JPH01238632A - Photosemiconductor element and optical bistable element - Google Patents

Photosemiconductor element and optical bistable element

Info

Publication number
JPH01238632A
JPH01238632A JP63066472A JP6647288A JPH01238632A JP H01238632 A JPH01238632 A JP H01238632A JP 63066472 A JP63066472 A JP 63066472A JP 6647288 A JP6647288 A JP 6647288A JP H01238632 A JPH01238632 A JP H01238632A
Authority
JP
Japan
Prior art keywords
layer
quantum well
conductivity type
barrier
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066472A
Other languages
Japanese (ja)
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63066472A priority Critical patent/JPH01238632A/en
Publication of JPH01238632A publication Critical patent/JPH01238632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices
    • G02F3/026Optical bistable devices based on laser effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices

Abstract

PURPOSE:To enable high-speed operation while incident power is small by laminating respective required layers on a semiconductor substrate and satisfying the prescribed conditions with the energy Ew between the 1st levels of electrons and holes and forbidden band width Eg of the quantum well layer. CONSTITUTION:The resonance tunnel barrier structure consisting of an (n)-type clad layer 1, an (n)-type light guide layer 2, a 1st spacer layer 3, a thin 1st barrier layer 4, and the quantum well layer 5 having the forbidden band width narrower than the forbidden band width of the layer 4 and the photosemiconductor element of the similar conduction type laminated with a (p)-type barrier layer 6, a 2nd spacer layer 7, a guide layer 8, a clad layer 9, etc., are laminated on a GaAs substrate 10 to form the photosemiconductor element. The energy Ew and the width Eg are so selected as to satisfy the conditions expressed by the formula. The photosemiconductor element operates with a small operating voltage and large current as a bistable element when a load resistor 14 larger than the differential load resistor of the photosemiconductor element and a power supply 15 are connected in series to (p) side and (n) side electrodes 12, 13. The resistance 14 is thereby lowered and the time constant is decreased; in addition, light is confined in the quantum well barrier by the layers 2, 8, by which the operating speed is increased while the incident power is small.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光情報処理光通信の分野で用いられる光半導
体素子さらに詳しくは光双安定素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical semiconductor device used in the field of optical information processing and optical communication, and more particularly to an optical bistable device.

(従来の技術) 光双安定素子は光情報処理分野での応用が期待され盛ん
に研究開発がなされている。しかしなから、現在のとこ
ろ全てに良好なデバイスは実現されていない。例えば、
文献アブライドフィジックスレターズ45巻13〜15
ページ記載の5EEDと呼ばれる光双安定素子は本質的
には速い動作が期待されるもののCR時定数が大きいた
め動作速度が遅い(〜psec)という欠点がある。現
在動作速度の速いものでは非線形材料を用いたエタロン
等(例えば文献アブライドフィジックスレターズ41巻
221〜222ページ)があるが、入射パワーが1mW
以上必要であり比較的大きいという欠点があった。
(Prior Art) Optical bistable devices are expected to be applied in the field of optical information processing and are actively being researched and developed. However, at present, a device that is good in all respects has not been realized. for example,
Literature Abride Physics Letters Volume 45 13-15
Although the optical bistable device called 5EED described on page 1 is expected to operate essentially at high speed, it has a drawback that its operation speed is slow (~ psec) due to its large CR time constant. Currently, there are etalons using nonlinear materials that have high operating speeds (for example, Reference Abride Physics Letters, Vol. 41, pages 221-222), but the incident power is 1 mW.
This has the disadvantage that it is relatively large.

本発明の目的は、入射パワーがある程度小さいままに速
度が速い光双安定素子およびそれを構成する光半導体素
子を提供する事にある。
It is an object of the present invention to provide an optical bistable device that has high speed while maintaining a relatively low incident power, and an optical semiconductor device constituting the bistable device.

(問題点を解決するための手段) 前述の目的を達成するために本発明が提供する光半導体
素子は第1導電型もしくは半絶縁性の半導体基板と、こ
の半導体基板の上に形成された第1導電型の下側クラッ
ド層と、この下側クラッド層の上に形成された第1導電
型の光ガイド層と、この光ガイド層の上に順次積層され
た薄いバリヤ層および、このバリヤ層より禁制帯幅の狭
い量子井戸層から成る共鳴トンネリングバリヤ構造と、
前記したバリヤ層のうち量子井戸層の上側に設けられた
バリヤ層の上に形成された前記第1導電型と反対の第2
導電型を有する光ガイド層と、この光ガイド層の上に形
成された第2導電型のクラッド層とを含み、しかも上記
量子井戸層の電子および正札の第一準位間のエネルギー
Ewと光ガイド層のうちバリヤ層と接する部分の禁制帯
幅E3に関して不等式%式% を満たすことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides an optical semiconductor device that includes a first conductivity type or semi-insulating semiconductor substrate, and a semiconductor substrate formed on the semiconductor substrate. a lower cladding layer of one conductivity type, a light guide layer of the first conductivity type formed on the lower cladding layer, a thin barrier layer laminated in sequence on the light guide layer, and this barrier layer. A resonant tunneling barrier structure consisting of a quantum well layer with a narrower forbidden band width,
Of the barrier layers described above, a second conductivity type opposite to the first conductivity type is formed on the barrier layer provided above the quantum well layer.
It includes a light guide layer having a conductivity type and a cladding layer of a second conductivity type formed on the light guide layer, and furthermore, the energy Ew between the electrons of the quantum well layer and the first level of the regular tag and the light. It is characterized in that the forbidden band width E3 of the portion of the guide layer in contact with the barrier layer satisfies the inequality %.

さらにこの光半導体素子と、負荷抵抗と電源とを直列に
接続し、前記負荷抵抗が前記光半導体素子の微分負性抵
抗に比べて大きくすると光双安定素子が得られる。
Further, by connecting this optical semiconductor element, a load resistance, and a power source in series, and making the load resistance larger than the differential negative resistance of the optical semiconductor element, an optical bistable element can be obtained.

また、前記光半導体素子において少なくとも量子井戸ま
で届くメサエッチングによって形成されたストライプを
形成させた構造を作れば、光の吸収距離を長くできる。
Furthermore, if a structure is created in which stripes are formed by mesa etching that reach at least the quantum wells in the optical semiconductor element, the light absorption distance can be increased.

(作用) 本発明の光半導体素子においては、本質的な動作速度が
電子の共鳴トンネルで決まるため、従来のデバイスに比
べて本質的な動作速度が速いという利点がある。又これ
に負荷抵抗および電源を付加して、本素子を光双安定素
子として駆動する場合に動作電圧が小さく、比較的大き
な電流で動作するため負荷抵抗を小さく出来てCR時定
数が小さなために高速なスイッチングが出来るものであ
る。又、本発明の光半導体素子ではガイド層を備える事
によって有効に光を量子井戸バリアに閉じ込める事が出
来るために、入射光との結合を大きく出来、入射感度が
高くなる。このため入射パワーが小さいままに、高速で
動作出来る光双安定素子を構成出来る。
(Function) The optical semiconductor device of the present invention has the advantage that the essential operating speed is faster than conventional devices because the essential operating speed is determined by electron resonance tunneling. In addition, when a load resistance and power supply are added to this and the device is driven as an optical bistable device, the operating voltage is small and the device operates with a relatively large current, so the load resistance can be made small and the CR time constant is small. It is capable of high-speed switching. Further, in the optical semiconductor device of the present invention, since light can be effectively confined in the quantum well barrier by providing a guide layer, coupling with incident light can be increased, and the incident sensitivity can be increased. Therefore, it is possible to construct an optical bistable element that can operate at high speed while keeping the incident power small.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

(実施例1) 第1図は本発明の請求項(1)についての実施例を説明
するため光半導体素子のエネルギーバンドダイヤグラム
、第2図は光半導体素子の構造および接続して光双安定
素子を形成した図である。図中、1はn型クラッド層(
nAlxcGal−XcAsA1組成比Xo=0.3〜
0.8)、2はn型光ガイド層(n−AlxGGa、−
、。AsA1組成比X。=Xo+X8グレーデッド)、
3は第1スペーサ層(アンドープAlx8Ga1−x、
As、X8=o−0,2、典型的にはX8〜0、厚さ5
0〜100A)、4は第1バリア層(アンドープAlA
s、厚さ10〜30人)、5は量子井戸(アンドープG
aAs、厚さ50−100人)、6は第2バリア層(ア
ンドープAlAs、厚さ10−30人)、7は第2スペ
ーサ層(アンドープAlx5Ga1−xsAs)、8は
p型光ガイド層(p−AIXGGal−XG、A1組成
比X。=X8→Xoグレーデッド)、9はp型クラッド
層(p−AIXGGa、−8゜As)、1oはGaAs
基板(n−GaAsあるいは半絶縁性GaAs基板)、
11は5102.12はP側電極、13はn側電極、1
4は直列抵抗、15は直流電源(ダイオードに対して順
方向に印加、電圧1〜5V)、16は信号光、17は出
力光である。
(Example 1) Fig. 1 is an energy band diagram of an optical semiconductor device to explain an embodiment of claim (1) of the present invention, and Fig. 2 is an optical bistable device connected to the structure of the optical semiconductor device. FIG. In the figure, 1 is an n-type cladding layer (
nAlxcGal-XcAsA1 composition ratio Xo=0.3~
0.8), 2 is an n-type optical guide layer (n-AlxGGa, -
,. AsA1 composition ratio X. =Xo+X8 graded),
3 is the first spacer layer (undoped Alx8Ga1-x,
As, X8=o-0,2, typically X8~0, thickness 5
0 to 100A), 4 is the first barrier layer (undoped AlA
s, thickness 10-30 people), 5 is quantum well (undoped G
aAs, thickness 50-100 nm), 6 is the second barrier layer (undoped AlAs, thickness 10-30 nm), 7 is the second spacer layer (undoped Alx5Ga1-xsAs), 8 is the p-type optical guide layer (p -AIXGGal-XG, A1 composition ratio
Substrate (n-GaAs or semi-insulating GaAs substrate),
11 is 5102, 12 is the P side electrode, 13 is the n side electrode, 1
4 is a series resistor, 15 is a DC power supply (applied in the forward direction to the diode, voltage 1 to 5 V), 16 is signal light, and 17 is output light.

次に本実施例の光半導体素子の製作方法について簡単に
述べる。まずGaAs基板1o上にn型クラッド層1、
n型光ガイド層2、第1スペーサ層3、第1バリア層4
、量子井戸5、第2バリア層6、第2スペーサ層7、P
型光ガイド層8、P型りラッド層9を順次積層する。こ
のとき量子井戸5の電子および正札の第一量子準位間の
エネルギーEwとしたときに第1スペーサ層および第2
スペーサ層の禁制帯幅E。をEw−0,2eV≦Eo≦
Ew     (1)となる様に各層の組成および厚さ
を定める必要がある。−例としては量子井戸5の厚み5
0人の場合にはEw =1.58eVとなってスペーサ
層のA1組成は(1)式の条件を満たすには0≦x8≦
0.15であれば良い。この条件は共鳴トンネルによる
負性抵抗を出現させるのに必要な条件である。なお、実
施例2の双安定素子を作製するためには結晶成長後第2
図に示される様に能動領域のストライプ18をメサエッ
チングによって形成する。この構造を用いると実施例2
で説明するように光の吸収距離を長くとれるので有効で
ある。最後に8102膜11およびP側電極12、n側
電極13を形成する。
Next, a method for manufacturing the optical semiconductor device of this example will be briefly described. First, an n-type cladding layer 1 is placed on a GaAs substrate 1o,
n-type optical guide layer 2, first spacer layer 3, first barrier layer 4
, quantum well 5, second barrier layer 6, second spacer layer 7, P
A molded light guide layer 8 and a P-shaped molded rad layer 9 are sequentially laminated. At this time, when the energy between the electrons in the quantum well 5 and the first quantum level of the genuine tag is Ew, the energy between the first spacer layer and the second quantum level is Ew.
Forbidden band width E of the spacer layer. Ew-0,2eV≦Eo≦
It is necessary to determine the composition and thickness of each layer so that Ew (1). - For example, the thickness of the quantum well 5 is 5
In the case of 0 people, Ew = 1.58 eV, and the A1 composition of the spacer layer must be 0≦x8≦ to satisfy the condition of equation (1).
It is sufficient if it is 0.15. This condition is necessary for the appearance of negative resistance due to resonance tunneling. Note that in order to fabricate the bistable device of Example 2, the second
Active area stripes 18 are formed by mesa etching as shown. Using this structure, Example 2
This is effective because the light absorption distance can be increased as explained in . Finally, the 8102 film 11, the P-side electrode 12, and the N-side electrode 13 are formed.

本実施例ではpn接合に共鳴トンネルバリア(以下RT
Bと略す)を有した構造となっている。この構造を説明
する前に、通常のn−RTB−n構造の電流電圧特性に
ついて説明する。第3図はそれを説明するエネルギーバ
ンドダイヤグラムである。
In this example, a resonant tunnel barrier (hereinafter referred to as RT) is used at the pn junction.
B). Before explaining this structure, the current-voltage characteristics of a normal n-RTB-n structure will be explained. FIG. 3 is an energy band diagram explaining this.

図中、20はエミッタ(n−GaAs、 n〜5X10
17cm−3)、21は第1バリア層(アンドープAl
As、厚さ〜20人)、22は量子井戸(アンドープG
aAs、厚さ50〜100人)、23は第2バリア層(
アンドープAlAs、厚さ〜20人)、24はコレクタ
(n−GaAs、 n〜5X1017cm’)である。
In the figure, 20 is an emitter (n-GaAs, n~5X10
17cm-3), 21 is the first barrier layer (undoped Al
As, thickness ~ 20 people), 22 is a quantum well (undoped G
aAs, thickness 50-100 layers), 23 is the second barrier layer (
24 is the collector (n-GaAs, n~5X1017 cm').

この構造においてデバイスに電圧を印加しない場合は第
3図(a)の熱平衡状態のエネルギーバンドダイヤグラ
ムの状態となっている。このときに量子井戸22の電子
の量子準位26は、量子化効果によってエミッタ20の
伝導帯下端に比べて40〜140meV高くなった状態
となっている。この値をΔEとすると、素子にほぼ2.
八Eの電圧を印加した時には第3図(b)に示される様
に電子準位26とエミッタ20、伝導帯下端の電子25
のエネルギーレベルが一致して共鳴状態となる。このた
め電子のトンネル効果によって通過する確率が高くなっ
て大きな電流が流れる。
In this structure, when no voltage is applied to the device, the device is in the state shown in the energy band diagram of the thermal equilibrium state shown in FIG. 3(a). At this time, the quantum level 26 of the electron in the quantum well 22 is in a state that is 40 to 140 meV higher than the lower end of the conduction band of the emitter 20 due to the quantization effect. If this value is ΔE, then approximately 2.
When a voltage of 8E is applied, as shown in FIG. 3(b), the electron level 26, the emitter 20, and the electron 25 at the lower end of the conduction band
Their energy levels match and a resonance state occurs. Therefore, the probability that electrons will pass through is increased due to the tunnel effect, and a large current flows.

しかしさらに電圧を印加すると第3図(C)の様に電子
準位26と伝導帯下端電子25のエネルギーレベルが一
致しなくなるため、電流が減少する。このため電流電圧
特性は第4図の曲線40の様となる。図中、点40(b
)、40(c)はそれぞれ共鳴および非共鳴状態の状態
に対応する。
However, if the voltage is further applied, the energy level of the electron level 26 and the conduction band bottom electron 25 no longer match as shown in FIG. 3(C), so that the current decreases. Therefore, the current-voltage characteristic becomes like the curve 40 in FIG. 4. In the figure, point 40 (b
), 40(c) correspond to the resonant and non-resonant states, respectively.

一方第1の実施例の光半導体素子の様なRTBとp−n
接合が組合されたp−RTB−n構造では、電子の流れ
の他に正札も考慮しなくてはいけないが、基本的には前
述した共鳴現象のため負性抵抗が現われる。ただしp−
n接合の拡散電圧だけ負性抵抗が現われる電圧が高くな
るため第4図曲線41の様な電流電圧特性となる。
On the other hand, an RTB like the optical semiconductor device of the first embodiment and a p-n
In the p-RTB-n structure in which junctions are combined, in addition to the flow of electrons, it is also necessary to take into account the positive charge, but basically negative resistance appears due to the resonance phenomenon described above. However, p-
Since the voltage at which negative resistance appears increases by the diffusion voltage of the n-junction, a current-voltage characteristic as shown by curve 41 in FIG. 4 is obtained.

(実施例2) 次に請求項2実施例として光双安定素子について説明す
る。前述した様に本実施例の光半導体素子ではRTBを
有しているため、光照射しない状態では第4図に示され
る電流電圧特性41を有する。第2図に示す様に負荷抵
抗14と直流電源15を接続し光双安定素子を作製した
場合には第5図に示される様な負荷抵抗直線43が得ら
れる。動作点はこの負荷抵抗直線43と暗時電流電圧特
性41の交点Aとなる。
(Embodiment 2) Next, an optical bistable element will be described as a second embodiment of the present invention. As described above, since the optical semiconductor device of this example has an RTB, it has the current-voltage characteristic 41 shown in FIG. 4 in a state where no light is irradiated. When an optical bistable element is manufactured by connecting the load resistor 14 and the DC power supply 15 as shown in FIG. 2, a load resistance straight line 43 as shown in FIG. 5 is obtained. The operating point is the intersection A of the load resistance straight line 43 and the dark current-voltage characteristic 41.

光照射時には電流電圧特性42の様にマイナスの電流方
向に電流電圧特性が移動するために動作点はB点へ移る
。動作点Aにおいては共鳴状態となっており、量子井戸
5での電界強度は比較的小さいが、動作点Bでは非共鳴
状態となっており、量子井戸5には大きな電界(〜10
0kv/cm)が印加された状態となっている。この量
子井戸5に印加される電界の違いによって量子井戸5の
吸収スペクトルは第6図の吸収スペクトル60(動作点
A)から吸収スペクトル61(動作点B)に変化する。
During light irradiation, the current-voltage characteristic moves in the negative current direction as shown in the current-voltage characteristic 42, so the operating point moves to point B. At the operating point A, the quantum well 5 is in a resonant state, and the electric field strength at the quantum well 5 is relatively small, but at the operating point B, the quantum well 5 is in a non-resonant state, and the quantum well 5 has a large electric field (~10
0 kv/cm) is applied. Due to the difference in the electric field applied to the quantum well 5, the absorption spectrum of the quantum well 5 changes from an absorption spectrum 60 (operating point A) to an absorption spectrum 61 (operating point B) in FIG. 6.

従って吸収端より短波長のλ1では動作点AからBの遷
移時に吸収が減少し、−力吸収端より長波長のλ2では
吸収が増大する。以上の吸収スペクトルの変化によって
第7図に示される光入出力特性が得られる。すなわち第
2図に示される様に信号光16を入射して出力光17を
観測すると信号光の波長がλ1(吸収端より短波長側)
では第7図光入出力特性70に示される様に動作点Aか
らBへの遷移時に出力光17が増大する。一方波長λ2
(吸収端より長波長側)では光入出力特性71に示され
る様に動作点AからBへの遷移時に出力光17が減少す
る。
Therefore, at a wavelength λ1 shorter than the absorption edge, absorption decreases during the transition from operating point A to B, and at a wavelength λ2 longer than the -force absorption edge, absorption increases. The light input/output characteristics shown in FIG. 7 are obtained by the above changes in the absorption spectrum. In other words, as shown in Figure 2, when the signal light 16 is input and the output light 17 is observed, the wavelength of the signal light is λ1 (shorter wavelength side than the absorption edge).
As shown in the optical input/output characteristic 70 in FIG. 7, the output light 17 increases at the time of transition from operating point A to B. On the other hand, the wavelength λ2
(on the longer wavelength side than the absorption edge), as shown in the optical input/output characteristic 71, the output light 17 decreases when transitioning from the operating point A to B.

本発明の光半導体素子の本質的な動作速度は電子の共鳴
トンネル速度で決まるため、従来のデバイスに比べて動
作速度が速いという利点がある。
Since the essential operating speed of the optical semiconductor device of the present invention is determined by the resonant tunneling speed of electrons, it has the advantage of faster operating speed than conventional devices.

又、動作電圧も従来の5EEDに比べて一桁程度低いた
めに高速のパルス電源を直流電源150代わりに用いる
事によって、高速繰り返し動作が可能となる。又、本実
施例では、ストライプ18の端面から信号光16を層と
平行に入射させる構造となっているために光を吸収する
距離が長い。又、スペーサ層、ガイド層を備えて有効に
光を量子井戸5に集中させる導波構造を有している。こ
のためほとんど信号光を吸収する事も可能であり低光パ
ワーで動作出来る。
Furthermore, since the operating voltage is about an order of magnitude lower than that of the conventional 5EED, high-speed repetitive operation is possible by using a high-speed pulse power source instead of the DC power source 150. Furthermore, in this embodiment, the signal light 16 is incident from the end face of the stripe 18 parallel to the layer, so the distance over which the light is absorbed is long. Further, it has a waveguide structure including a spacer layer and a guide layer to effectively concentrate light on the quantum well 5. Therefore, it is possible to absorb most of the signal light and operate with low optical power.

(実施例3) 次に光双安定素子について別の実施例を説明する。第8
図は接続を示した図である。図中、80は第1の実施例
で説明したp−RTB−n構造の光半導体素子、81は
負荷抵抗として機能するホトダイオード、82は直流電
源、83はホトダイオードに電流を流すためのバイアス
光である。第9図の90はホトダイオード81に直流バ
イアス光83入射した場合に、ホトダイオード81と直
流電源82による負荷抵抗曲線である。従って、光半導
体素子80に信号光16を入射しない場合には、第9図
の暗時電流電圧特性41と負荷抵抗曲線90の支点Aが
動作点となる。次に光半導体素子80に信号光16を入
射すると電流電圧特性が変化して第9図42に示される
曲線となるため、これと負荷抵抗曲線90との交点Bが
動作点となる。従って第1の実施例と同様に量子井戸に
かかる電界が変化して量子井戸の光透過特性が変化する
ため出力光17の強度が変化する。第2の実施例の場合
はホトダイオード81に入射するバイアス光83の光強
度を変化させることによって動作点を調節する事が出来
る利点がある。
(Example 3) Next, another example of the optical bistable element will be described. 8th
The figure shows connections. In the figure, 80 is the p-RTB-n structure optical semiconductor element explained in the first embodiment, 81 is a photodiode that functions as a load resistor, 82 is a DC power supply, and 83 is a bias light for causing current to flow through the photodiode. be. 90 in FIG. 9 is a load resistance curve due to the photodiode 81 and the DC power supply 82 when the DC bias light 83 is incident on the photodiode 81. Therefore, when the signal light 16 is not incident on the optical semiconductor element 80, the operating point is the dark current-voltage characteristic 41 and the fulcrum A of the load resistance curve 90 in FIG. Next, when the signal light 16 is incident on the optical semiconductor element 80, the current-voltage characteristics change to become the curve shown in FIG. 9, and the intersection B between this and the load resistance curve 90 becomes the operating point. Therefore, as in the first embodiment, the electric field applied to the quantum well changes and the light transmission characteristics of the quantum well change, so the intensity of the output light 17 changes. The second embodiment has the advantage that the operating point can be adjusted by changing the light intensity of the bias light 83 incident on the photodiode 81.

第1の実施例では量子井戸が1層のみであったがこれに
限らず2層以上の多層となっても良い。多層構造の場合
はLV特性が2つ以上の負性抵抗の山を持つため双安定
ではなく3安定、4安定動作が可能となる。又、第1の
実施例では光ガイド層はグレーデツド層としたがこれに
限らず組成均一の層としく11) でも良い。ただしグレーデツド層とした場合の方が量子
井戸へのキャリア注入が容易である効果がある。又、第
1の実施例ではドーパントが量子井戸に進入するのを避
けるためスペーサ層を設けたが、低温成長等の工夫によ
ってこのスペーサ層を省く事もできる。又、第3の実施
例において直流電源を用いたが、用いるホトダイオード
の光出力電圧の大きなものを選ぶ事によって直流電源を
省く事が出来る。
In the first embodiment, there is only one quantum well layer, but the quantum well is not limited to this, and may have multiple layers of two or more layers. In the case of a multilayer structure, since the LV characteristic has two or more peaks of negative resistance, tristable or fourstable operation is possible instead of bistable. Further, in the first embodiment, the light guide layer is a graded layer, but it is not limited to this, and may be a layer with a uniform composition11). However, a graded layer has the effect of making it easier to inject carriers into the quantum well. Further, in the first embodiment, a spacer layer was provided to prevent the dopant from entering the quantum well, but this spacer layer can be omitted by devising low-temperature growth or the like. Further, although a DC power source was used in the third embodiment, the DC power source can be omitted by selecting a photodiode with a large optical output voltage.

(発明の効果) 最後に本発明の効果を要約すれば高速かつ低光パワー動
作が可能な光双安定素子およびそれを構成する光半導体
素子が得られる事にある。
(Effects of the Invention) Finally, to summarize the effects of the present invention, it is possible to obtain an optical bistable element capable of high speed and low optical power operation and an optical semiconductor element constituting the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例に用いられる光半導体素子のエネ
ルギーバンドダイヤグラム、第2図は第2の実施例の構
造及び接続を示す図、第3図はn−RTB−n構造のエ
ネルギーバンドダイヤグラム、第4図はn−RTB−n
構造及び第1の実施例の光半導体素子の電流電圧特性、
第5図は第2の実施例の光双安定素子(入2)1 ′ の電流電圧特性、第6図は量子井戸の吸収スペクトル、
第7図は第2の実施例の光入出力特性、第8図は第3の
実施例の接続図、第9図は第3の実施例で作製した光双
安定素子の電流電圧特性である。 図中、1はn型クラッド層、2はn型光ガイド層、3は
第1スペーサ層、4は第1バリア層、5は量子井戸、6
は第2バリア層、7は第2スペーサ層、8はP型光ガイ
ド層、9はP型クラッド層、10はGaAs基板、11
はSiO2膜、12はP側電極、13はn側電極、14
は負荷抵抗、15は直流電源、16は信号光、17は出
力光、18はストライプ、20はエミッタ、21は第1
バリア層、22は量子井戸、23は第2バリア層、24
はコレクタ、25は伝導帯下端の電子、26は電子の量
子準位、40はn−RTB−n構造の電流電圧特性、4
1は第1の実施例の光半導体素子の電流電圧特性、42
は光照射時の第2の実施例の光双安定素子の電流電圧特
性、43は第2の実施例の負荷抵抗直線、60は動作点
Aの吸収スペクトル、61は動作点Bの吸収スペクトル
、70は波長λ、での光入出力特性、71は波長λ2で
の光入出力特性、80は第1の実施例の光半導体素子、
81はホトダイオード、82は直流電源、83はバイア
ス光、84は信号光、90は第3の実施例で作製した光
双安定素子の負荷抵抗曲線である。
Fig. 1 is an energy band diagram of the optical semiconductor device used in the first embodiment, Fig. 2 is a diagram showing the structure and connections of the second embodiment, and Fig. 3 is the energy band of the n-RTB-n structure. Diagram, Figure 4 is n-RTB-n
Structure and current-voltage characteristics of the optical semiconductor device of the first example,
Figure 5 shows the current-voltage characteristics of the optical bistable device (input 2) 1' of the second embodiment, Figure 6 shows the absorption spectrum of the quantum well,
Fig. 7 shows the optical input/output characteristics of the second embodiment, Fig. 8 shows the connection diagram of the third embodiment, and Fig. 9 shows the current-voltage characteristics of the optical bistable device fabricated in the third embodiment. . In the figure, 1 is an n-type cladding layer, 2 is an n-type optical guide layer, 3 is a first spacer layer, 4 is a first barrier layer, 5 is a quantum well, and 6
7 is a second barrier layer, 7 is a second spacer layer, 8 is a P-type optical guide layer, 9 is a P-type cladding layer, 10 is a GaAs substrate, 11
is a SiO2 film, 12 is a P-side electrode, 13 is an n-side electrode, 14
is a load resistance, 15 is a DC power supply, 16 is a signal light, 17 is an output light, 18 is a stripe, 20 is an emitter, 21 is a first
barrier layer, 22 is a quantum well, 23 is a second barrier layer, 24
is the collector, 25 is the electron at the lower end of the conduction band, 26 is the quantum level of the electron, 40 is the current-voltage characteristic of the n-RTB-n structure, 4
1 is the current-voltage characteristic of the optical semiconductor device of the first example, 42
is the current-voltage characteristic of the optical bistable element of the second embodiment when irradiated with light, 43 is the load resistance line of the second embodiment, 60 is the absorption spectrum at operating point A, 61 is the absorption spectrum at operating point B, 70 is the optical input/output characteristic at wavelength λ, 71 is the optical input/output characteristic at wavelength λ2, 80 is the optical semiconductor element of the first embodiment,
81 is a photodiode, 82 is a DC power supply, 83 is a bias light, 84 is a signal light, and 90 is a load resistance curve of the optical bistable element manufactured in the third embodiment.

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型もしくは半絶縁性の半導体基板と、こ
の半導体基板の上に形成された第1導電型の下側クラッ
ド層と、この下側クラッド層の上に形成された第1導電
型の光ガイド層と、この光ガイド層の上に順次積層され
た薄いバリヤ層および、このバリヤ層より禁制帯幅の狭
い量子井戸層から成る共鳴トンネリングバリヤ構造と、
前記したバリヤ層のうち量子井戸層の上側に設けられた
バリヤ層の上に形成された前記第1導電型と反対の第2
導電型を有する光ガイド層と、この光ガイド層の上に形
成された第2導電型のクラッド層とを含み、しかも上記
量子井戸層の電子および正札の第一準位間のエネルギー
Ewと光ガイド層のうちバリヤ層と接する部分の禁制帯
幅Egに関して不等式 Ew−0.2eV≦Eg≦Ew を満たすことを特徴とする光半導体素子。
(1) A first conductivity type or semi-insulating semiconductor substrate, a first conductivity type lower cladding layer formed on this semiconductor substrate, and a first conductivity type formed on this lower cladding layer. a resonant tunneling barrier structure comprising a type light guide layer, a thin barrier layer sequentially stacked on the light guide layer, and a quantum well layer having a narrower band gap than the barrier layer;
Of the barrier layers described above, a second conductivity type opposite to the first conductivity type is formed on the barrier layer provided above the quantum well layer.
It includes a light guide layer having a conductivity type and a cladding layer of a second conductivity type formed on the light guide layer, and furthermore, the energy Ew between the electrons of the quantum well layer and the first level of the regular tag and the light. An optical semiconductor device characterized in that a forbidden band width Eg of a portion of a guide layer in contact with a barrier layer satisfies the inequality Ew-0.2eV≦Eg≦Ew.
(2)特許請求の範囲第1項記載の光半導体と、負荷抵
抗と電源とを直列に接続し、前記負荷抵抗が前記光半導
体素子の微分負性抵抗に比べて大きい事を特徴とする光
双安定素子。
(2) An optical semiconductor characterized in that the optical semiconductor according to claim 1, a load resistance, and a power source are connected in series, and the load resistance is larger than the differential negative resistance of the optical semiconductor element. Bistable element.
(3)特許請求の範囲第1項記載の光半導体素子におい
て少なくとも量子井戸まで届くメサエッチングによって
形成されたストライプを有することを特徴とする光半導
体素子。
(3) An optical semiconductor device according to claim 1, characterized in that it has stripes formed by mesa etching that reach at least up to the quantum wells.
JP63066472A 1988-03-18 1988-03-18 Photosemiconductor element and optical bistable element Pending JPH01238632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066472A JPH01238632A (en) 1988-03-18 1988-03-18 Photosemiconductor element and optical bistable element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066472A JPH01238632A (en) 1988-03-18 1988-03-18 Photosemiconductor element and optical bistable element

Publications (1)

Publication Number Publication Date
JPH01238632A true JPH01238632A (en) 1989-09-22

Family

ID=13316761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066472A Pending JPH01238632A (en) 1988-03-18 1988-03-18 Photosemiconductor element and optical bistable element

Country Status (1)

Country Link
JP (1) JPH01238632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229638A (en) * 2013-08-12 2013-11-07 Toshiba Corp Semiconductor light-emitting element and light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229638A (en) * 2013-08-12 2013-11-07 Toshiba Corp Semiconductor light-emitting element and light-emitting device

Similar Documents

Publication Publication Date Title
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
KR100375829B1 (en) Avalanche Photodetector
JPH0654815B2 (en) Optoelectronics device
US6858463B2 (en) High speed semiconductor photodetector
JPH0728047B2 (en) Phototransistor
KR100463416B1 (en) Avalanche phototransistor
JP2674626B2 (en) Quantum well optical device
US5122844A (en) Quantum well structure and semiconductor device using the same
JP3141080B2 (en) Semiconductor functional element
EP0461042A2 (en) High speed optosemiconductor device having multiple quantum wells
EP0444581B1 (en) Photodetector
JP3071630B2 (en) Semiconductor optical function device
JPH01238632A (en) Photosemiconductor element and optical bistable element
JPH10303452A (en) Semiconductor light detecting element, semiconductor light modulating element, and transmitter for optical transmission
JPS6244867B2 (en)
JPH02262133A (en) Semiconductor device
JP3286034B2 (en) Semiconductor light receiving element
JP2657288B2 (en) Optical gate array
KR100343946B1 (en) Waveguide-type optical thyristor
JPH0294573A (en) Photodetector
JPH0233982A (en) Wavelength multiple discrimination semiconductor photodetector
JP2692013B2 (en) Optical gate array
JPH04348085A (en) Semiconductor optical device
JPS62144387A (en) Semiconductor light-emitting device
JPH07142697A (en) Optical semiconductor device