JPH01237372A - Supercharging compressor - Google Patents

Supercharging compressor

Info

Publication number
JPH01237372A
JPH01237372A JP63063372A JP6337288A JPH01237372A JP H01237372 A JPH01237372 A JP H01237372A JP 63063372 A JP63063372 A JP 63063372A JP 6337288 A JP6337288 A JP 6337288A JP H01237372 A JPH01237372 A JP H01237372A
Authority
JP
Japan
Prior art keywords
compressor
suction pipe
suction
length
inlet tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63063372A
Other languages
Japanese (ja)
Other versions
JP2619467B2 (en
Inventor
Tsuneo Suga
菅 恒夫
Yozo Nakamura
中村 庸藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63063372A priority Critical patent/JP2619467B2/en
Publication of JPH01237372A publication Critical patent/JPH01237372A/en
Application granted granted Critical
Publication of JP2619467B2 publication Critical patent/JP2619467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the volume efficiency in the whole operation range by operating an inlet tube length selecting device based on the rotating speed of a compressor, and setting the inlet tube length so that the primary mode column frequency in the inlet tube is tuned with the rotating speed of the compressor. CONSTITUTION:A length selecting passage 22 to which an inlet tube length changing device 14 is spirally wound is provided with communicating port. A communicating port selecting plate 23 is provided with a communicating port 24 so that a plurality of ports are not communicated each other simultaneously on one side of a divisional plate 26. The communicating port selecting plate 23 is rotated by a motor 25 through a shaft 28. Then, the motor 25 is provided with a rotating angle position detector to correspond the rotating angle position to the inlet tube length in 1:1. Based on the rotating speed of the compressor, an equivalent inlet tube length is determined so as to tune the operational frequency of the compressor with the primary mode column frequency. Thereafter, the nearest inlet tube length, namely the rotating angle position of the motor 25 is selected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷蔵庫、空調機等に使用されているロータリ
圧縮機に係り、特に圧縮機の全運転域での性能を向上す
るのに好適な慣性過給機構に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a rotary compressor used in refrigerators, air conditioners, etc., and is particularly suitable for improving the performance of the compressor over the entire operating range. Regarding an inertial supercharging mechanism.

〔従来の技術〕[Conventional technology]

従来のこの種の装置は、実開昭57−40679号公報
に記載のように、吸入管の長さを変えるために圧縮機の
吸入管と蒸発器の出口側の管の両管に対し摺動自在に嵌
合したU字形吸入管を駆動装置で動かす方式となってい
た。
A conventional device of this kind, as described in Japanese Utility Model Application Publication No. 57-40679, has a sliding mechanism for both the suction pipe of the compressor and the pipe on the outlet side of the evaporator in order to change the length of the suction pipe. The U-shaped suction pipes were fitted together in a freely movable manner and were moved by a drive device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、U字形吸入管を出し入れする構造であ
るため、吸入管長さを短かくすることはできず、高速側
の慣性過給機能は望めない、気体の洩れを防止するため
の精密なシールが必要であり、吸入管等の加工精度が要
求されるという問題があった。
The above conventional technology has a structure in which the U-shaped suction pipe is taken in and out, so the length of the suction pipe cannot be shortened, and an inertia supercharging function on the high-speed side cannot be expected. There were problems in that a seal was required and precision in machining the suction pipe, etc. was required.

圧縮機をインバータを用いて回転数制御した場合、高速
運転域では、第5図に示したように吸入側の圧力損失な
どのため体積効率は低下する。そのため、必要な冷媒循
環量を得るためには、圧縮機の理論容量を大きくするか
、圧縮機をより高速化させる必要がある。理論容積を大
きくすると低速側ではより低速で運転することになり、
洩れのため体積効率が低下する問題が生じてくる。又、
圧縮機をより高速化して運転すると軸受の寿命が短かく
なり、軸受の信頼性上問題となる。従来の技術はこれら
の点について配慮がなされておらず、シールの問題を解
決して圧縮機の全運転域で体積効率を向上すれば、圧縮
機を小形化でき、かつ上記問題点を解決できる。
When the rotation speed of the compressor is controlled using an inverter, the volumetric efficiency decreases in the high-speed operating range due to pressure loss on the suction side, etc., as shown in FIG. Therefore, in order to obtain the necessary amount of refrigerant circulation, it is necessary to increase the theoretical capacity of the compressor or to increase the speed of the compressor. If you increase the theoretical volume, you will be able to operate at a lower speed on the low speed side,
A problem arises in which volumetric efficiency decreases due to leakage. or,
Operating the compressor at higher speeds shortens the life of the bearings, which poses problems in terms of bearing reliability. Conventional technology does not take these points into consideration, and if the sealing problem is solved and the volumetric efficiency is improved in the entire operating range of the compressor, the compressor can be made smaller and the above problems can be solved. .

本発明の目的は、圧縮機の全運転域において、体積効率
を向上することにある。
An object of the present invention is to improve the volumetric efficiency in the entire operating range of the compressor.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、圧縮機構部と、その
圧縮機構部の吸入側に設けられた緩衝空間容器と吸入管
を備えた、過給式圧縮機において、圧縮機の充填効率が
1を超える範囲の吸入管の流動抵抗係数μと慣性過給特
性数zoを満たすように吸入管の断面積を定め、吸入管
内の1次モードの気柱振動数と圧縮機の回転速度が同調
するように吸入管の長さの可変装置を設けることにより
達成される。
To achieve the above object, the present invention provides a supercharging compressor that includes a compression mechanism, a buffer space container provided on the suction side of the compression mechanism, and a suction pipe, in which the filling efficiency of the compressor is 1. The cross-sectional area of the suction pipe is determined so as to satisfy the flow resistance coefficient μ of the suction pipe and the inertial supercharging characteristic number zo in the range exceeding This is achieved by providing a device for varying the length of the suction tube.

〔作用〕[Effect]

圧縮機の回転速度を検知して、吸入管の1次モードの気
柱振動数と前記圧縮機の回転速度が同調するように吸入
管長さの可変手段を制御する。この時、圧縮機の充填効
率が1を超えるように吸入管の断面積を定めているため
、圧縮機の体積効率を向上できる。
The rotational speed of the compressor is detected, and the means for varying the length of the suction pipe is controlled so that the air column frequency of the first mode of the suction pipe and the rotational speed of the compressor are synchronized. At this time, since the cross-sectional area of the suction pipe is determined so that the filling efficiency of the compressor exceeds 1, the volumetric efficiency of the compressor can be improved.

〔実施例〕〔Example〕

ロータリ圧縮機の吸入側は、第4図に示したように圧縮
機に液冷媒が吸入されるのを防止するためのアキュムレ
ータ10.アキュムレータ出口から圧縮機の吸入口まで
をつなぐ吸入パイプ12、圧縮機構部3などからなる。
On the suction side of the rotary compressor, as shown in FIG. 4, an accumulator 10 is provided to prevent liquid refrigerant from being sucked into the compressor. It consists of a suction pipe 12 that connects the accumulator outlet to the compressor suction port, a compression mechanism section 3, and the like.

ケーシング1内に電動機部2.シリンダ5.上部軸受6
.下部軸受7゜ローラ8.吐出口9がそれぞれ図のよう
に配置されている。第6図に示すインバータ駆動袋[1
5により圧縮機が駆動され、シャフト5が回転すると吸
入行程での吸入室の容積は第7図で示したように変化す
る。吸入行程に入ると吸入室内の圧力が低下するため吸
入パイプ内の冷媒ガスは圧縮機構部へ向って加速されは
じめる。ガスの流れが生じるとパイプ内面での摩擦が生
じる。加速された冷媒ガスは慣性力を与えられ、圧縮機
構部に一度吸入されたガスはガスばねのように作用する
。ことなる。ここで、X:吸入パイプ内気柱の移動距離
、r:管摩擦や吸入パイプの絞りなどを含んだ抵抗係数
、L■ :吸入パイプの有効長さ、ρ0 :気体の密度
、Po :アキュムレータ内圧力、p (O)  ニジ
リンダ内圧力である。これを無次元化すると となる。又、 である。ここで、Asは管路の断面積、Vhは行ωはシ
ャフトの回転角速度、■(θ)は回転角度θでの吸入側
のシリンダ容積、a(+は音速である。
Inside the casing 1 is a motor section 2. Cylinder 5. Upper bearing 6
.. Lower bearing 7° roller 8. The discharge ports 9 are arranged as shown in the figure. Inverter driven bag [1] shown in Figure 6
5 drives the compressor, and when the shaft 5 rotates, the volume of the suction chamber changes as shown in FIG. 7 during the suction stroke. When entering the suction stroke, the pressure in the suction chamber decreases, so the refrigerant gas in the suction pipe begins to accelerate toward the compression mechanism. When gas flows, friction occurs on the inner surface of the pipe. The accelerated refrigerant gas is given an inertial force, and the gas once sucked into the compression mechanism acts like a gas spring. Different. where, , p (O) is the pressure inside the cylinder. If we make this dimensionless, we get Also, it is. Here, As is the cross-sectional area of the pipe, Vh is the rotational angular velocity of the shaft, (2) (θ) is the cylinder volume on the suction side at the rotational angle θ, and a(+ is the speed of sound).

慣性過給効果は、吸入行程が終了するときに加速された
ガスが慣性力によりガスばね作用、摩擦力に打ち勝って
余分に押し込まれる現象で、圧縮機の充填効率向上とな
って現われる。しかし、その効果を最大にするためには
、吸入行程が終了する時に閉じ込み寸前の上式で示すq
の値が大きくなければならない。上式を解いた計算結果
を第8図に示す。流動抵抗係数μが大きくなると慣性力
そのものが小さくなるため、慣性過給の効果はなくなる
。従って、流量抵抗係数はできるだけ小さくしなければ
ならず、効果が見込めるのは、充填効率qが1を越える
μ=0.5未満である。例えばμ=0.5では、慣性過
給特性数Zoを大きくして充填効率qは1を越えない。
The inertial supercharging effect is a phenomenon in which the accelerated gas at the end of the suction stroke is pushed in by inertia force that overcomes the gas spring action and frictional force, resulting in an improvement in the filling efficiency of the compressor. However, in order to maximize its effect, it is necessary to
must be large. Figure 8 shows the calculation results obtained by solving the above equation. As the flow resistance coefficient μ increases, the inertial force itself decreases, so the effect of inertial supercharging disappears. Therefore, the flow resistance coefficient must be made as small as possible, and the effect can be expected when the filling efficiency q exceeds 1 and μ is less than 0.5. For example, when μ=0.5, the charging efficiency q does not exceed 1 by increasing the inertial supercharging characteristic number Zo.

又、慣性過給効果がある慣性過給特性数Zoの範囲は約
0.6 以上とすれば良い。
Further, the range of the inertial supercharging characteristic number Zo, which has an inertial supercharging effect, may be set to about 0.6 or more.

であり、 であるから、吸入パイプ断面積Asを、管の出入口等の
抵抗係数をλ、管摩擦係数をνとしてとなる。従って、
管断面積Asを小さくするに従い、μは単調増加となり
、μ=0.5 とする管断面Aszを、ただ1つ決定で
きる。又、7. o = 0 、6とする管断面積AS
2は、 となる。以上より吸気管断面積は、 A s 1< A s < A S 2の範囲に選定す
る。
Therefore, the cross-sectional area of the suction pipe is As, the resistance coefficient at the entrance and exit of the pipe is λ, and the coefficient of friction of the pipe is ν. Therefore,
As the tube cross-sectional area As becomes smaller, μ increases monotonically, and only one tube cross-section Asz can be determined with μ=0.5. Also, 7. Pipe cross-sectional area AS with o = 0, 6
2 becomes . From the above, the cross-sectional area of the intake pipe is selected to be in the range As1<As<As2.

しかし、慣性過給効果を得るためには、これだけでは不
十分であり、第9図に示した実験結果で分るように、慣
性過給特性数Zoに対し、体積効率η7がピークを示す
条件がある。すなわち、十分な慣性過給効果を得るため
には、吸入行程が周期的に変動するため生じる管内の圧
力変動を大きくして脈動効果を併用し、吸入行程終了時
の閉じ込み圧力を高くしてやる必要がある。吸気管系の
m次の固有振動数f1は、行程容積を加味した等価な管
路長をLv(Lv=Ls+Vh−As)、音速をaOと
して Lv となる。圧縮機の運転周波数をnとしてその比を振動数
比にと定義し、m=1の1次モードについて第9図の実
験データを振動数比に対して整理すると、第10図に示
したように振動数比が1近傍で効果があることが分る。
However, this alone is not sufficient to obtain the inertial supercharging effect, and as can be seen from the experimental results shown in Figure 9, the conditions under which the volumetric efficiency η7 peaks with respect to the inertial supercharging characteristic number Zo are There is. In other words, in order to obtain a sufficient inertial supercharging effect, it is necessary to increase the pressure fluctuations in the pipe that occur due to periodic fluctuations in the suction stroke, and to use this together with the pulsation effect to increase the confining pressure at the end of the suction stroke. There is. The m-th natural frequency f1 of the intake pipe system is Lv, where Lv (Lv=Ls+Vh-As) is the equivalent pipe length that takes into account the stroke volume, and aO is the speed of sound. Letting the operating frequency of the compressor be n, the ratio is defined as the frequency ratio, and the experimental data in Figure 9 for the first mode of m = 1 is organized with respect to the frequency ratio, as shown in Figure 10. It can be seen that this is effective when the frequency ratio is near 1.

このように、慣性過給効果を得るためには、(1)流動
抵抗係数μを0.5未満、 (2)慣性過給特性数Zoを0.6以上、(3)管路系
の共鳴周波数の1次モードと圧縮機の運転周波数の比を
1近傍とすることが必要である。
In this way, in order to obtain the inertial supercharging effect, (1) the flow resistance coefficient μ should be less than 0.5, (2) the inertial supercharging characteristic number Zo should be 0.6 or more, and (3) the resonance of the pipe system should be adjusted. It is necessary to keep the ratio of the primary mode of frequency and the operating frequency of the compressor close to 1.

以下、本発明の実施例を第1〜第3図により説明する。Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

本発明は、ローリングピストン形ロータリ圧縮機に適用
でき、冷蔵庫に用いられる行程容積3d/revぐらい
の小形の圧縮機から空調機に用いられる5 0 cxl
 / revぐらいまでの中形圧縮機にまで通常適用す
る。又、ガスは普通冷蔵庫では冷媒R−12が用いられ
、空調機では冷媒R−22が用いられる。
The present invention is applicable to rolling piston type rotary compressors, ranging from small compressors with a stroke volume of about 3 d/rev used in refrigerators to 50 cxl used in air conditioners.
Normally applied to medium-sized compressors up to about /rev. Further, as for gas, refrigerant R-12 is usually used in refrigerators, and refrigerant R-22 is used in air conditioners.

本発明を実施する上での構成要件は、前記したように、
充填効率が1を越えるように吸入管断面積を決定してお
き、圧縮機の回転速度と音速を検知してモード1次の共
鳴周波数を同調するように吸入管長さを次々と切換える
ことであり、高速域においてもその効果を失なわないよ
うに、吸入管長さを短くできる吸入管長さ可変装置構造
とすることである。
As mentioned above, the structural requirements for carrying out the present invention are as follows.
The cross-sectional area of the suction pipe is determined so that the filling efficiency exceeds 1, and the length of the suction pipe is switched one after another to tune the resonance frequency of the first mode by detecting the rotational speed and sound velocity of the compressor. The purpose of the present invention is to provide a suction pipe length variable device structure that can shorten the suction pipe length so as not to lose its effect even in a high speed range.

第1図で示した実施例では、吸入管長さ可変装置14を
らせん状に巻いた長さ切換え用通路22の各1巻間の間
に連通孔を設け、連通孔切換板23に同時に仕切板26
の一方側では2つ以上の穴が連通しないように連通孔2
4を配置させる。
In the embodiment shown in FIG. 1, a communication hole is provided between each turn of the length switching passage 22 formed by spirally winding the suction pipe length variable device 14, and a partition plate is provided at the same time as the communication hole switching plate 23. 26
On one side of the connecting hole 2, make sure that two or more holes do not communicate with each other.
Place 4.

この連通孔切換え板23はモータ25を回転させること
によって軸28のまわりに回転する。又、仕切板26に
は、連通孔24及び吸入口連通孔27が連通しないモー
タ25の回転位置で軸方向に連通するようにしている。
This communication hole switching plate 23 is rotated around a shaft 28 by rotating the motor 25. Further, the partition plate 26 is configured to communicate with the communication hole 24 and the suction port communication hole 27 in the axial direction at a rotational position of the motor 25 where the communication hole 24 and the suction port communication hole 27 do not communicate with each other.

モータ25には、図示していないが、回転角度位置検出
器を設けており、モータ25の回転角度位置と吸入管長
さが一対一に対応するようにしている。前記したように
、音速が検知出来れば最も良いが、冷媒を用いた場合、
圧縮機の回転速度によって吸入側の条件は大きくは変ら
ず音速も大きく変動しないので、データとしてコンピュ
ータに記憶させておいても良い。
Although not shown, the motor 25 is provided with a rotational angular position detector, so that the rotational angular position of the motor 25 and the length of the suction pipe correspond one-to-one. As mentioned above, it would be best if the speed of sound could be detected, but if a refrigerant is used,
Since the conditions on the suction side do not change greatly depending on the rotational speed of the compressor, and the speed of sound does not change greatly, it may be stored in the computer as data.

圧縮機を運転した時、圧縮機の回転速度検出回路からの
信号もしくは速度指令信号から、圧縮機の運転周波数と
1次モードの気柱振動数が同調する等価な吸入管長さを
前記の式によって計算する。
When the compressor is operated, the equivalent suction pipe length at which the operating frequency of the compressor and the air column frequency of the first mode are synchronized can be calculated from the signal from the rotation speed detection circuit of the compressor or the speed command signal using the above formula. calculate.

この計算結果にもとづいて、最も近い吸入管長さ、すな
わちモータ25の回転角度位置を選択し、モータ駆動装
置19に指令を出し、回転角度位置検出器からの信号と
照合させて修正を行うようになっている。
Based on this calculation result, the closest suction pipe length, that is, the rotational angular position of the motor 25 is selected, and a command is issued to the motor drive device 19 to make corrections by comparing it with the signal from the rotational angular position detector. It has become.

第2図、第3図で示した実施例では、長さ切換え通路2
2を同じ円状の壁の間に−ケ所のみ外側の通路と連通ず
るように仕切りの壁を設けて単一の連続した通路状に形
成し、その中心部に吸入口連通孔27を設けている。吸
入口連通口27と反対側には仕切板26を取りつけてお
り、その外側にはモータ25によって回転する連通孔切
換え板23を設置する。連通孔切換板23には、同心円
状の通路に対応する各位置に例えば第3図に示したよう
に中心から外側へ一列に連通孔24をあけてあり、仕切
板26には、吸入口連通孔27とただ1つの連通孔での
み連通する配置で孔を開口しており、吸入管長さとモー
タの回転角度位置が一対一に対応するようにしている。
In the embodiment shown in FIGS. 2 and 3, the length switching passage 2
A partition wall is provided between the same circular walls to communicate with the outer passage only at some places to form a single continuous passage, and an inlet communication hole 27 is provided in the center of the partition wall. There is. A partition plate 26 is attached to the side opposite to the suction port communication port 27, and a communication hole switching plate 23 rotated by a motor 25 is installed outside of the partition plate 26. The communication hole switching plate 23 has communication holes 24 formed in a row from the center to the outside as shown in FIG. The holes are opened in such a way that they communicate with the hole 27 through only one communication hole, so that the length of the suction pipe and the rotational angular position of the motor correspond one-to-one.

こうした構造にすることにより、第1図の実施例と同様
に吸入管長さを可変にすることが出来るし、モータ25
を収納した部分の空間をアキュムレータとして用いるこ
とができる。
With this structure, the length of the suction pipe can be made variable as in the embodiment shown in FIG.
The space where the is stored can be used as an accumulator.

以上のような構成にすることにより、吸入管の長さが短
かいところから長い範囲まで設定できるし、安価に冷媒
の漏れを防ILできる。この結果、圧縮機の全運転域に
おいて、慣性過給を行うことができるので、全運転域で
圧縮機の体積効率を向上することができる。
With the above configuration, the length of the suction pipe can be set from short to long, and refrigerant leakage can be prevented at low cost. As a result, inertial supercharging can be performed in the entire operating range of the compressor, so that the volumetric efficiency of the compressor can be improved in the entire operating range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧縮機の体積効率を全運転域、特に高
速運転域では著しく向上できる。その付随効果として圧
縮機を小形に出来、慣性過給を適用しない場合より圧縮
機の最高回転速度を低くできるため、圧縮機の信頼性向
上につながる他、全断面熱効率のより良い領域で運転す
るので圧縮機入力を小さくできる。
According to the present invention, the volumetric efficiency of the compressor can be significantly improved over the entire operating range, particularly in the high-speed operating range. As a side effect, the compressor can be made smaller and the maximum rotational speed of the compressor can be lower than when inertial supercharging is not applied, which not only improves the reliability of the compressor but also allows it to operate in a region with better overall cross-sectional thermal efficiency. Therefore, compressor input can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の過給機構の要部断面図、第2
図、第3図は他の実施例の過給機構の要部断面図と平面
図、第4図は、圧縮機の縦断面図、第5図は、圧縮機の
回転速度に対する効率の変化を示す図、第6図は、サイ
クルの構成を示す図、第7図は、吸入室の容積変化を示
す図、第8図は、慣性過給特性数と充填効率の関係を示
す図、第9図は、慣性過給特性数と体積効率との関係を
示す図、第10図は、振動数比と体積効率との関係を示
す図である。 1・・・ケーシング、2・・電動機部、3・・・圧縮機
構部、4・・・シリンダ、5・・・トヤフト、6・・・
上部軸受、7・・・下部軸受、8・・ローラ、9・・・
吐出室、10・・・アキュムレータ、11・・・吐出パ
イプ、12・・・吸入パイプ、13・・・ロータリ圧縮
機、14・・・吸入管長さ可変装置、15・・・インバ
ータ駆動装置、16・・・モータ駆動装置、17・・回
転速度検出器、18・・・四方弁、19・・・凝縮器、
2o・・・蒸発器、21・・・膨張弁、22・・・長さ
切換え用通路、23・・・連通孔切換板、24・・・連
通孔、25・・・モータ、26・・・仕切板、ゝ・、− 第 l  因 第 2  口 ];す・・ 第 3 回 璃 4  記 6  −辷、彦f中由后巳 ?°ア健±峡 グA 9△駐ネ易X″IIa タキQ1ギ差
Fig. 1 is a sectional view of main parts of a supercharging mechanism according to an embodiment of the present invention;
Figure 3 is a cross-sectional view and a plan view of main parts of a supercharging mechanism of another embodiment, Figure 4 is a longitudinal cross-sectional view of the compressor, and Figure 5 shows changes in efficiency with respect to rotational speed of the compressor. 6 is a diagram showing the structure of the cycle, FIG. 7 is a diagram showing the volume change of the suction chamber, FIG. 8 is a diagram showing the relationship between the inertial supercharging characteristic number and charging efficiency, and FIG. The figure is a diagram showing the relationship between the inertial supercharging characteristic number and the volumetric efficiency, and FIG. 10 is a diagram showing the relationship between the frequency ratio and the volumetric efficiency. DESCRIPTION OF SYMBOLS 1...Casing, 2...Electric motor part, 3...Compression mechanism part, 4...Cylinder, 5...Toya shaft, 6...
Upper bearing, 7... Lower bearing, 8... Roller, 9...
Discharge chamber, 10... Accumulator, 11... Discharge pipe, 12... Suction pipe, 13... Rotary compressor, 14... Suction pipe length variable device, 15... Inverter drive device, 16 ... Motor drive device, 17... Rotation speed detector, 18... Four-way valve, 19... Condenser,
2o...Evaporator, 21...Expansion valve, 22...Length switching passage, 23...Communication hole switching plate, 24...Communication hole, 25...Motor, 26... Partition plate, ゝ・, - 1st cause 2nd mouth];su... 3rd ri 4 6 - 辷, Hiko f Naka Yugomi? °A Ken ± Gorge A 9△Ganneyi X''IIa Taki Q1 difference

Claims (3)

【特許請求の範囲】[Claims] 1.圧縮機構部と、圧縮機構部の吸入側に設けられた緩
衝空間容器と吸入管を備えた過給式圧縮機において、圧
縮機の回転速度を検知する手段と、検知した回転速度信
号に基づいて、吸入管長さ切り換え装置により、吸気管
内の1次モードの気柱振動数と圧縮機の回転数が同調す
るように前記吸入管長さを設定することを特徴とする過
給式圧縮機。
1. In a supercharging compressor comprising a compression mechanism section, a buffer space container provided on the suction side of the compression mechanism section, and a suction pipe, a means for detecting the rotation speed of the compressor, and a means for detecting the rotation speed signal based on the detected rotation speed signal. A supercharging compressor, characterized in that the length of the suction pipe is set by a suction pipe length switching device so that the first mode air column vibration frequency in the intake pipe and the rotational speed of the compressor are synchronized.
2.前記吸入管長さ切り換え装置を、らせん状の吸入管
に設けた複数の連通孔と同一のモータ回転角度では、仕
切板の圧縮機吸入口側と吸入管側の間で2つ以上の通路
が形成されないように連通孔を設けた連通孔切換板から
形成したことを特徴とする請求項1記載の過給式圧縮機
2. When the suction pipe length switching device is used at the same motor rotation angle as the plurality of communication holes provided in the spiral suction pipe, two or more passages are formed between the compressor suction port side and the suction pipe side of the partition plate. 2. The supercharging compressor according to claim 1, wherein the supercharging compressor is formed from a communication hole switching plate provided with communication holes to prevent the air from being damaged.
3.前記吸入管長さ切り換え装置を、同心円状の通路の
1ケ所のみで外側の通路と連通するように仕切りの壁を
設けて単一の連続する通路を形成した長さ切換え用通路
、その長さ切換え用通路を覆う複数の連通孔を設けた仕
切板、同一のモータ回転角度では、長さ切換え用通路の
中心に設けた圧縮機吸入口と連通する吸入口連通孔と吸
入管側間で2つ以上の通路が形成されないように連通孔
を設けた連通孔切換板から形成したことを特徴とする請
求項1記載の過給式圧縮機。
3. A length switching passage in which the suction pipe length switching device is provided with a partition wall so as to communicate with an outer passage at only one location of the concentric passage to form a single continuous passage; At the same motor rotation angle, there are two partitions between the suction port communication hole, which communicates with the compressor suction port provided at the center of the length switching passage, and the suction pipe side. The supercharged compressor according to claim 1, characterized in that it is formed from a communication hole switching plate provided with communication holes so that the above passages are not formed.
JP63063372A 1988-03-18 1988-03-18 Supercharged compressor Expired - Lifetime JP2619467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063372A JP2619467B2 (en) 1988-03-18 1988-03-18 Supercharged compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063372A JP2619467B2 (en) 1988-03-18 1988-03-18 Supercharged compressor

Publications (2)

Publication Number Publication Date
JPH01237372A true JPH01237372A (en) 1989-09-21
JP2619467B2 JP2619467B2 (en) 1997-06-11

Family

ID=13227393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063372A Expired - Lifetime JP2619467B2 (en) 1988-03-18 1988-03-18 Supercharged compressor

Country Status (1)

Country Link
JP (1) JP2619467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115269A (en) * 1988-09-16 1990-04-27 Wacker Chemie Gmbh Substance which can be crosslinked to form organopolysiloxane elastomer having flame retardancy and/or electrical leakage resistance and arc resistance, and preparation of said substance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012626U (en) * 1983-07-06 1985-01-28 日産自動車株式会社 Internal combustion engine intake system
JPS62102882U (en) * 1985-12-18 1987-06-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012626U (en) * 1983-07-06 1985-01-28 日産自動車株式会社 Internal combustion engine intake system
JPS62102882U (en) * 1985-12-18 1987-06-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115269A (en) * 1988-09-16 1990-04-27 Wacker Chemie Gmbh Substance which can be crosslinked to form organopolysiloxane elastomer having flame retardancy and/or electrical leakage resistance and arc resistance, and preparation of said substance

Also Published As

Publication number Publication date
JP2619467B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
KR930012234B1 (en) Air-conditioner
JP4639413B2 (en) Scroll compressor and air conditioner
KR900003404B1 (en) Multiple cylinder rotary compressor
KR20050012635A (en) Scroll compressor with volume regulating capability
KR100557057B1 (en) Scroll compressor with volume regulating capability
JP4039024B2 (en) Refrigeration equipment
JP4337820B2 (en) Scroll type fluid machinery
US11841020B2 (en) Variable volume ratio screw compressor
JPH05149634A (en) Air-conditioning device
CN108361195A (en) Variable displacement screw compressor
KR100653815B1 (en) Rotary compressor and air conditioner using the same
US4702088A (en) Compressor for reversible refrigeration cycle
US6003324A (en) Multi-rotor helical screw compressor with unloading
JPH09105386A (en) Compressor and injection cycle
JP2006194184A (en) Compressor
JPH01237372A (en) Supercharging compressor
US11346221B2 (en) Backpressure passage rotary compressor
KR100220663B1 (en) Scroll compressor
JP3619657B2 (en) Multistage compression refrigeration equipment
KR100621027B1 (en) Modulation apparatus for rotary compressor
JPH11241693A (en) Compressor
JPH0474556B2 (en)
CN219101588U (en) Compressor and air conditioning system
JPS59108896A (en) Capacity control mechanism for scroll type compressor
JPH0575915B2 (en)