a superconducting light receiving element according to the present invention will be described. Superconductor 2 is Mgo whose temperature is kept at 300°C.
4 YBazCu30 obtained by depositing on board 1 by γf diode sputtering method and then annealing at 900 °C
b, b membrane was used. Sputtering is Ar40mTorr
.

rf電力150W、加速電圧2kV、YBa*Cu、0
゜ターゲットの条件で行なった。このYBazCu+0
6. b超電導材料に、幅5μmの溝を、Y BazC
u306. bの膜厚が0.5μmとなるように掘った
。この上にマスクを付け、RFプラズマCVD法によっ
て、n型a−Si : H(7)、i型a−Si : 
H(6)、p型a−Si C: H(51)の順に積層
して、光導電体81を形成した。n型a−Si : H
(7)は、基板温度250°C1材料ガスSiH4、ド
ーピングガスPH,、ガス総流ffi50sccm、圧
力0.2Torr、 RF電力50Wの条件で成膜した
。i型a−Si : H(6)は、基板温度250”C
1材料ガスS i I+ 、、ガス流ff140sec
m、圧力0.5Torr 、 RF電力50Wとし、B
2H6をS i l! aに対して2 ppmだけ混合
して堆積した。次に、p型a−Si C: H(51)
は、基板温度250°C1材料ガスとして、Siz11
.18sccmとCzlle12sccmとlie希釈
100ppmBzl162100ppとの混合ガス、圧
力1.0Torr、 RF電力50Wの条件で堆積した
。そして最後に、透明電極9として[TOを堆積し、本
発明の超電導受光素子を得た。
RF power 150W, acceleration voltage 2kV, YBa*Cu, 0
゜Conducted under target conditions. This YBazCu+0
6. b A groove with a width of 5 μm in the superconducting material, Y BazC
u306. It was dug so that the film thickness of b was 0.5 μm. A mask was attached on top of this, and n-type a-Si: H(7), i-type a-Si:
H(6) and p-type a-SiC:H(51) were laminated in this order to form a photoconductor 81. n-type a-Si: H
In (7), a film was formed under the conditions of a substrate temperature of 250°C, a material gas of SiH4, a doping gas of PH, a total gas flow of 50 sccm, a pressure of 0.2 Torr, and an RF power of 50 W. i-type a-Si: H(6) has a substrate temperature of 250"C
1 material gas S i I+ , gas flow ff140sec
m, pressure 0.5 Torr, RF power 50W, B
S i l of 2H6! It was deposited by mixing only 2 ppm with respect to a. Next, p-type a-Si C: H (51)
is Siz11 as the substrate temperature 250°C1 material gas
.. Deposition was carried out under the conditions of a mixed gas of 18 sccm, 12 sccm, and 100 ppm Bzl162 diluted with 100 ppm, pressure of 1.0 Torr, and RF power of 50 W. Finally, [TO] was deposited as a transparent electrode 9 to obtain a superconducting light-receiving element of the present invention.

本実施例の超電導受光素子を、液体チッ素で77Kに冷
却し、光スイツチング速度の測定を行なったところ、0
.05〜0.8 nsと非常に速く、オン・オフの切り
換え後に出現する電圧が非常に速く安定する光スイツチ
ング特性が得られた。また、波長0.7〜0.9μmの
光について、光感度を調べた結果、CdSを光導電体と
した光スィッチと比較して、■桁以上光感度が高くなっ
た。
When the superconducting photodetector of this example was cooled to 77K with liquid nitrogen and the optical switching speed was measured, it was found that the light switching speed was 0.
.. An optical switching characteristic was obtained in which the voltage that appeared after switching on and off stabilized very quickly, 05 to 0.8 ns. Furthermore, as a result of examining the photosensitivity for light with a wavelength of 0.7 to 0.9 μm, the photosensitivity was higher than an order of magnitude compared to an optical switch using CdS as a photoconductor.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来のCdS光導電体を
用いた光スィッチに比べ、スイッチング速度が約2倍と
速く、オン・オフ切り換え時の安定性があり、波長0.
7〜0.9μmの光に対して光感度を1桁以上高くでき
る。
As described above, according to the present invention, compared to an optical switch using a conventional CdS photoconductor, the switching speed is approximately twice as fast, stability is achieved during on/off switching, and the wavelength is 0.
Photosensitivity to light of 7 to 0.9 μm can be increased by one order of magnitude or more.

特に透明電極9側の層51の組成として、炭素を含むp
型a−SiC: Hを用いることで、透明電極9例のバ
ンドギャップG2を広くし、波長0.7〜0゜9μmの
光に対する感度を一層改善することができる。
In particular, the composition of the layer 51 on the transparent electrode 9 side is p containing carbon.
By using type a-SiC:H, the band gap G2 of the nine transparent electrodes can be widened, and the sensitivity to light having a wavelength of 0.7 to 0.9 μm can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導受光素子の基本原理を説明
する断面図、第2図は本発明による超電導受光素子の特
性を示すバンド構造図、第3図は従来のCdS受光素子
を示す断面図、第4図は従来のCdS受光素子の特性を
示す図、第5図は従来の超電導受光素子の断面図、第6
図は同超電導受光素子の特性を示す図である。 図において、1は基板、2は超電導体、3はCdS、4
1.42.43は電極、5はp型a−Si : H1S
1はp型a−SiC: l]、6はi型a−Si : 
H17はn型a−Si:H2S、81は光導電体、9は
透明電極をそれぞれ示す。 特許出願人     冨士通株式会社 復代理人 弁理士  福 島 康 文 箱1図 第2図
FIG. 1 is a cross-sectional view explaining the basic principle of a superconducting photodetector according to the present invention, FIG. 2 is a band structure diagram showing the characteristics of the superconducting photodetector according to the present invention, and FIG. 3 is a cross-sectional view showing a conventional CdS photodetector. , Fig. 4 is a diagram showing the characteristics of a conventional CdS photodetector, Fig. 5 is a cross-sectional view of a conventional superconducting photodetector, and Fig. 6 is a diagram showing the characteristics of a conventional CdS photodetector.
The figure is a diagram showing the characteristics of the same superconducting light receiving element. In the figure, 1 is the substrate, 2 is the superconductor, 3 is CdS, 4
1.42.43 is an electrode, 5 is p-type a-Si: H1S
1 is p-type a-SiC: l], 6 is i-type a-Si:
H17 represents n-type a-Si:H2S, 81 represents a photoconductor, and 9 represents a transparent electrode. Patent applicant: Fujitsu Co., Ltd. Sub-agent Patent attorney: Yasushi Fukushima Text box 1 Figure 2

Claims (1)

【特許請求の範囲】  超電導体(2)の一部に超電導電流を制御するジョセ
フソン結合を持ち、その結合部に光導電体から光照射時
に発生した電荷を注入することにより、その電流−電圧
特性を変化させ、光を電気信号に変換する受光素子にお
いて、 超電導体(2)側からn型a−Si:H(7)、i型a
−Si:H(6)、p型a−SiC:H(51)の順に
積層した光導電体(81)と、該光導電体(81)上に
積層した透明電極(9)を有することを特徴とする超電
導受光素子。
[Claims] A part of the superconductor (2) has a Josephson coupling that controls the superconducting current, and by injecting charges generated during light irradiation from the photoconductor into the coupling part, the current-voltage can be adjusted. In the light receiving element that changes the characteristics and converts light into an electrical signal, from the superconductor (2) side, n-type a-Si:H (7), i-type a
- A photoconductor (81) laminated in this order of Si:H (6) and p-type a-SiC:H (51), and a transparent electrode (9) laminated on the photoconductor (81). Characteristic superconducting photodetector.
JP63066984A 1988-03-20 1988-03-20 Superconductive light receiving element Pending JPH01239886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066984A JPH01239886A (en) 1988-03-20 1988-03-20 Superconductive light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066984A JPH01239886A (en) 1988-03-20 1988-03-20 Superconductive light receiving element

Publications (1)

Publication Number Publication Date
JPH01239886A true JPH01239886A (en) 1989-09-25

Family

ID=13331792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066984A Pending JPH01239886A (en) 1988-03-20 1988-03-20 Superconductive light receiving element

Country Status (1)

Country Link
JP (1) JPH01239886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016022A1 (en) * 1991-03-07 1992-09-17 Centre National De La Recherche Scientifique (Cnrs) Photodetecting device including a transparent electrode of low electrical resistance
US5407903A (en) * 1990-09-28 1995-04-18 Sumitomo Electric Industries, Ltd. Superconducting device having a reduced thickness of oxide superconducting layer
US5506197A (en) * 1991-12-13 1996-04-09 Sumitomo Electric Industries, Ltd. Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407903A (en) * 1990-09-28 1995-04-18 Sumitomo Electric Industries, Ltd. Superconducting device having a reduced thickness of oxide superconducting layer
US5434127A (en) * 1990-09-28 1995-07-18 Sumitomo Electric Industries, Ltd. Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer
WO1992016022A1 (en) * 1991-03-07 1992-09-17 Centre National De La Recherche Scientifique (Cnrs) Photodetecting device including a transparent electrode of low electrical resistance
US5506197A (en) * 1991-12-13 1996-04-09 Sumitomo Electric Industries, Ltd. Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material

Similar Documents

Publication Publication Date Title
JPS6455859A (en) Superlattice image sensing
CN106784123A (en) Single file carrier photodetector and preparation method thereof
JPS5841668B2 (en) Heterosetsugouo Usuru Avalanche Photodiode
US20100133637A1 (en) Avalanche photodiode
JPH05160426A (en) Semiconductor light receiving element
JP4061057B2 (en) Photodiode
US5942771A (en) Semiconductor photodetector
JPS5940576A (en) Photo thyristor
JPH01239886A (en) Superconductive light receiving element
JPS58202579A (en) Semiconductor device and method of producing same
Forrest Organic-on-organic semiconductor heterojunctions: building block for the next generation of optoelectronic devices
JPS6285477A (en) Photosemiconductor device
JPS62254473A (en) Iii-v multi-element compound semiconductor pin photo diode
JPH01184423A (en) Superconducting photodetector
US5527397A (en) Photoelectric conversion device
JP4043555B2 (en) Waveguide type photodetector
JPH03270277A (en) Semiconductor photoreceptor element
JP2666841B2 (en) Manufacturing method of avalanche type semiconductor light receiving element
JP3286034B2 (en) Semiconductor light receiving element
JPH01149486A (en) Semiconductor photodetector
JPH06164002A (en) Superconductive optical sensor
KR101976673B1 (en) Silicon solar cell
JPH07231108A (en) Solar cell
JP2536703Y2 (en) Photo thyristor
Kim et al. Fabrication of planar InP/InGaAs avalanche photodiode without guard rings