JP4043555B2 - Waveguide type photodetector - Google Patents

Waveguide type photodetector Download PDF

Info

Publication number
JP4043555B2
JP4043555B2 JP23971497A JP23971497A JP4043555B2 JP 4043555 B2 JP4043555 B2 JP 4043555B2 JP 23971497 A JP23971497 A JP 23971497A JP 23971497 A JP23971497 A JP 23971497A JP 4043555 B2 JP4043555 B2 JP 4043555B2
Authority
JP
Japan
Prior art keywords
layer
type
light absorption
photodetector
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23971497A
Other languages
Japanese (ja)
Other versions
JPH1187758A (en
Inventor
一昭 西片
均 清水
清輝 吉田
理徳 入川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP23971497A priority Critical patent/JP4043555B2/en
Publication of JPH1187758A publication Critical patent/JPH1187758A/en
Application granted granted Critical
Publication of JP4043555B2 publication Critical patent/JP4043555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高速動作可能で暗電流の低減を図った素子構造の導波路型光検出器に関する。
【0002】
【関連する背景技術】
導波路型光検出器は、一般に低キャリア濃度の光吸収層の上下に、p型導電層とn型導電層とをそれぞれ配置してPN接合を形成した素子構造を有している。そして上記p型導電層とn型導電層との間に逆電圧を印加することで前記光吸収層を空乏化し、その空乏層内に生じる高電界を利用して、該光吸収層の端面から入射した光信号を光電変換する作用を呈する。
【0003】
ところで上記光検出器の応答性(応答速度)は、素子構造に起因するCR時定数と光信号により励起されるキャリアの走行時間とにより決定される。しかし励起キャリアの走行時間は、光吸収層の幅を狭くすることにより低減することができ、例えばその幅を1μm以下にすることで実質的に無視し得る程度まで短くすることができる。従ってその応答性は、専らCR時定数に依存すると言える。
【0004】
【発明が解決しようとする課題】
さて光検出器の応答性を左右するCR時定数に関与する容量成分Cの殆どは、PN接合部における静電容量である。この静電容量はPN接合部の厚さに反比例し、またその面積に比例する。従って静電容量Cを抑えて時定数を小さくし、その応答性を高めるには、例えばPN接合部の面積である光吸収層の面積を少なくすれば良い。そこで従来では、通常、光吸収層を含むPN接合部をメサストライプ構造とし、ストライプの幅と長さとを短くするようにしている。
【0005】
図1はこのような観点に立脚した従来一般的な導波路型光検出器の素子構造を示している。即ち、この光検出器は、例えばn-InP基板1上に、n型導電層としてのn-GaInAsP光ガイド層2、i-GaInAs(P)光吸収層3、p型導電層としてのp-GaInAsP光ガイド層4を順に積層して光吸収層3を挟むPN接合を形成し、更にその上にp-InPクラッド層5、p+-GaInAs(P)層6、そしてメタル層7を順に積層した多層膜積層体構造を有する。そしてその積層体をストライプ状にエッチングしてメサを形成し、メサのリッジ側面に誘電体膜8を設けた素子構造を有する。
【0006】
ここで上記誘電体膜8は、リッジ側面を通る表面リーク電流を防ぐことを目的として設けられるものである。しかしながら上記誘電体膜8を設けてリッジ側面を保護しても、意図しない表面準位が介在するリーク電流パスが形成されたり、誘電体膜8の帯電によって光吸収層3からの空乏層が延び、不本意なリーク電流パスが形成される虞があった。このような誘電体膜8の帯電や上記パスを介するリーク電流の発生は、暗電流増加の原因となり、その応答性を妨げる要因となっている。
【0007】
本発明はこのような事情を考慮してなされたもので、その目的は、高速動作が可能で、しかもリーク電流に起因する暗電流の発生を抑えた簡易な素子構造の導波路型光検出器を提供することにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するべく本発明は、p型導電層とn型導電層との間に低キャリア濃度の光吸収層を配置してPN接合を形成したメサストライプ構造の導波路型光検出器に係り、前記光吸収層を備えるメサストライプの側面に保護層を埋め込み形成した素子構造とし、特に、前記保護層を、p型層と前記p型層を被覆する誘電体膜で構成したことを特徴としている。即ち、本発明は、光吸収層を含むリッジ側面にp型層と誘電体膜からなる保護層を設けることで、不本意な表面準位を発生し難くくし、しかも光吸収層からの空乏層が延び難い素子構造として、リーク電流の発生を抑えるようにしたことを特徴としている。
p型導電層とn型導電層との間に低キャリア濃度の光吸収層を配置してPN接合を形成したメサストライプ構造の導波路型光検出器であって、前記光吸収層を備えるメサストライプの側面に埋め込み形成した保護層を備え、前記保護層を、p型層と前記p型層を被覆する誘電体膜で構成したことを特徴とする導波路型光検出器。
【0009】
具体的態様において、前記保護層のp型層は、有機金属気相成長法により形成されたp - InPで構成される。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態に係る導波路型光検出器について説明する。
図2〜図4は、それぞれ本発明の第1〜第3の実施形態に係る導波路型光検出器の素子構造を示している。これらの各実施形態に係る導波路型光検出器は、基本的には図1に示した従来の光検出器と同様に、例えばn-InP基板1上にn-GaInAsP光ガイド層2、i-GaInAs(P)光吸収層3、p-GaInAsP光ガイド層4を順に積層して、上記光吸収層3をn型導電層とp型導電層とで挟んでPN接合を形成し、更にその上にp-InPクラッド層5、p+-GaInAs(P)層6、そしてメタル層7を順に積層した後、その多層膜積層体をストライプ状にエッチングしてメサを形成し、光吸収層3(PN接合部)の面積を小さくした基本素子構造を有する。
【0011】
しかして第1の実施形態に係る光検出器は、図2に示すようにそのメサストライプのリッジ側面にp-InPからなる半導体保護層(p型層)11を形成し、その上に誘電体膜8を形成することで、上記半導体保護層11を光吸収層3のリッジ側面に埋め込んだ素子構造としたことを特徴としている。ちなみに上記半導体保護層(p-InP)11の成長は、有機金属気相成長法(MOCVD法)を用いて行われる。そしてこの半導体層11を、メサストライプの幅よりも2〜4μm広げた部位にてエッチオフした後、その全体を覆う誘電体膜8を形成して、リッジ側面を保護する。
【0012】
かくして図2に示す如き素子構造の導波路型光検出器によれば、光吸収層3のリッジ側面にp-InPからなる半導体保護層11が形成されているので、該光吸収層3のリッジ側面に不本意な表面準位が発生し難くなり、リーク電流が流れ難くなる。しかも誘電体膜8が半導体保護層11を介して光吸収層3のリッジ側面から離れているので、誘電体膜8が帯電し難くなる。また仮に誘電体膜8が帯電したとしても、誘電体膜8がリッジ側面から離れているので光吸収層3からの空乏層がリッジ側面に沿って延びることがなくなる。従って不本意なリーク電流の発生を抑えて暗電流を低減し、その応答性を高めることが可能となる。従って光吸収層3を含むメサストライプのリッジ側面に、半導体保護層11を設けると言う簡単な素子構造とすることで、導波路型光検出器の高速動作化を図り、その暗電流を効果的に抑えて高感度化を図ることが可能となる。
【0013】
また図3に示す第2の実施形態に係る光検出器は、前記p-InPからなる半導体保護層11に代えて、光吸収層3を含むストライプのリッジ側面にsi(半絶縁性)-InPからなる半導体保護層12を埋め込み形成した素子構造をなす。
このような素子構造の導波路型光検出器であっても、先の実施形態に示す光検出器と同様に、光吸収層3のリッジ側面における不本意な表面準位の発生を押さえ、且つ誘電体膜8の帯電を防止することができるので、その高速動作化と暗電流の低減を図ることが可能となる。特にsi-InPからなる半導体保護層12を埋め込み形成した場合には、該半導体保護層12のエッチオフが不要となるので、その製造工程の簡素化を図ることが可能となる。即ち、図3に示すように、リッジの側面に埋め込んだ半導体保護層12が半絶縁性なので、該半導体保護層12の裾部12aをエッチオフする必要がなくなる。しかも半導体保護層12自体がストライプのリッジ側面を効果的に保護することができるので、誘電体膜8の形成を省略することも可能となる。
【0014】
尚、図4に本発明の第3の実施形態を示すように、例えば光吸収層3のリッジ側面にInPからなる半導体保護層13を埋め込むに先立って、エネルギギャップEgの大きいGaPやGaInPからなる半導体層14を、その臨界膜厚以下の厚みで埋め込み形成した素子構造としても良い。このようなGaPやGaInPからなるエネルギギャップEgの大きい半導体層14を、InPからなる半導体保護層13と共に埋め込んだ多層膜構造の保護層を設けた素子構造とすれば、仮にその界面に沿って空乏層が形成されたとしても、GaPやGaInPからなる半導体層14のエネルギギャップが広いので、上記空乏層に高電界が加わってもトンネル電流が流れることがない。従ってリーク電流の発生を効果的に押さえることが可能となり、暗電流を低減した高速動作可能な光検出器を実現することが可能となる。
【0015】
即ち、本発明に係る素子構造の導波路型光検出器によれば、光吸収層3を含むメサストライプのリッジ側面を保護する誘電体膜8の帯電を防止し、不本意な表面準位の発生を押さえるので、光吸収層3からの空乏層がリッジ側面に沿って延びることを効果的に防ぎ得る。この結果、空乏層を介するトンネル電流に起因するリーク電流の発生を押さえて、その高速動作化と高感度化とを図ることが可能となる。
【0016】
尚、本発明は上述した各実施形態に限定されるものではない。例えば光吸収層3を含むストライプを順メサ形状に形成する場合のみならず、逆メサ形状に形成する場合にも同様な効果が奏せられる。またメサストライプの幅等は、仕様に応じて定めれば良いものであり、要は本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0017】
【発明の効果】
以上説明したように本発明に係る導波路型光検出器は、p型導電層とn型導電層との間に低キャリア濃度の光吸収層を配置してPN接合を形成したメサストライプの側面に、p型導電性の半導体層、半絶縁性半導体層、或いはエネルギギャップの大きい半導体層と半絶縁性半導体層とを含む多層構造の半導体保護層を埋め込み形成した素子構造をなす。従って本発明によれば、不本意な表面準位を介在するリーク電流の発生を押さえ、またリッジ側面を保護する誘電体膜の帯電を防ぐことができ、リッジサイドに沿う空乏層の発生を防ぐことができる。この結果、暗電流を押さえて高速動作化を図った光検出器を容易に実現することが可能となる。
【図面の簡単な説明】
【図1】従来一般的な導波路型光検出器の概略的な素子構造を示す図。
【図2】本発明の第1の実施形態に係る導波路型光検出器の概略的な素子構造を示す図。
【図3】本発明の第2の実施形態に係る導波路型光検出器の概略的な素子構造を示す図。
【図4】本発明の第3の実施形態に係る導波路型光検出器の概略的な素子構造を示す図。
【符号の説明】
1 n-InP基板
2 n-GaInAsP光ガイド層
3 i-GaInAs(P)光吸収層
4 p-GaInAsP光ガイド層
5 p-InPクラッド層
6 p+-GaInAs(P)層
7 メタル層
11 半導体保護層(p-InP)
12 半導体保護層(si-InP)
13 半導体保護層(si-InP)
14 エネルギギャップの大きい半導体層(GaPやGaInP)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waveguide type photodetector having an element structure capable of high-speed operation and reducing dark current.
[0002]
[Related background]
The waveguide type photodetector generally has an element structure in which a p-type conductive layer and an n-type conductive layer are arranged above and below a light absorption layer having a low carrier concentration to form a PN junction. Then, by applying a reverse voltage between the p-type conductive layer and the n-type conductive layer, the light absorption layer is depleted, and by using a high electric field generated in the depletion layer, from the end face of the light absorption layer It acts to photoelectrically convert the incident optical signal.
[0003]
By the way, the response (response speed) of the photodetector is determined by the CR time constant resulting from the element structure and the travel time of carriers excited by the optical signal. However, the travel time of the excited carriers can be reduced by narrowing the width of the light absorption layer. For example, by reducing the width to 1 μm or less, it can be shortened to a level that can be substantially ignored. Therefore, it can be said that the response depends solely on the CR time constant.
[0004]
[Problems to be solved by the invention]
Now, most of the capacitance component C involved in the CR time constant that affects the response of the photodetector is the capacitance at the PN junction. This capacitance is inversely proportional to the thickness of the PN junction and also proportional to its area. Therefore, in order to suppress the capacitance C, reduce the time constant, and increase the response, for example, the area of the light absorption layer, which is the area of the PN junction, may be reduced. Therefore, conventionally, the PN junction portion including the light absorption layer has a mesa stripe structure, and the width and length of the stripe are shortened.
[0005]
FIG. 1 shows an element structure of a conventional general waveguide type photodetector based on such a viewpoint. That is, the photodetector includes, for example, an n-GaInAsP light guide layer 2 as an n-type conductive layer, an i-GaInAs (P) light absorption layer 3, and a p-type as a p-type conductive layer on an n-InP substrate 1. A GaInAsP light guide layer 4 is laminated in order to form a PN junction sandwiching the light absorption layer 3, and a p-InP cladding layer 5, a p + -GaInAs (P) layer 6, and a metal layer 7 are sequentially laminated thereon. And having a multilayered film structure. Then, the laminated body is etched into a stripe shape to form a mesa, and an element structure is provided in which a dielectric film 8 is provided on the side surface of the ridge of the mesa.
[0006]
Here, the dielectric film 8 is provided for the purpose of preventing a surface leakage current passing through the side surface of the ridge. However, even if the dielectric film 8 is provided to protect the side surface of the ridge, a leakage current path with an unintended surface state is formed, or a depletion layer from the light absorption layer 3 extends due to charging of the dielectric film 8. Inadvertent leakage current paths may be formed. Such charging of the dielectric film 8 and the occurrence of a leakage current through the path cause an increase in dark current and hinders the response.
[0007]
The present invention has been made in consideration of such circumstances, and its object is to provide a waveguide-type photodetector having a simple element structure capable of high-speed operation and suppressing generation of dark current due to leakage current. Is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a waveguide type photodetector having a mesa stripe structure in which a light absorption layer having a low carrier concentration is disposed between a p-type conductive layer and an n-type conductive layer to form a PN junction. the dependency, and element structure of the protective layer buried in the side surface of the mesa stripe with the light absorbing layer, in particular, that the protective layer was a dielectric film covering the p-type layer and the p-type layer It is characterized by. That is, according to the present invention, a protective layer composed of a p-type layer and a dielectric film is provided on the side surface of the ridge including the light absorption layer, thereby making it difficult to generate an unintended surface level and depletion layer from the light absorption layer. As an element structure that is difficult to extend, the generation of leakage current is suppressed.
A waveguide-type photodetector having a mesa stripe structure in which a light absorption layer having a low carrier concentration is disposed between a p-type conductive layer and an n-type conductive layer to form a PN junction, and the mesa having the light absorption layer is provided. A waveguide-type photodetector comprising a protective layer embedded in a side surface of a stripe , wherein the protective layer is composed of a p-type layer and a dielectric film covering the p-type layer .
[0009]
In a specific embodiment, the p-type layer of the protective layer is composed of p InP formed by metal organic chemical vapor deposition .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a waveguide type photodetector according to an embodiment of the present invention will be described with reference to the drawings.
2 to 4 show element structures of the waveguide type photodetectors according to the first to third embodiments of the present invention, respectively. The waveguide type photodetectors according to these embodiments are basically the same as the conventional photodetector shown in FIG. 1, for example, an n-GaInAsP light guide layer 2 on the n-InP substrate 1, i. -GaInAs (P) light absorption layer 3 and p-GaInAsP light guide layer 4 are laminated in this order, and the light absorption layer 3 is sandwiched between an n-type conductive layer and a p-type conductive layer to form a PN junction. A p-InP clad layer 5, a p + -GaInAs (P) layer 6, and a metal layer 7 are laminated in this order, and then the multilayer film stack is etched into a stripe shape to form a mesa. It has a basic element structure in which the area of (PN junction) is reduced.
[0011]
Thus, in the photodetector according to the first embodiment, the semiconductor protective layer (p-type layer) 11 made of p-InP is formed on the ridge side surface of the mesa stripe as shown in FIG. By forming the film 8, an element structure in which the semiconductor protective layer 11 is embedded in the side surface of the ridge of the light absorption layer 3 is characterized. Incidentally, the growth of the semiconductor protective layer (p-InP) 11 is performed using a metal organic chemical vapor deposition method (MOCVD method). Then, the semiconductor layer 11 is etched off at a portion 2 to 4 μm wider than the width of the mesa stripe, and then the dielectric film 8 covering the whole is formed to protect the ridge side surface.
[0012]
Thus, according to the waveguide type photodetector having the element structure as shown in FIG. 2, the semiconductor protective layer 11 made of p-InP is formed on the side surface of the ridge of the light absorption layer 3, so that the ridge of the light absorption layer 3 is formed. Undesirable surface levels are unlikely to occur on the side surfaces, and leakage current is difficult to flow. In addition, since the dielectric film 8 is separated from the ridge side surface of the light absorption layer 3 through the semiconductor protective layer 11, the dielectric film 8 is difficult to be charged. Even if the dielectric film 8 is charged, since the dielectric film 8 is separated from the ridge side surface, the depletion layer from the light absorption layer 3 does not extend along the ridge side surface. Accordingly, it is possible to suppress the generation of unintentional leakage current, reduce the dark current, and improve the response. Therefore, by adopting a simple device structure in which the semiconductor protective layer 11 is provided on the ridge side surface of the mesa stripe including the light absorption layer 3, the waveguide type photodetector can be operated at high speed, and the dark current is effectively reduced. It is possible to increase the sensitivity while suppressing the pressure to a minimum.
[0013]
Further, in the photodetector according to the second embodiment shown in FIG. 3, si (semi-insulating) -InP is provided on the ridge side surface of the stripe including the light absorption layer 3 instead of the semiconductor protective layer 11 made of p-InP. An element structure in which a semiconductor protective layer 12 made of is embedded is formed.
Even in the waveguide type photodetector having such an element structure, as in the photodetector shown in the previous embodiment, generation of unintended surface levels on the ridge side surface of the light absorption layer 3 is suppressed, and Since the dielectric film 8 can be prevented from being charged, it is possible to increase the operation speed and reduce the dark current. In particular, when the semiconductor protective layer 12 made of si-InP is embedded, the semiconductor protective layer 12 need not be etched off, and the manufacturing process can be simplified. That is, as shown in FIG. 3, since the semiconductor protective layer 12 embedded in the side surface of the ridge is semi-insulating, it is not necessary to etch off the skirt 12a of the semiconductor protective layer 12. In addition, since the semiconductor protective layer 12 itself can effectively protect the ridge side surface of the stripe, the formation of the dielectric film 8 can be omitted.
[0014]
As shown in the third embodiment of the present invention in FIG. 4, prior to embedding the semiconductor protective layer 13 made of InP on the ridge side surface of the light absorption layer 3, for example, it is made of GaP or GaInP having a large energy gap Eg. An element structure in which the semiconductor layer 14 is embedded in a thickness equal to or less than the critical film thickness may be employed. If such a device structure provided with a protective layer having a multilayer structure in which the semiconductor layer 14 made of GaP or GaInP and having a large energy gap Eg is embedded together with the semiconductor protective layer 13 made of InP is provided, the depletion occurs along the interface. Even if a layer is formed, the semiconductor layer 14 made of GaP or GaInP has a wide energy gap, so that a tunnel current does not flow even when a high electric field is applied to the depletion layer. Therefore, it is possible to effectively suppress the generation of leakage current, and it is possible to realize a photodetector capable of high-speed operation with reduced dark current.
[0015]
That is, according to the waveguide type photodetector of the element structure according to the present invention, the dielectric film 8 that protects the ridge side surface of the mesa stripe including the light absorption layer 3 is prevented from being charged, and the surface level of the unintentional surface state is prevented. Since generation | occurrence | production is suppressed, it can prevent effectively that the depletion layer from the light absorption layer 3 extends along a ridge side surface. As a result, it is possible to suppress the generation of leakage current due to the tunnel current through the depletion layer, and to achieve high speed operation and high sensitivity.
[0016]
In addition, this invention is not limited to each embodiment mentioned above. For example, the same effect can be achieved not only when the stripe including the light absorption layer 3 is formed in a forward mesa shape but also when formed in a reverse mesa shape. The width of the mesa stripe and the like may be determined according to the specification. In short, the present invention can be implemented with various modifications without departing from the gist thereof.
[0017]
【The invention's effect】
As described above, the waveguide photodetector according to the present invention has a mesa stripe side surface in which a light absorption layer having a low carrier concentration is disposed between a p-type conductive layer and an n-type conductive layer to form a PN junction. In addition, an element structure in which a p-type conductive semiconductor layer, a semi-insulating semiconductor layer, or a multilayer semiconductor protective layer including a semiconductor layer having a large energy gap and a semi-insulating semiconductor layer is embedded is formed. Therefore, according to the present invention, it is possible to suppress the generation of a leakage current involving an unintended surface level, to prevent the dielectric film that protects the ridge side surface from being charged, and to prevent the generation of a depletion layer along the ridge side. be able to. As a result, it is possible to easily realize a photodetector that suppresses dark current and achieves high speed operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic element structure of a conventional general waveguide type photodetector.
FIG. 2 is a diagram showing a schematic element structure of a waveguide type photodetector according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a schematic element structure of a waveguide type photodetector according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a schematic element structure of a waveguide type photodetector according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 n-InP board | substrate 2 n-GaInAsP light guide layer 3 i-GaInAs (P) light absorption layer 4 p-GaInAsP light guide layer 5 p-InP clad layer 6 p + -GaInAs (P) layer 7 Metal layer 11 Semiconductor protection Layer (p-InP)
12 Semiconductor protective layer (si-InP)
13 Semiconductor protective layer (si-InP)
14 Semiconductor layer with large energy gap (GaP and GaInP)

Claims (2)

p型導電層とn型導電層との間に低キャリア濃度の光吸収層を配置してPN接合を形成したメサストライプ構造の導波路型光検出器であって、前記光吸収層を備えるメサストライプの側面に埋め込み形成した保護層を備え、前記保護層を、p型層と前記p型層を被覆する誘電体膜で構成したことを特徴とする導波路型光検出器。A waveguide-type photodetector having a mesa stripe structure in which a light absorption layer having a low carrier concentration is disposed between a p-type conductive layer and an n-type conductive layer to form a PN junction, and the mesa having the light absorption layer is provided. A waveguide-type photodetector comprising a protective layer embedded in a side surface of a stripe , wherein the protective layer is composed of a p-type layer and a dielectric film covering the p-type layer . 前記p型層は、有機金属気相成長法により形成されたpThe p-type layer is a p-type formed by metalorganic vapor phase epitaxy. -- InPで構成される請求項1に記載の導波路型光検出器。The waveguide type photodetector according to claim 1, which is made of InP.
JP23971497A 1997-09-04 1997-09-04 Waveguide type photodetector Expired - Lifetime JP4043555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23971497A JP4043555B2 (en) 1997-09-04 1997-09-04 Waveguide type photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23971497A JP4043555B2 (en) 1997-09-04 1997-09-04 Waveguide type photodetector

Publications (2)

Publication Number Publication Date
JPH1187758A JPH1187758A (en) 1999-03-30
JP4043555B2 true JP4043555B2 (en) 2008-02-06

Family

ID=17048840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23971497A Expired - Lifetime JP4043555B2 (en) 1997-09-04 1997-09-04 Waveguide type photodetector

Country Status (1)

Country Link
JP (1) JP4043555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544352B2 (en) 2000-10-30 2004-07-21 日本電気株式会社 Semiconductor light receiving element
JP5150216B2 (en) * 2007-11-08 2013-02-20 株式会社東芝 Waveguide-type photodetector and manufacturing method thereof
JP4719763B2 (en) * 2008-03-28 2011-07-06 日本オプネクスト株式会社 Manufacturing method of receiver

Also Published As

Publication number Publication date
JPH1187758A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
US4653058A (en) Distributed feedback semiconductor laser with monitor
US8031984B2 (en) Semiconductor optical modulator
WO2006123410A1 (en) Avalanche photo diode
US5880489A (en) Semiconductor photodetector
KR960005580B1 (en) Semiconductor device
JP6121343B2 (en) Avalanche photodiode
JPH1022520A (en) Semiconductor photodetector and its manufacture
JP2006261340A (en) Semiconductor device and its manufacturing method
JP4043555B2 (en) Waveguide type photodetector
JP2012248649A (en) Semiconductor element and method for manufacturing semiconductor element
JPH0878792A (en) Alignment of embedded strip and outside strip in semiconductor optical constitutional element
US5874752A (en) Light detecting device
JP2970575B2 (en) Waveguide type semiconductor photo detector
JP3708758B2 (en) Semiconductor photo detector
JP2605911B2 (en) Optical modulator and photodetector
JP2000353818A (en) Waveguide-type photodetector
US20040086015A1 (en) Semiconductor optical device, semiconductor laser device, semiconductor optical modulation device, and semiconductor optical integrated device
JP5025898B2 (en) Manufacturing method of semiconductor laser device
JPH02246268A (en) Photoreceptor
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH07131116A (en) Semiconductor laser element
JP3055030B2 (en) Manufacturing method of avalanche photodiode
JP2638445B2 (en) Semiconductor light receiving element
JP2766761B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS61128578A (en) Inp group light-receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

EXPY Cancellation because of completion of term