JPH0123898B2 - - Google Patents

Info

Publication number
JPH0123898B2
JPH0123898B2 JP55171461A JP17146180A JPH0123898B2 JP H0123898 B2 JPH0123898 B2 JP H0123898B2 JP 55171461 A JP55171461 A JP 55171461A JP 17146180 A JP17146180 A JP 17146180A JP H0123898 B2 JPH0123898 B2 JP H0123898B2
Authority
JP
Japan
Prior art keywords
anode
heat treatment
manganese dioxide
battery
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171461A
Other languages
Japanese (ja)
Other versions
JPS5796466A (en
Inventor
Noboru Kotani
Kenichi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP55171461A priority Critical patent/JPS5796466A/en
Publication of JPS5796466A publication Critical patent/JPS5796466A/en
Publication of JPH0123898B2 publication Critical patent/JPH0123898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は有機電解質電池に係り、特に二酸化マ
ンガンを陽極活物質として用いる陽極の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to organic electrolyte batteries, and more particularly to a method for producing an anode using manganese dioxide as an anode active material.

有機電解質電池の陽極活物質として二酸化マン
ガンを用いる場合、それに含有されている水分が
リチウムなどの陰極活物質に悪影響を及ぼすた
め、二酸化マンガンを熱処理して含有水分を除去
する必要がある。従来、この陽極の熱処理方法と
して、二酸化マンガンと電導助剤と結着剤とを混
合・成形して陽極を作り、これを密閉された炉内
に入れて所定温度で熱処理する方法がとられてい
る。ところがこのように密閉された炉内で熱処理
した陽極を用いると、電池の内部抵抗が高く性能
的に問題がある。
When manganese dioxide is used as an anode active material in an organic electrolyte battery, the water contained therein has a negative effect on cathode active materials such as lithium, so it is necessary to heat-treat the manganese dioxide to remove the water content. Conventionally, the method for heat treatment of this anode was to mix and mold manganese dioxide, a conductive additive, and a binder to make an anode, and then place the anode in a sealed furnace and heat treat it at a predetermined temperature. There is. However, when an anode heat-treated in a sealed furnace is used, the internal resistance of the battery is high, resulting in performance problems.

本発明者らはこの内部抵抗増大について種々検
討した結果、密閉された炉内で陽極を熱処理する
と、陽極中に混在している電導助剤や結着剤の一
部が熱的変化を受けて、変性物が生成することに
基因していることを解明した。すなわち、電導助
剤としてリン状黒鉛などが使用されているが、そ
れの結晶格子の末端にはカルボキシル基などの官
能基があり、またリン状黒鉛の表面には有機物が
付着していることがあり、さらに結着剤として通
常合成樹脂が使用されている訳であるが、熱処理
中に前記官能基、付着有機物、結着剤の一部など
が熱分解される。それによつて生成した変性物が
陽極に付着したまま電池に組込まれ、変成物は有
機溶剤を成分とする電解液に溶解し、それがセパ
レータを通つて陰極側へ移行して、陰極表面に被
膜となつて現われ放電反応を阻害している。
As a result of various studies on this increase in internal resistance, the present inventors found that when an anode is heat-treated in a sealed furnace, some of the conductive additives and binders mixed in the anode undergo thermal changes. It was revealed that this is due to the formation of modified products. In other words, phosphorous graphite is used as a conductive aid, but it has functional groups such as carboxyl groups at the ends of its crystal lattice, and it is also known that organic substances are attached to the surface of phosphorous graphite. Furthermore, although a synthetic resin is usually used as a binder, the functional groups, attached organic substances, and a part of the binder are thermally decomposed during heat treatment. The resulting modified product is incorporated into the battery while remaining attached to the anode, and the modified product is dissolved in an electrolytic solution containing an organic solvent, and transferred to the cathode side through the separator, forming a coating on the surface of the cathode. appears and inhibits the discharge reaction.

本発明の目的は、このような従来技術の欠点を
解消し、優れた放電性能を有する有機電解質電池
用陽極の製法を提供するにある。
An object of the present invention is to provide a method for manufacturing an anode for an organic electrolyte battery that overcomes the drawbacks of the prior art and has excellent discharge performance.

この目的を達成するため、本発明は、二酸化マ
ンガンと電導助剤と結着剤との混合物からなる陽
極を加熱して二酸化マンガンをγ形とβ形の中間
体にする熱処理工程において、その熱処理中に水
蒸気を順次供給・排出しながら所定の熱処理を行
なうことを特徴とする。
To achieve this objective, the present invention provides a heat treatment process in which an anode made of a mixture of manganese dioxide, a conductive additive, and a binder is heated to convert manganese dioxide into an intermediate between γ and β forms. It is characterized by performing a predetermined heat treatment while sequentially supplying and discharging steam inside.

次に本発明の実施例を図とともに説明する。第
1図は、本発明の実施例に係る有機電解質電池を
示す図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an organic electrolyte battery according to an embodiment of the present invention.

電解二酸化マンガン100重量部とリン状黒鉛10
重量部とポリ4フツ化エチレン1重量部との混合
物からなる陽極1を陽極缶2の缶底に挿入し、そ
の上にポリプロピレン製不織布からなる電解液吸
収体3を載置する。前記陽極1および電解液吸収
体3には、炭酸プロピレンとジメトキシエタンと
を体積比で1:1の割合で混合した溶媒に過塩素
酸リチウムを1モル/溶解させた電解液がそれ
ぞれ所定量含浸させる。
100 parts by weight of electrolytic manganese dioxide and 10 parts by weight of phosphorous graphite
An anode 1 made of a mixture of 1 part by weight and 1 part by weight of polytetrafluoroethylene is inserted into the bottom of an anode can 2, and an electrolyte absorber 3 made of a nonwoven polypropylene fabric is placed thereon. The anode 1 and the electrolyte absorber 3 are each impregnated with a predetermined amount of an electrolyte in which 1 mole of lithium perchlorate is dissolved in a solvent in which propylene carbonate and dimethoxyethane are mixed at a volume ratio of 1:1. let

陽極缶2の開口部には、ポリプロピレン製のガ
スケツト4を介して陰極端子板5が嵌合される。
陰極端子板5の内面にはステンレス製の網6が溶
接されており、これに金属リチウムからなる陰極
7が圧着され、陰極7はセパレータ3を介して陽
極1と対向する。
A cathode terminal plate 5 is fitted into the opening of the anode can 2 via a gasket 4 made of polypropylene.
A stainless steel net 6 is welded to the inner surface of the cathode terminal plate 5, and a cathode 7 made of metallic lithium is pressed onto this.The cathode 7 faces the anode 1 with the separator 3 in between.

次に陽極1の製法について第2図ないし第4図
とともに説明する。
Next, a method for manufacturing the anode 1 will be explained with reference to FIGS. 2 to 4.

電解二酸化マンガン(γ形MnO2)と電導助剤
と結着剤を前述のように所定の割合で混合して加
圧成形した陽極1を、第3図に示す耐熱性のカセ
ツト8に収納する。カセツト8の外周壁には空気
の流通を良くするために複数の透孔9が設けられ
ており、このカセツト8内には第4図に示すよう
にステンレス製の網からなる通気性を有するセパ
レータ10と陽極1とが交互に重ね合わさるよう
にして多数収納される。
The anode 1, which is formed by mixing electrolytic manganese dioxide (γ-type MnO 2 ), a conduction aid, and a binder in a predetermined ratio as described above and press-molding the mixture, is placed in a heat-resistant cassette 8 shown in FIG. 3. . A plurality of through holes 9 are provided in the outer peripheral wall of the cassette 8 to improve air circulation, and inside the cassette 8, as shown in FIG. A large number of anodes 10 and anodes 1 are stored so as to be alternately stacked on top of each other.

陽極1を収納したカセツト8は、第2図に示す
ように電気炉11の内室12に架設された多孔板
13の上に積み重ねられる。この内室12には、
空気供給管14と排気管15と熱電対16とがそ
れぞれ挿入されており、電気炉11の周壁17に
はヒータ18が配設されている。このヒータ18
により内室12の炉内温度は約400℃に維持され、
空気供給管14からは送風機19により1/分
の割合で空気20が内室12内に送られる。この
空気20は電気炉11に送られる前に加湿器21
を通り、相対湿度が70〜95%の高湿空気となつて
内室12に送り込まれる。この高湿空気20はヒ
ータ18で加熱され、多孔板13を通り、カセツ
ト8内に収納されている陽極1の表面に沿つて流
れ、排気管15から排出される。この加熱処理を
4時間行なうことにより、二酸化マンガンの結晶
構造はγ形とβ形の中間体になる。熱処理が終了
すると、次に圧縮空気除湿装置(図示せず)を通
した乾燥空気を内室12に送り込み、陽極1を冷
却する。
The cassette 8 containing the anode 1 is stacked on a perforated plate 13 installed in the inner chamber 12 of the electric furnace 11, as shown in FIG. In this inner chamber 12,
An air supply pipe 14, an exhaust pipe 15, and a thermocouple 16 are inserted, respectively, and a heater 18 is arranged on the peripheral wall 17 of the electric furnace 11. This heater 18
The temperature inside the furnace in the inner chamber 12 is maintained at approximately 400°C,
Air 20 is sent from the air supply pipe 14 into the interior chamber 12 by a blower 19 at a rate of 1/min. This air 20 is sent to a humidifier 21 before being sent to the electric furnace 11.
The high humidity air with a relative humidity of 70 to 95% is sent into the interior room 12. This high-humidity air 20 is heated by a heater 18, passes through a perforated plate 13, flows along the surface of an anode 1 housed in a cassette 8, and is discharged from an exhaust pipe 15. By performing this heat treatment for 4 hours, the crystal structure of manganese dioxide becomes an intermediate between the γ type and the β type. After the heat treatment is completed, dry air that has passed through a compressed air dehumidifier (not shown) is sent into the interior chamber 12 to cool the anode 1.

陽極の熱処理温度は約250〜430℃が適当で、好
ましくは約370〜430℃である。なお前記実施例で
は酸素を含む気体(空気)と湿分とを一緒にして
陽極に供給したが、両者を別系統で供給すること
もできる。酸素を含む気体としては空気の他に酸
素ガス単独、あるいはそれと他の例えば窒素ガス
などとの混合ガスであつても構わない。また二酸
化マンガン熱処理雰囲気の酸素濃度が高い場合に
は、加湿手段により湿分のみを蒸気の形で陽極に
供給してもよい。湿分の供給・排出は二酸化マン
ガンの熱処理中連続して行なう方が好ましいが、
断続的であつてもよい。
The heat treatment temperature of the anode is suitably about 250-430°C, preferably about 370-430°C. In the above embodiment, the oxygen-containing gas (air) and moisture were supplied together to the anode, but they can also be supplied through separate systems. In addition to air, the oxygen-containing gas may be oxygen gas alone or a mixture of oxygen gas and other gases such as nitrogen gas. Further, when the oxygen concentration in the manganese dioxide heat treatment atmosphere is high, only moisture in the form of steam may be supplied to the anode by a humidifying means. It is preferable to supply and discharge moisture continuously during the heat treatment of manganese dioxide.
May be intermittent.

酸素ガスと窒素ガスの混合気体を陽極の加熱雰
囲気中に供給しながら熱処理を行なう際、供給気
体の酸素濃度を種々変えて陽極を処理し、それら
の陽極を用いて組立てたリチウム電池の開路電圧
の推移を第5図に、内部抵抗の推移を第6図にそ
れぞれ示し、各種電池とも試料個数は30個とし
た。図中の曲線Aは加湿しない供給気体、曲線B
は加湿した供給気体をそれぞれ用いた場合を示し
ている。なお両図とも図中の縦軸と平行に延びた
線分の上端が最高値を、下端が最低値をそれぞれ
示し、線分の長さが長い程ばらつきが大きいこと
を意味している。線分の中間に付した丸印が平均
値を示している。
When performing heat treatment while supplying a mixed gas of oxygen gas and nitrogen gas into the heated atmosphere of the anode, the anode is treated with various oxygen concentrations in the supplied gas, and the open circuit voltage of the lithium battery assembled using these anodes is determined. Figure 5 shows the change in internal resistance, and Figure 6 shows the change in internal resistance.The number of samples for each type of battery was 30. Curve A in the figure is the supply gas without humidification, curve B
shows the case where humidified supply gas is used. Note that in both figures, the upper end of a line segment extending parallel to the vertical axis in the figure indicates the highest value, and the lower end indicates the lowest value, and the longer the length of the line segment, the greater the dispersion. The circle marked in the middle of the line segment indicates the average value.

第5図から明らかなように、供給気体に加湿す
ることにより各電池とも開路電圧は0.1V程度低
くなるが、酸素0体積%のものを除き他は電圧の
ばらつきは非常に小さくなつている。また第6図
から明らかなように、供給気体に加湿することに
より、電池の内部抵抗は極端に下がり、しかもば
らつきが小さくなつている。
As is clear from FIG. 5, by humidifying the supplied gas, the open circuit voltage of each battery is lowered by about 0.1V, but the variation in voltage is very small except for the one with 0% oxygen by volume. Furthermore, as is clear from FIG. 6, by humidifying the supplied gas, the internal resistance of the battery is extremely reduced and the variation is also reduced.

加湿手段により陽極に湿分を供給しながら所定
の熱処理を行なうと何故内部抵抗が下がるのか理
論的な根拠は明らかでないが、陽極に混在してい
る電導助剤や結着剤の熱分解生成物が供給される
湿分に溶けて、その湿分とともに陽極から持ち去
られるためだと考えられる。
The theoretical basis for why the internal resistance decreases when a specified heat treatment is performed while supplying moisture to the anode using a humidifying means is not clear, but it is possible that thermal decomposition products of conductive aids and binders mixed in the anode It is thought that this is because it dissolves in the supplied moisture and is carried away from the anode along with the moisture.

本発明は前述のような構成になつており、優れ
た性能を有する有機電解質電池用陽極を製造する
ことができる。
The present invention has the above-described configuration, and can produce an anode for an organic electrolyte battery having excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によつて作られた陽極
を用いてなるリチウム電池の要部断面図、第2図
は本発明の実施例で用いる電気炉の概略構成図、
第3図はその電気炉に用いる熱処理用カセツトの
斜視図、第4図はそのカセツトに陽極を収納した
状態を示す断面図、第5図および第6図は熱処理
条件の異なる陽極を用いたリチウム電池の開路電
圧特性図および内部抵抗特性図である。 1……陽極、11……電気炉、14……空気供
給管、15……排気管、19……送風機、20…
…高湿空気、21……加湿器。
FIG. 1 is a cross-sectional view of essential parts of a lithium battery using an anode made according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an electric furnace used in an embodiment of the present invention.
Fig. 3 is a perspective view of a heat treatment cassette used in the electric furnace, Fig. 4 is a sectional view showing the state in which the anode is housed in the cassette, and Figs. 5 and 6 are lithium FIG. 2 is an open circuit voltage characteristic diagram and an internal resistance characteristic diagram of a battery. 1...Anode, 11...Electric furnace, 14...Air supply pipe, 15...Exhaust pipe, 19...Blower, 20...
...Highly humid air, 21...humidifier.

Claims (1)

【特許請求の範囲】[Claims] 1 γ形の結晶構造を有する二酸化マンガンと電
導助剤と結着剤とを混合・成形して陽極を作り、
この陽極を加熱して前記二酸化マンガンをγ形と
β形の中間体にする熱処理工程において、その熱
処理雰囲気中に水蒸気を順次供給・排出しながら
所定の熱処理を行なうことを特徴とする有機電解
質電池用陽極の製法。
1. An anode is made by mixing and molding manganese dioxide having a γ-type crystal structure, a conductive additive, and a binder.
An organic electrolyte battery characterized in that, in the heat treatment step of heating the anode to convert the manganese dioxide into an intermediate between γ-type and β-type, a predetermined heat treatment is performed while sequentially supplying and discharging water vapor into the heat treatment atmosphere. Manufacturing method for anodes.
JP55171461A 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell Granted JPS5796466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171461A JPS5796466A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171461A JPS5796466A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Publications (2)

Publication Number Publication Date
JPS5796466A JPS5796466A (en) 1982-06-15
JPH0123898B2 true JPH0123898B2 (en) 1989-05-09

Family

ID=15923531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171461A Granted JPS5796466A (en) 1980-12-06 1980-12-06 Manufacture of anode for organic electrolytic cell

Country Status (1)

Country Link
JP (1) JPS5796466A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021995A (en) * 1973-06-28 1975-03-08
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021995A (en) * 1973-06-28 1975-03-08
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Also Published As

Publication number Publication date
JPS5796466A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
US4476104A (en) Manganese dioxide and process for the production thereof
EP0228647B1 (en) Method of improving the formation efficiency of positive plates of a lead-acid battery
EP1223627B1 (en) Plate making process for lead acid battery
CN111682214A (en) Metal atom-nonmetal atom co-doped graphene catalyst, preparation method thereof, positive electrode material and lithium-sulfur battery
US4590059A (en) Process for the production of manganese dioxide
US6558843B1 (en) Method for manufacturing lithium-manganese oxide powders for use in lithium secondary battery
CN105024060B (en) Anode material used for lithium ion battery and preparation method thereof
CN113972373A (en) Preparation method of lithium iron phosphate pole piece and lithium ion battery
JPH0123898B2 (en)
JP2005505487A (en) Electrode material and method for producing the same
JPH0373107B2 (en)
JPH0562678A (en) Manufacture of active material for nonaqueous electrolyte secondary battery
JPH0123899B2 (en)
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JP2703759B2 (en) Graphite fiber / lithium rechargeable battery
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
US7943256B2 (en) Method for producing battery electrodes, electrodes produced by this method, and batteries containing such electrodes
CN116487528B (en) Negative pole piece, preparation method thereof, energy storage device and electric equipment
US3459595A (en) Positive electrode for lead acid storage batteries
US3227584A (en) Method of drying pasted-plate storage battery electrodes
JPH04253161A (en) Manufacture of positive electrode for nonaqueous electrolyte battery
US621150A (en) Chieff
JPS6042586B2 (en) Method for manufacturing sintered substrate for storage battery electrode
JP2796839B2 (en) Positive active material for lithium battery, its manufacturing method and its positive plate
US1144311A (en) Storage-battery element and method of making the same.