JPH0233982A - Wavelength multiple discrimination semiconductor photodetector - Google Patents

Wavelength multiple discrimination semiconductor photodetector

Info

Publication number
JPH0233982A
JPH0233982A JP63184161A JP18416188A JPH0233982A JP H0233982 A JPH0233982 A JP H0233982A JP 63184161 A JP63184161 A JP 63184161A JP 18416188 A JP18416188 A JP 18416188A JP H0233982 A JPH0233982 A JP H0233982A
Authority
JP
Japan
Prior art keywords
type
layer
groove
waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184161A
Other languages
Japanese (ja)
Inventor
Kikuo Makita
紀久夫 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63184161A priority Critical patent/JPH0233982A/en
Publication of JPH0233982A publication Critical patent/JPH0233982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To discriminate, absorb lights having different wavelengths, and to output as an optical current signal by forming superlattice structures having different well layer thicknesses of a waveguide structure by utilizing a growing speed in a groove with groove depth dependency. CONSTITUTION:Groove regions having 10mum of width, 3mum and 6mum of depths are formed by etching on an N-type InP substrate 1, and an N-type InP layer 2, a superlattice structure 3 made of N-type InGaAs layer/N-type InP layer, and an N-type InP layer 4 are selectively formed in the groove by a hydride UPE method. A p-type region 10 is selectively formed on the layer 4 by Zn diffusion, and a waveguide region structure is obtained in the superlattice structure under the region 10. P-type contact electrodes 5, 6 and an N-type contact electrode are provided, and an electric field is applied to the waveguides made of superlattice structure. Thus, lights having different wavelengths are discriminated, absorbed and output as an optical current signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体受光素子に関し特に波長の異なる複数の
光を弁別して受光する事が可能な波長多重弁別型半導体
受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light-receiving device, and more particularly to a wavelength multiplexing discrimination type semiconductor light-receiving device that can discriminate and receive a plurality of lights of different wavelengths.

〔従来の技術〕[Conventional technology]

従来、光通信においては単一光の変調による伝送方式に
よっていた。ところがより高密度及び高速度の伝送方式
として複数の波長の異なる光を用′いた波長多重方式が
注目されている。この場合、発光素子はもとより受光素
子においても波長を弁別し各々の信号を識別する機能が
必要になってくる。
Conventionally, optical communication has used a transmission method based on modulation of a single light beam. However, a wavelength multiplexing method that uses a plurality of lights of different wavelengths is attracting attention as a transmission method with higher density and higher speed. In this case, not only the light-emitting element but also the light-receiving element needs to have a function of discriminating wavelengths and identifying each signal.

現在よく知られている光通信半導体受光素子としては例
えばSi、GeあるいはInP基板に格子整合したI 
nQ、 53 Ga□、47A5層を光吸収層としたP
IN型受光受光素子バランシェ増倍型受光素子などがあ
る。PIN型受光受光素子容量及びプロセス上容易な点
から、またアバランシ増倍型受光素子は内部利得効果及
び高速応答を有する点で注目されている。
Currently well-known optical communication semiconductor light-receiving devices include, for example, I
nQ, 53 Ga□, P with 47A5 layer as light absorption layer
There are IN-type light-receiving light-receiving elements, balanche multiplication type light-receiving elements, and the like. The avalanche multiplication type light receiving element has attracted attention because of its capacity and ease of processing, and because it has an internal gain effect and high speed response.

しかしながら、通常これらの受光素子は、層構造に対し
、垂直に光が入射する為、波長単位で光電流信号を弁別
する事は不可能である。これに対し、A、Larssc
n等は導波路構造でかつ吸収層が超格子構造である受光
素子をアプライド・フィジックス・レターズ(Appl
、Pbys、Lett。
However, in these light-receiving elements, since light is normally incident perpendicularly to the layered structure, it is impossible to discriminate photocurrent signals in units of wavelengths. On the other hand, A, Larssc
n etc. are waveguide structures and absorption layers have superlattice structures.
, Pbys, Lett.

1986.49.pp233〜pp235)誌上で提案
し、波長弁別の機能性を確認した。第3図にA、Lar
ss。
1986.49. pp233-pp235) and confirmed the functionality of wavelength discrimination. A, Lar in Figure 3
ss.

n等の波長弁別受光素子の構造図を示す。層構造として
はn型GaAs基板31上に、n型AeGaAs層32
、n型層aAs層/n型Aj’GaAS層から成る超格
子構造33、P型AJ7GaAs7@ 34から成り立
っている。ここでプロトン注入によって領域38.39
のみを選択的にP壁領域として導波路構造を得ている。
A structural diagram of a wavelength-discriminating light-receiving element such as n is shown. The layer structure includes an n-type AeGaAs layer 32 on an n-type GaAs substrate 31.
, a superlattice structure 33 consisting of an n-type aAs layer/n-type Aj'GaAS layer, and a P-type AJ7GaAs7@34. Here, by proton injection, the region 38.39
A waveguide structure is obtained by selectively forming only the P wall region.

ここでP型コンタクト用電極35,36.n型コンタク
ト用電極3737を設ける事により、各々の導波路38
゜39に異なった電圧を印加できる。この為、超格子構
造におけるスターク(Stark)効果により、各々の
導波路で異なった吸収端波長が得られる。それ故、2波
長を有する光を端面方向から入射・導波させた場合、各
々の導波路で光が弁別・吸収され電極35.36により
各々電流信号として得られる事になる。
Here, P-type contact electrodes 35, 36. By providing the n-type contact electrode 3737, each waveguide 38
Different voltages can be applied at 39°. Therefore, different absorption edge wavelengths are obtained in each waveguide due to the Stark effect in the superlattice structure. Therefore, when light having two wavelengths is incident and guided from the end face direction, the light is discriminated and absorbed by each waveguide and is obtained as a current signal by the electrodes 35 and 36, respectively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した構造(第3図)において、波長弁別が可能な波
長範囲は、原理的にはスターク(Stark)効果のみ
に依存する。スターク効果とは、逆電界印加時にバンド
構造の変形により、量子準位がシフトし、実効的な電子
−正孔遷移エネルギーが減少する現象で、これにより逆
電界印加時には長波長側に吸収端が延びることになる。
In the structure described above (FIG. 3), the wavelength range in which wavelength discrimination is possible depends in principle only on the Stark effect. The Stark effect is a phenomenon in which the quantum level shifts due to deformation of the band structure when a reverse electric field is applied, and the effective electron-hole transition energy decreases.As a result, the absorption edge shifts to the long wavelength side when a reverse electric field is applied. It will be extended.

ところがスターク効果のみでは波長弁別適用範囲は理論
的に極めて狭い領域である事が予想され、事実A、La
rsson等の実験においても高々300皮酸度の波長
差を弁別しているにすぎない。通信システム上では更に
広範囲な波長領域にわたり波長弁別する受光素子が必要
であり、それによって将来の波長多重による大容量光通
信に適用可能となってくる。
However, the application range of wavelength discrimination using the Stark effect alone is theoretically expected to be extremely narrow, and in fact, A, La
In the experiments of Rsson et al., a wavelength difference of at most 300 degrees of acidity was discriminated. Communication systems require light-receiving elements that discriminate wavelengths over a wider range of wavelengths, making them applicable to future large-capacity optical communications using wavelength multiplexing.

本発明の目的はこれらの問題点を解決して、複数の異な
る波長を有する光を弁別して受光する事のできる、波長
多重弁別型半導体受光素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a wavelength multiplexing discrimination type semiconductor light-receiving element that can discriminate and receive light having a plurality of different wavelengths.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の波長多重弁別型半導体受光素子は、半導体基板
上に形成した溝中に、第1の半導体層、光吸収層でかつ
光導波層である半導体層群を有する超格子構造、第2の
半導体層を積層して導波路を形成し、前記半導体層群は
第1.第2の半導体層よりも屈折率が高く吸収端エネル
ギーが小さく、前記溝の深さが導波路方向に異なってい
る構成になっている。
The wavelength multiplexing discrimination type semiconductor light-receiving device of the present invention has a superlattice structure including a first semiconductor layer, a semiconductor layer group which is a light absorption layer and an optical waveguide layer, and a second semiconductor layer in a groove formed on a semiconductor substrate. A waveguide is formed by stacking semiconductor layers, and the semiconductor layer group is a first. The refractive index is higher than that of the second semiconductor layer, the absorption edge energy is lower, and the depths of the grooves are different in the waveguide direction.

〔作用〕[Effect]

本発明は上述の手段をとることにより、従来技術の問題
点を解決した。
The present invention has solved the problems of the prior art by taking the above-mentioned measures.

−mに超格子構造では、吸収端波長は通常のバルク材料
とは異なってくる。つまり超格子構造による正孔と電子
の量子準位化によってその吸収端エネルギーはバルク材
料の吸収端よりも大きくなる。それを(1)式に示す。
In the -m superlattice structure, the absorption edge wavelength will be different from that of normal bulk materials. In other words, the absorption edge energy becomes larger than the absorption edge of the bulk material due to the quantum leveling of holes and electrons due to the superlattice structure. This is shown in equation (1).

ここで2は井戸層厚、Elはバルクとしてのエネルギー
ギャップ、mnは電子の有効質量、mpは正孔の有効質
量を示す。ここで、同一導波路内において井戸層厚を部
分的に変える事が可能であれば、(1)式に示される様
に従来のスターク効果を利用した場合よりも、はるかに
広い波長帯での波長弁別性が可能になる。
Here, 2 is the well layer thickness, El is the bulk energy gap, mn is the effective mass of electrons, and mp is the effective mass of holes. Here, if it is possible to partially change the well layer thickness within the same waveguide, as shown in equation (1), it is possible to achieve a much wider wavelength band than when using the conventional Stark effect. Wavelength discrimination becomes possible.

本発明では溝中に超格子構造を形成する場合、溝深さに
よって成長速度が変化する事に着目している。一般的に
は溝深さが深い程、成長速度は増加する傾向にある。こ
の実験事実を背景として超格子構造を有する層構造を成
長させると溝深さに対応して井戸層厚の違う超格子nr
J造が実現される。
The present invention focuses on the fact that when a superlattice structure is formed in a groove, the growth rate changes depending on the groove depth. Generally, the growth rate tends to increase as the groove depth increases. Based on this experimental fact, when a layered structure with a superlattice structure is grown, the superlattice nr has a different well layer thickness depending on the groove depth.
J-construction is realized.

第2図<A)、(B)、(C)は上記内容を図示してい
る。基板21上に溝深さが部分的に違う溝22を形成し
、この溝中に超格子構造23を成長させる事によって、
第2図(B)、(C)に示すように溝深さ対応した井戸
層厚を有する導波路構造が得られる。ここで各々の導波
領域24゜25の吸収端波長は(1)式に従い決定され
、溝深さが深いほうがより長い波長の吸収端を有する。
FIGS. 2A, 2B, and 2C illustrate the above contents. By forming grooves 22 with partially different groove depths on the substrate 21 and growing the superlattice structure 23 in these grooves,
As shown in FIGS. 2(B) and 2(C), a waveguide structure having a well layer thickness corresponding to the groove depth is obtained. Here, the absorption edge wavelength of each waveguide region 24.degree. 25 is determined according to equation (1), and the deeper the groove depth, the longer the wavelength of the absorption edge.

この様な層構造に、端面から2波長を含む光を入射・導
波させると各々の導波領域で弁別・吸収され、光電流信
号として得られる。
When light including two wavelengths is incident and guided from the end face into such a layered structure, it is discriminated and absorbed in each waveguide region, and is obtained as a photocurrent signal.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を用いて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に本発明の一実施例により形成された波長多重弁
別型半導体受光素子の構造図を示す。ここでは2波長を
弁別する素子例であり、材料としては長波長光通信用帯
(1〜1.6μm帯)としてInP/InGaAs系を
用いているが、A、Lsrsson等のA 47 G 
a A s / G a A s等の材料系でも適用さ
れることはいうまでもない。
FIG. 1 shows a structural diagram of a wavelength multiplexing discrimination type semiconductor light receiving element formed according to an embodiment of the present invention. This is an example of an element that discriminates between two wavelengths, and the material used is InP/InGaAs for the long wavelength optical communication band (1 to 1.6 μm band).
Needless to say, this method can also be applied to material systems such as aAs/GaAs.

ここでn型InP基板1上に、溝幅10μm。Here, a groove width of 10 μm is formed on the n-type InP substrate 1.

溝の深さ3μmと6μmからなる溝領域をエツチングで
形成し、この後にハイドライドVPE法により選択的に
溝中にn型InP層2.n型I nGaAs層/n型I
nPMからなる超格子構造3.n型InPJt14を形
成する。ここでZn拡散によってn型InP層4に選択
的にP型頭域10を形成し、このP型領域下の超格子構
造に導波領域構造を得ている。さらにP型コンタクト用
電極5,6及びn型コンタク1〜用電極を設ける事によ
って、超格子構造から成る各々の導波路に電界印加し、
かつ光電流信号が取り出せる様になっている。なお、超
格子構造3の実効的な屈折率はInP層よりも大きく、
かつ吸収端エネルギーは小さいので、光導波路としての
条件は満たしている。
A groove region having a depth of 3 μm and 6 μm is formed by etching, and then an n-type InP layer 2. n-type I nGaAs layer/n-type I
Superlattice structure made of nPM3. An n-type InPJt 14 is formed. Here, a P-type head region 10 is selectively formed in the n-type InP layer 4 by Zn diffusion, and a waveguide region structure is obtained in the superlattice structure under this P-type region. Further, by providing electrodes 5 and 6 for P-type contacts and electrodes for N-type contacts 1 to 1, an electric field is applied to each waveguide having a superlattice structure.
Moreover, the photocurrent signal can be extracted. Note that the effective refractive index of the superlattice structure 3 is larger than that of the InP layer,
Moreover, since the absorption edge energy is small, the conditions for an optical waveguide are satisfied.

この場合、溝深さ6μm溝内での成長速度は湧深さ3μ
mに比較して約1.5倍程度大きい事が実験的に判って
おり、本実施例では、深さ6.um厚での井戸層厚は7
5人、深さ3μm溝での井戸層厚は50人程度であった
。それ故、(1)式より推定される吸収端波長の長波長
側での限界は溝深さ6μmの導波領域で1.38μm、
溝深さ3μm導波頭域で1.11μmである。これは例
えば1.11μm、1.38μmの2波長を含んだ光]
2を浅い溝の方の導波領域側から端面に入射・導波させ
る事により、1.11μm光を浅い溝側の導波領域で1
.38μm光を深い溝側の導波領域で弁別・吸収し電極
5.6から光電流信号として取り出す事が可能になる。
In this case, the growth rate in a trench with a trench depth of 6 μm is 3 μm deep.
It has been experimentally found that the depth is approximately 1.5 times larger than the depth 6.m. The well layer thickness at um thickness is 7
There were 5 people, and the thickness of the well layer in the 3 μm deep groove was about 50 people. Therefore, the limit on the long wavelength side of the absorption edge wavelength estimated from equation (1) is 1.38 μm in a waveguide region with a groove depth of 6 μm.
The groove depth is 1.11 μm in the waveguide head area of 3 μm. For example, this is light containing two wavelengths of 1.11 μm and 1.38 μm]
By inputting and guiding the 1.11 μm light from the waveguide area side of the shallow groove to the end face, the 1.11 μm light is transmitted to the waveguide area of the shallow groove side.
.. It becomes possible to discriminate and absorb 38 μm light in the waveguide region on the deep groove side and extract it from the electrode 5.6 as a photocurrent signal.

この場合、波長弁別が可能な波長範囲は2700人にわ
たり、従来のスターク効果のみを利用した素子よりも広
範囲な波長を弁別する事が可能である。
In this case, the wavelength range in which wavelength discrimination is possible extends to 2,700 people, and it is possible to discriminate a wider range of wavelengths than a conventional element that uses only the Stark effect.

なお、本実施例では2波長光を弁別する場合について延
べたがN波長光を弁別するにはN個の溝深さが違う領域
からなる溝中に本製造方法に従って層構造を形成する事
によって可能となる。
In this embodiment, the case of discriminating light with two wavelengths has been described, but in order to discriminate light with N wavelengths, a layered structure is formed in a groove consisting of N regions with different groove depths according to the present manufacturing method. It becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明により得られた波長多重弁別
型半導体受光素子は、溝中での成長速度が溝深さ依存性
を有する事を利用して井戸層厚の違う超格子構造を導波
路構造で作成することによって、異なった波長の光を弁
別・吸収し、光電流信号として取り出す事が可能になる
。これにより、波長多重光通信において、容易にワンチ
ップ上で波長を弁別して受光する事が可能になる。
As explained above, the wavelength multiplexing discrimination type semiconductor light-receiving device obtained according to the present invention utilizes the fact that the growth rate in the trench is dependent on the trench depth to create a superlattice structure with different well layer thicknesses. By creating a wave path structure, it becomes possible to discriminate and absorb light of different wavelengths and extract it as a photocurrent signal. This makes it possible to easily discriminate wavelengths and receive light on one chip in wavelength multiplexed optical communication.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である2波長の光を弁別する
ことのできる波長多重弁別型半導体受光素子を示してい
る図、第2図(A)、(B)。 (C)は本発明の特徴である異なった溝深さの溝中に超
格子構造を成長させる製造方法についての図、第3図は
従来技術による波長多重弁別型半導体受光素子の図であ
る。 1−−− n型InP基板、2−n型TnPl、3・・
・n型InGaAs層/n型InP層超格子構造、4・
・・n型InP層、5・・・P型電極、6・・・P型電
極、7・・・n型電極、10・・・Zn拡散領域(P型
頭域)、12:2波長を含む入射光、2】・・・半導体
基板、22・・・溝、23・・・半導体超格子構造、2
4・・・導波領域、25・・・導波領域、31・・・n
型GaAs基板、32−n型AJ?GaAs層、33・
 n型GaAs層/n型Al2GaAs層超格子構刀五
 、 34−P型AffGaAs層、 5・・・P型コン タクト用電極、 6・・・P型コンタク ト用電極、 37・・・n型コンタク ト用電極、 38・・・導波領域、 9・・・導波領域。
FIG. 1 is a diagram showing a wavelength multiplexing discrimination type semiconductor light-receiving element that can discriminate between two wavelengths of light, which is an embodiment of the present invention, and FIGS. 2(A) and 2(B). (C) is a diagram illustrating a manufacturing method of growing a superlattice structure in grooves of different groove depths, which is a feature of the present invention, and FIG. 3 is a diagram of a wavelength multiplexing discrimination type semiconductor light-receiving device according to the prior art. 1---- n-type InP substrate, 2-n-type TnPl, 3...
・N-type InGaAs layer/n-type InP layer superlattice structure, 4・
...n-type InP layer, 5...P-type electrode, 6...P-type electrode, 7...n-type electrode, 10...Zn diffusion region (P-type head region), 12:2 wavelength Incident light including, 2]...Semiconductor substrate, 22...Groove, 23...Semiconductor superlattice structure, 2
4... Waveguide region, 25... Waveguide region, 31...n
Type GaAs substrate, 32-n type AJ? GaAs layer, 33.
N-type GaAs layer/n-type Al2GaAs layer superlattice structure 5, 34-P-type AffGaAs layer, 5... Electrode for P-type contact, 6... Electrode for P-type contact, 37... For n-type contact Electrode, 38... Waveguide region, 9... Waveguide region.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成した溝中に、第1の半導体層、禁制
帯幅が互いに異なる2種類の半導体層を交互に積層した
半導体層群から成る超格子構造、第2の半導体層を積層
して導波路を構成し、前記半導体層群は前記第1、第2
の半導体層よりも屈折率が高く吸収端エネルギーが小さ
く、前記溝の深さは導波路方向で異なっている事を特徴
としている波長多重弁別型半導体受光素子。
A first semiconductor layer, a superlattice structure consisting of a group of semiconductor layers in which two types of semiconductor layers with different forbidden band widths are alternately stacked, and a second semiconductor layer are stacked in a trench formed on a semiconductor substrate. The semiconductor layer group constitutes a waveguide, and the semiconductor layer group includes the first and second semiconductor layers.
1. A wavelength multiplexing discrimination type semiconductor light-receiving element having a higher refractive index and lower absorption edge energy than the semiconductor layer of the present invention, and wherein the depth of the groove is different in the waveguide direction.
JP63184161A 1988-07-22 1988-07-22 Wavelength multiple discrimination semiconductor photodetector Pending JPH0233982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184161A JPH0233982A (en) 1988-07-22 1988-07-22 Wavelength multiple discrimination semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184161A JPH0233982A (en) 1988-07-22 1988-07-22 Wavelength multiple discrimination semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH0233982A true JPH0233982A (en) 1990-02-05

Family

ID=16148434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184161A Pending JPH0233982A (en) 1988-07-22 1988-07-22 Wavelength multiple discrimination semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0233982A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138416A (en) * 1991-07-12 1992-08-11 Xerox Corporation Multi-color photosensitive element with heterojunctions
WO1997008757A1 (en) * 1995-08-29 1997-03-06 The Furukawa Electric Co., Ltd. Waveguide type photodetector
US6020620A (en) * 1996-06-28 2000-02-01 Nec Corporation Semiconductor light-receiving device with inclined multilayer structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138416A (en) * 1991-07-12 1992-08-11 Xerox Corporation Multi-color photosensitive element with heterojunctions
WO1997008757A1 (en) * 1995-08-29 1997-03-06 The Furukawa Electric Co., Ltd. Waveguide type photodetector
US5926585A (en) * 1995-08-29 1999-07-20 The Furukawa Electric Co., Ltd. Waveguide type light receiving element
US6020620A (en) * 1996-06-28 2000-02-01 Nec Corporation Semiconductor light-receiving device with inclined multilayer structure
US6232141B1 (en) 1996-06-28 2001-05-15 Nec Corporation Semiconductor light-receiving device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US10727647B2 (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
US5121182A (en) Integrated optical semiconductor device
JP2003533896A (en) Integrated photon detector with multiple asymmetric waveguides
JPH0636457B2 (en) Method for manufacturing monolithic integrated optical device incorporating semiconductor laser and device obtained by this method
EP2005229A1 (en) Photodetector
US5392306A (en) Multiple quantum well structure and semiconductor device using the same
JPS63177114A (en) Optical switch
US5324959A (en) Semiconductor optical device having a heterointerface therein
JPH02103021A (en) Quantum well optical device
JP2740169B2 (en) Integrated semiconductor device
EP0249645B1 (en) Optoelectronic voltage-controlled modulator
Thornton et al. Monolithic integration of a transparent dielectric waveguide into an active laser cavity by impurity‐induced disordering
JP2002151728A (en) Semiconductor photodetector
JPH0233982A (en) Wavelength multiple discrimination semiconductor photodetector
JPH05160430A (en) Photosensor having means for discharging carries and optical communication system using same
JPS6285477A (en) Photosemiconductor device
JP2001168371A (en) Loading type semiconductor photodetecting element and its manufacturing method
JP4158197B2 (en) Light receiving element
JPH01181480A (en) Manufacture of wavelength multiplex discrimination type semiconductor photodetector
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JP3708758B2 (en) Semiconductor photo detector
JPH09223805A (en) Semiconductor waveguide type light receiver
JP2850985B2 (en) Semiconductor waveguide type photo detector
JP3030394B2 (en) Semiconductor light receiving element
JP3425571B2 (en) Waveguide type light receiving element