JPH0123899B2 - - Google Patents

Info

Publication number
JPH0123899B2
JPH0123899B2 JP55171462A JP17146280A JPH0123899B2 JP H0123899 B2 JPH0123899 B2 JP H0123899B2 JP 55171462 A JP55171462 A JP 55171462A JP 17146280 A JP17146280 A JP 17146280A JP H0123899 B2 JPH0123899 B2 JP H0123899B2
Authority
JP
Japan
Prior art keywords
anode
manganese dioxide
furnace
oxygen
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171462A
Other languages
Japanese (ja)
Other versions
JPS5796467A (en
Inventor
Noboru Kotani
Kenichi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP55171462A priority Critical patent/JPS5796467A/en
Publication of JPS5796467A publication Critical patent/JPS5796467A/en
Publication of JPH0123899B2 publication Critical patent/JPH0123899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機電解質電池に係り、特に二酸化マ
ンガンを陽極活物質として用いる陽極の製法に関
する。 有機電解質電池の陽極活物質として二酸化マン
ガンを用いる場合、それに含有されている水分が
リチウムなどの陰極活物質に悪影響を及ぼすた
め、二酸化マンガンを熱処理して含有水分を除去
する必要がある。従来、この陽極の熱処理方法と
して、二酸化マンガンと電導助剤と結着剤とを混
合・成形して陽極を作り、これを密閉された炉内
に入れて所定温度で熱処理する方法がとられてい
る。ところがこのように密閉された炉内で熱処理
した陽極を用いると、電池の内部抵抗が高く性能
的に問題がある。 本発明者らはこの内部抵抗増大について種々検
討した結果、密閉された炉内で陽極を熱処理する
と、陽極中に混在している電導助剤や結着剤の一
部が熱的変化を受けて、変成物が生成することに
基因していることを解明した。すなわち、電導助
剤としてリン状黒鉛などが使用されているが、そ
れの結晶格子の末端にはカルボキシル基などの官
能基があつたり、またリン状黒鉛の表面には有機
物が付着していることがあり、さらに結着剤とし
て通常合成樹脂が使用されている訳であるが、熱
処理中に前記官能基、付着有機物、結着剤の一部
などが熱分解される。それによつて生成した変成
物が陽極に付着したまま電池に組込まれ、変性物
は有機溶剤を成分とする電解液に溶解し、それが
セパレータを通つて陰極側へ移行して、陰極表面
に被膜を形成するため内部抵抗の増大の一因にな
つている。 さらに、炉内で熱処理する際、炉内空気の酸素
の一部は前述のように官能基、付着有機物、結着
剤の熱分解に使用されて消失するため、炉内が酸
素不足の状態になる。すると、炉内温度が430℃
以上に達していなくてもMnO2の一部はMn2O3
どの低級マンガン酸化物に変わつてしまい、これ
も内部抵抗増大の一因になるとともに、放電容量
の低下をきたす。 また、従来、酸素濃度50体積%以上の高酸素濃
度雰囲気にした炉内で二酸化マンガンの粉末を
400℃前後の温度にて熱処理し、しかるのちこれ
に電導助剤および結着剤を混合し加圧成形して陽
極とする方法が提案された。しかし、この方法で
は、二酸化マンガンの一部が設定された炉内温度
よりもかなり高温になることがあり、そのために
MnO2の一部がMn2O3に変化し、内部抵抗の増大
や放電性能のばらつきを生じる。 本発明の目的は、このような従来技術の欠点を
解消し、優れた放電性能を有する有機電解質電池
用陽極の製法を提供するにある。 この目的を達成するため、本発明は、γ形の結
晶構造を有する二酸化マンガンを用いて陽極を成
形した後、その陽極の加熱雰囲気中に酸素を含有
した気体を順次供給・排出させながら所定の熱処
理を行なつて、前記陽極中の二酸化マンガンをγ
形とβ形の中間体に変成して陽極活物質にするこ
とを特徴とするものである。 次に本発明の実施例を図とともに説明する。第
1図は、本発明の実施例に係る有機電解質電池を
示す図である。 電解二酸化マンガン100重量部とリン状黒鉛10
重量部とポリ4フツ化エチレン1重量部との混合
物からなる陽極1を陽極缶2の缶底に挿入し、そ
の上にポリプロピレン製不織布からなる電解液吸
収体3を載置する。前記陽極1および電解液吸収
体3には、炭酸プロピレンとジメトキシエタンと
を体積比で1:1の割合で混合した溶媒に過塩素
酸リチウムを1モル/溶解させた電解液がそれ
ぞれ所定量含浸される。 陽極缶2の開口部には、ポリプロピレン製のガ
スケツト4を介して陰極端子板5が嵌合される。
陰極端子板5の内面にはステンレス製の網6が溶
接されており、これに金属リチウムからなる陰極
7が圧着され、陰極7はセパレータ3を介して陽
極1と対向する。 次に陽極1の製法について第2図ないし第4図
とともに説明する。 電解二酸化マンガン(γ形MnO2)と電導助剤
と結着剤を前述のように所定の割合で混合して加
圧成形した陽極1を、第3図に示す耐熱性のカセ
ツト8に収納する。カセツト8の外周壁には空気
の流通を良くするために複数の透孔9が設けられ
ており、このカセツト8内には第4図に示すよう
にステンレス製の網からなる通気性を有するセパ
レータ10と陽極1とが交互に重ね合わさるよう
にして多数収納される。 陽極1を収納したカセツト8は、第2図に示す
ように電気炉11の内室12に架設された多孔板
13の上に積み重ねられる。この内室12には、
空気供給管14と排気管15と熱電対16とがそ
れぞれ挿入されており、電気炉11の周壁17に
はヒータ18が配設されている。このヒータ18
により内室12の炉内温度は約400℃に維持され、
空気供給管14からは送風機19により1/分
の割合で空気20が内室12内に送られる。空気
20はヒータ18で加熱され、多孔板13を通
り、カセツト8内に収納されている陽極1の表面
に沿つて流れ、排気管15から排出される。この
加熱処理を4時間行なうことにより、二酸化マン
ガンの付着水や結晶水が除去され、結晶構造はγ
形とβ形の中間体になる。 陽極の熱処理温度は約250〜430℃が適当で、好
ましくは約370〜430℃である。なお前記実施例で
は酸素を含む気体として空気を用いたが、気体中
の酸素濃度を上げたい場合には酸素ガス単独ある
いはそれと他の例えば窒素ガスなどとの混合ガス
を用いることもできる。加熱雰囲気中への酸素を
含む気体の供給・排出は、二酸化マンガンの熱処
理中連続して行なう方が好ましいが、断続的であ
つても構わない。 各種の条件で処理した二酸化マンガンをそれぞ
れ用いて作つたリチウム電池の性能を次の表に示
す。なお、処理温度、処理時間はすべて400℃、
4時間とし、性能試験は電池を組立てて1日経過
した後に行ない、試料個数は各種電池とも30個と
した。表中の範囲はばらつき範囲を、( )中の
数値はその平均値をそれぞれ示す。
The present invention relates to organic electrolyte batteries, and particularly to a method for manufacturing an anode using manganese dioxide as an anode active material. When manganese dioxide is used as an anode active material in an organic electrolyte battery, the water contained therein has a negative effect on cathode active materials such as lithium, so it is necessary to heat-treat the manganese dioxide to remove the water content. Conventionally, the method for heat treatment of this anode was to mix and mold manganese dioxide, a conductive additive, and a binder to make an anode, and then place the anode in a sealed furnace and heat treat it at a predetermined temperature. There is. However, when an anode heat-treated in a sealed furnace is used, the internal resistance of the battery is high, resulting in performance problems. As a result of various studies on this increase in internal resistance, the present inventors found that when an anode is heat-treated in a sealed furnace, some of the conductive additives and binders mixed in the anode undergo thermal changes. It was revealed that this is due to the formation of metamorphic products. In other words, phosphorous graphite is used as a conductive agent, but there are functional groups such as carboxyl groups at the ends of the crystal lattice, and organic substances are attached to the surface of phosphorous graphite. Furthermore, although a synthetic resin is usually used as a binder, the functional groups, attached organic matter, and a part of the binder are thermally decomposed during heat treatment. The resulting modified product is incorporated into the battery while remaining attached to the anode, and the modified product is dissolved in an electrolytic solution containing an organic solvent, and transferred to the cathode side through the separator, forming a coating on the surface of the cathode. This is one of the reasons for the increase in internal resistance. Furthermore, during heat treatment in the furnace, some of the oxygen in the air inside the furnace is used to thermally decompose the functional groups, attached organic matter, and binders and disappears, resulting in an oxygen-deficient state in the furnace. Become. Then, the temperature inside the furnace was 430℃.
Even if this is not achieved, a portion of MnO 2 is converted to lower manganese oxides such as Mn 2 O 3 , which also contributes to an increase in internal resistance and causes a decrease in discharge capacity. In addition, conventionally, manganese dioxide powder was processed in a furnace with a high oxygen concentration atmosphere of 50% by volume or more.
A method has been proposed in which the material is heat treated at a temperature of around 400°C, and then a conductive additive and a binder are mixed therein and pressure molded to form an anode. However, with this method, some of the manganese dioxide may reach a much higher temperature than the set furnace temperature, and therefore
A part of MnO 2 changes to Mn 2 O 3 , causing an increase in internal resistance and variations in discharge performance. An object of the present invention is to provide a method for manufacturing an anode for an organic electrolyte battery that overcomes the drawbacks of the prior art and has excellent discharge performance. In order to achieve this object, the present invention involves forming an anode using manganese dioxide having a γ-type crystal structure, and then sequentially supplying and discharging oxygen-containing gas into the heated atmosphere of the anode to achieve a predetermined temperature. Heat treatment is performed to convert manganese dioxide in the anode to γ.
It is characterized by being transformed into an intermediate between the β-form and the β-form and used as an anode active material. Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an organic electrolyte battery according to an embodiment of the present invention. 100 parts by weight of electrolytic manganese dioxide and 10 parts by weight of phosphorous graphite
An anode 1 made of a mixture of 1 part by weight and 1 part by weight of polytetrafluoroethylene is inserted into the bottom of an anode can 2, and an electrolyte absorber 3 made of a nonwoven polypropylene fabric is placed thereon. The anode 1 and the electrolyte absorber 3 are each impregnated with a predetermined amount of an electrolyte in which 1 mole of lithium perchlorate is dissolved in a solvent in which propylene carbonate and dimethoxyethane are mixed at a volume ratio of 1:1. be done. A cathode terminal plate 5 is fitted into the opening of the anode can 2 via a gasket 4 made of polypropylene.
A stainless steel net 6 is welded to the inner surface of the cathode terminal plate 5, and a cathode 7 made of metallic lithium is pressed onto this.The cathode 7 faces the anode 1 with the separator 3 in between. Next, a method for manufacturing the anode 1 will be explained with reference to FIGS. 2 to 4. The anode 1, which is formed by mixing electrolytic manganese dioxide (γ-type MnO 2 ), a conduction aid, and a binder in a predetermined ratio as described above and press-molding the mixture, is stored in a heat-resistant cassette 8 shown in FIG. 3. . A plurality of through holes 9 are provided on the outer peripheral wall of the cassette 8 to improve air circulation, and inside the cassette 8, as shown in FIG. A large number of anodes 10 and anodes 1 are stored so as to be alternately stacked on top of each other. The cassette 8 containing the anode 1 is stacked on a perforated plate 13 installed in the inner chamber 12 of the electric furnace 11, as shown in FIG. In this inner chamber 12,
An air supply pipe 14, an exhaust pipe 15, and a thermocouple 16 are inserted, respectively, and a heater 18 is arranged on the peripheral wall 17 of the electric furnace 11. This heater 18
The temperature inside the furnace in the inner chamber 12 is maintained at approximately 400°C,
Air 20 is sent from the air supply pipe 14 into the interior chamber 12 by a blower 19 at a rate of 1/min. The air 20 is heated by the heater 18, passes through the perforated plate 13, flows along the surface of the anode 1 housed in the cassette 8, and is discharged from the exhaust pipe 15. By performing this heat treatment for 4 hours, adhering water and crystal water of manganese dioxide are removed, and the crystal structure is changed to γ.
It becomes an intermediate between form and β form. The heat treatment temperature of the anode is suitably about 250-430°C, preferably about 370-430°C. In the above embodiments, air was used as the oxygen-containing gas, but if it is desired to increase the oxygen concentration in the gas, oxygen gas alone or a mixture of oxygen and other gases such as nitrogen gas may be used. It is preferable that the gas containing oxygen be supplied and discharged into the heating atmosphere continuously during the heat treatment of the manganese dioxide, but it may be carried out intermittently. The following table shows the performance of lithium batteries made using manganese dioxide treated under various conditions. The processing temperature and processing time were all 400℃.
The test time was 4 hours, and the performance test was conducted one day after the battery was assembled, and the number of samples was 30 for each type of battery. The range in the table indicates the variation range, and the numerical value in parentheses indicates the average value.

【表】【table】

【表】 この表から明らかなように、密閉状態の炉内で
熱処理された陽極を使用した電池A,Bは内部抵
抗が高く、そのばらつき範囲も大きく品質上に問
題がある。これに対して酸素を含む気体を炉内に
供給・排出しながら熱処理した陽極を用いた電池
C,Dは内部抵抗が小さく、性能のばらつきも小
さく品質的に安定している。何故このように性能
が優れているか理論的な根拠は明らかでないが、
酸素を含有する気体を炉内に順次供給して流通さ
せることにより、二酸化マンガンの局部的な過熱
を防いでほぼ一定した温度になり、しかも電導助
剤や結着剤が混入されている場合には、それらの
熱分解生成物が流通する気体によつて持ち去ら
れ、電池性能に悪影響をおよぼすこれら生成物が
電池内に入り込まないことなどが原因しているも
のと考えられる。 本発明は前述のような構成になつており、優れ
た性能を有する有機電解質電池用陽極を製造する
ことができる。
[Table] As is clear from this table, batteries A and B using anodes heat-treated in a closed furnace have high internal resistance and a large variation range, which poses a quality problem. On the other hand, batteries C and D, which use anodes that have been heat-treated while supplying and discharging oxygen-containing gas into and out of the furnace, have low internal resistance, small variations in performance, and are stable in quality. The theoretical basis for why the performance is so good is not clear, but
By sequentially supplying and distributing oxygen-containing gas into the furnace, local overheating of the manganese dioxide is prevented and the temperature is kept almost constant. This is thought to be due to the fact that these thermal decomposition products are carried away by the circulating gas, and these products, which have an adverse effect on battery performance, do not enter the battery. The present invention has the above-described configuration, and can produce an anode for an organic electrolyte battery having excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によつて作られた陽極
を用いてなるリチウム電池の要部断面図、第2図
は本発明の実施例で用いる電気炉の概略構成図、
第3図はその電気炉に用いる熱処理用カセツトの
斜視図、第4図はそのカセツトに陽極を収納した
状態を示す断面図である。 1……陽極、11……電気炉、14……空気供
給管、15……排気管、19……送風機、20…
…空気。
FIG. 1 is a cross-sectional view of a main part of a lithium battery using an anode made according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an electric furnace used in an embodiment of the present invention.
FIG. 3 is a perspective view of a heat treatment cassette used in the electric furnace, and FIG. 4 is a sectional view showing the state in which the anode is housed in the cassette. 1...Anode, 11...Electric furnace, 14...Air supply pipe, 15...Exhaust pipe, 19...Blower, 20...
…air.

Claims (1)

【特許請求の範囲】[Claims] 1 γ形の結晶構造を有する二酸化マンガンを用
いて陽極を成形した後、その陽極の加熱雰囲気中
に酸素を含有した気体を順次供給・排出させなが
ら所定の熱処理を行なつて、前記陽極中の二酸化
マンガンをγ形とβ形の中間体に変成して陽極活
物質にすることを特徴とする有機電解質電池用陽
極の製法。
1. After forming an anode using manganese dioxide having a γ-type crystal structure, a predetermined heat treatment is performed while sequentially supplying and discharging oxygen-containing gas into the heated atmosphere of the anode, and the temperature inside the anode is A method for producing an anode for an organic electrolyte battery, which is characterized by converting manganese dioxide into a γ-form and a β-form intermediate to produce a positive electrode active material.
JP55171462A 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell Granted JPS5796467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171462A JPS5796467A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171462A JPS5796467A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Publications (2)

Publication Number Publication Date
JPS5796467A JPS5796467A (en) 1982-06-15
JPH0123899B2 true JPH0123899B2 (en) 1989-05-09

Family

ID=15923551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171462A Granted JPS5796467A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Country Status (1)

Country Link
JP (1) JPS5796467A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700597B2 (en) * 1992-11-16 1998-01-21 三井金属鉱業株式会社 Method for producing manganese dioxide for lithium primary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262625A (en) * 1975-11-19 1977-05-24 Sanyo Electric Co Cathode of nonnaqueous electrolyte batteries
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262625A (en) * 1975-11-19 1977-05-24 Sanyo Electric Co Cathode of nonnaqueous electrolyte batteries
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Also Published As

Publication number Publication date
JPS5796467A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
US4476104A (en) Manganese dioxide and process for the production thereof
KR100275259B1 (en) METHOD FOR PREPARING COMPOUND OXIDE USED AS CATALYST ACTIVE MATERIAL OF LITHIUM SECONDARY BAT
US6755874B2 (en) Plate making process for lead acid battery
US4590059A (en) Process for the production of manganese dioxide
US3242013A (en) Dry cell batteries with a pyrolusite depolarizing agent
JPH0123899B2 (en)
JPH0324023B2 (en)
US5441833A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPH0562678A (en) Manufacture of active material for nonaqueous electrolyte secondary battery
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPH0373107B2 (en)
JPH0123898B2 (en)
JPS636496B2 (en)
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
US919022A (en) Carbon-consuming galvanic cell.
JPS6146948B2 (en)
JP3029889B2 (en) Manganese dioxide for lithium secondary battery and method for producing the same
JPH0261095B2 (en)
JPH09259881A (en) Manufacture of linio2 for lithium secondary battery
JPH07130361A (en) Nonaqueous electrolyte battery
US261512A (en) Secondary battery
JP2700597B2 (en) Method for producing manganese dioxide for lithium primary battery
JPS59217952A (en) Plastic electrode
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
US621150A (en) Chieff