JPH01237315A - Cooling water control device for internal combustion engine - Google Patents
Cooling water control device for internal combustion engineInfo
- Publication number
- JPH01237315A JPH01237315A JP6110588A JP6110588A JPH01237315A JP H01237315 A JPH01237315 A JP H01237315A JP 6110588 A JP6110588 A JP 6110588A JP 6110588 A JP6110588 A JP 6110588A JP H01237315 A JPH01237315 A JP H01237315A
- Authority
- JP
- Japan
- Prior art keywords
- water temperature
- cooling water
- pump
- fins
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000498 cooling water Substances 0.000 title claims abstract description 38
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 230000007423 decrease Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 230000004043 responsiveness Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/161—Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本”t(BAは内燃機関の冷却水循環系の水温を制御す
る装置、特にウォータポンプの吐出量により水温を制御
する装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for controlling water temperature in a cooling water circulation system of an internal combustion engine, and particularly to a device for controlling water temperature by the discharge amount of a water pump.
(従来の技術)
内燃機関の冷却水循環系内の冷却水はウォータポンプに
より循環され、循環中に機関本体の熱を吸収して、これ
をラジェータで大気に放出するよう作動する。ところで
、従来の冷却水循環系は機関回転数に応じて冷却水の流
量が増減し、放熱特性も変化する。このため、冷却水の
温度の低い暖機時にはサーモバルブを閉じ放熱を防ぎ、
暖機完了時にはサーモバルブを開き放熱性を確保し、機
関を定常温度に保持している。(Prior Art) Cooling water in a cooling water circulation system of an internal combustion engine is circulated by a water pump, which operates to absorb heat from the engine body during circulation and release it to the atmosphere through a radiator. By the way, in a conventional cooling water circulation system, the flow rate of the cooling water increases or decreases depending on the engine speed, and the heat radiation characteristics also change. For this reason, during warm-up when the cooling water temperature is low, the thermo valve is closed to prevent heat radiation.
When warm-up is complete, the thermo valve is opened to ensure heat dissipation and maintain the engine at a steady temperature.
(裂明が解決しようとする課題)
このように従来装置では、ウォータポンプは機関のクラ
ンクシャフトに直動されるため、その吐出量は機関回転
数に応じた値となり、暖機時には冷却水の加熱処理を妨
げ、機関の出力を無駄に消費してしまう。しかも、暖機
後に、低速走行する場合には、放熱性が低下しやすい。(The problem that Rimei is trying to solve) In this way, in conventional equipment, the water pump is driven directly by the engine's crankshaft, so its discharge amount is proportional to the engine rotation speed, and when the water pump is warmed up, the cooling water is This interferes with the heating process and wastes the engine's output. Moreover, when the vehicle is driven at low speed after warming up, heat dissipation performance tends to decrease.
このため、ポンプ容量を大型化したり、ポンプ回転を比
較的上げておく必要が生じ、この点でも出力ロスを招い
ている。For this reason, it is necessary to increase the pump capacity or keep the pump rotation relatively high, which also causes output loss.
本発明の目的は、出力ロスを増加させること無く、機関
本体を常に、適正温度に保持出来る内燃機関の冷却水制
御装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling water control device for an internal combustion engine that can maintain the engine body at an appropriate temperature at all times without increasing output loss.
(課題を解決するための手段)
上述の目的を達成するために本発明は、内燃機関の冷却
水循環系に装着されると共に吐出量を可変インペラ上の
フィンの有効幅の増減操作により変化させる可変ウォー
タポンプと、上記フィンの有効幅を増減操作するアクチ
ュエータと、上記冷却水循環系の水温情報を出力する水
温センサと、上記冷却水循環系の目標水温を設定する水
温設定手段と、現在の冷却水循環系の水温を上記目標水
温に修正すべく上記アクチュエータを操作するポンプ制
御手段とを有したことを特徴としている。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a variable impeller that is installed in the cooling water circulation system of an internal combustion engine and that changes the discharge amount by increasing or decreasing the effective width of the fins on the variable impeller. a water pump, an actuator that increases or decreases the effective width of the fins, a water temperature sensor that outputs water temperature information of the cooling water circulation system, a water temperature setting means that sets a target water temperature of the cooling water circulation system, and a current cooling water circulation system. and pump control means for operating the actuator to correct the water temperature to the target water temperature.
(作 用)
ポンプ制御手段が、ます、水温設定手段からの目標水温
を受け、この値と現在の水温との偏差を求め、この偏差
を低減するように、可変インペラのフィンの有効幅をア
クチュエータを介して増減操作出来る。(Function) The pump control means receives the target water temperature from the water temperature setting means, determines the deviation between this value and the current water temperature, and adjusts the effective width of the fins of the variable impeller to the actuator so as to reduce this deviation. You can increase or decrease the value via .
(実 施 例)
第1図には内燃機関の冷却水制御装置の全体構成を示し
た。この冷却水制御装置は、エンジンEの機関本体1内
のウォータジャケット(図示せず)に続く冷却水循環系
Rを備え、この冷却水循環系は水パイプ2、ラジェータ
3、可変ウォータポンプ4、により形成されている。(Example) Figure 1 shows the overall configuration of a cooling water control device for an internal combustion engine. This cooling water control device includes a cooling water circulation system R that follows a water jacket (not shown) in the engine body 1 of the engine E, and this cooling water circulation system is formed by a water pipe 2, a radiator 3, and a variable water pump 4. has been done.
ここで、冷却水循環系Rはサーモバルブを廃止しており
、機関に外づけされている可変ウォータポンプ4により
冷却水の流動は制御される。Here, the cooling water circulation system R does not include a thermo valve, and the flow of cooling water is controlled by a variable water pump 4 externally attached to the engine.
可変ウォータポンプ4は第3図に示すように、ケーシン
グ5を備え、この内に回転軸6、この回転軸の一端に固
定される回転基体7、回転基体7と一体的に回転する調
整盤9、この調整盤9を軸方向Yに移動させる、アクチ
ュエータ10を備え、しかも、回転軸6の他端に入力回
転体8を固定している。この入力回転体8は図示しない
プーリを固定しており、これらは、機関のクランクシャ
フト側にベルトを介して直結されている。As shown in FIG. 3, the variable water pump 4 includes a casing 5, which includes a rotating shaft 6, a rotating base 7 fixed to one end of the rotating shaft, and an adjustment board 9 that rotates integrally with the rotating base 7. , is provided with an actuator 10 that moves this adjustment board 9 in the axial direction Y, and an input rotating body 8 is fixed to the other end of the rotating shaft 6. This input rotating body 8 fixes a pulley (not shown), which is directly connected to the crankshaft of the engine via a belt.
回転基体7は略円盤状を呈し、そのインペラ11は複数
のフィン111を環状に配しく第4図参照)、各フィン
111を軸方向Yに突出形成させている。The rotating base 7 has a substantially disk shape, and the impeller 11 has a plurality of fins 111 arranged in an annular shape (see FIG. 4), with each fin 111 protruding in the axial direction Y.
回転基体7の中央のボス12には、軸方向Yに摺動自在
に調整盤9の筒部13が嵌合する。この筒部13の外周
側の覆い部14には各フィン111を挿通させる複数の
長溝15が形成される(第6図参照)。A cylindrical portion 13 of the adjustment board 9 is fitted into the boss 12 at the center of the rotating base 7 so as to be slidable in the axial direction Y. A plurality of long grooves 15 are formed in the cover portion 14 on the outer peripheral side of the cylindrical portion 13, through which the respective fins 111 are inserted (see FIG. 6).
筒部13には軸方向Yに長いピン16を介してアクチュ
エータ10に接続される。このアクチュエータ10は、
ダイアフラム17に加わる機関のマニホウルト負圧力と
、ばね18の押圧力との釣合状態によりiI!I整盤9
整軸9向Yに移動保持する。ここでは、負圧が小で、調
整盤9は最大位置P1に達し、負圧が大で調整盤9は最
小位置P2に達にする。この最大位置P1ではフィン1
11の有効@(長溝15からの突出量)が最大となり、
ポンプ吐出量も最大と成り、逆に、最小位置P2ではフ
ィン有効幅がゼロとなり、ポンプ吐出量もゼロとなり、
この時、回転基体7、調整盤9は空回転する。The cylindrical portion 13 is connected to the actuator 10 via a pin 16 that is long in the axial direction Y. This actuator 10 is
iI! due to the balance between the engine manifold negative pressure applied to the diaphragm 17 and the pressing force of the spring 18! I leveling 9
Move and hold in the alignment axis 9 direction Y. Here, when the negative pressure is small, the adjustment plate 9 reaches the maximum position P1, and when the negative pressure is large, the adjustment plate 9 reaches the minimum position P2. At this maximum position P1, fin 1
11 effective @ (amount of protrusion from the long groove 15) is maximum,
The pump discharge amount also becomes maximum, and conversely, at the minimum position P2, the fin effective width becomes zero, and the pump discharge amount also becomes zero,
At this time, the rotating base 7 and the adjustment board 9 rotate idly.
アクチュエータ10に機関マニホウルド負圧を伝える負
圧管32は、電磁弁19によりその管路を断続する。こ
の電磁弁19には電磁弁駆動回路31を備えた、コント
ローラ20が接続される。A negative pressure pipe 32 that transmits engine manifold negative pressure to the actuator 10 is connected or disconnected by a solenoid valve 19 . A controller 20 including a solenoid valve drive circuit 31 is connected to the solenoid valve 19 .
コントローラ20は第2図に示す様にマイクロコンピュ
ータにより要部が形成され、この入力ボートにはエンジ
ン回転数情報を出力するクランク角センサ21、冷却水
の水温情報を出力する水温センサ22、吸入空気量情報
を出力するエアフローセンサ23、吸気温情報を出力す
る吸気温センサ24、大気圧センサ25、湿度センサ2
6、機関のノック情報を出力するノックセンサ27等が
接続されている。As shown in FIG. 2, the main parts of the controller 20 are formed by a microcomputer, and this input boat includes a crank angle sensor 21 that outputs engine speed information, a water temperature sensor 22 that outputs cooling water temperature information, and an intake air sensor. Air flow sensor 23 that outputs volume information, intake temperature sensor 24 that outputs intake temperature information, atmospheric pressure sensor 25, and humidity sensor 2
6. A knock sensor 27 etc. that outputs engine knock information is connected.
このコントローラのCPU28は、冷却水循環系Rの目
標水温T aimを設定する水温設定手段29と、現在
の冷却水循環系Rの水温を目標水温Ta1mに修正すべ
くアクチュエータ10を操作するポンプ制御手段30と
の機能を備える。The CPU 28 of this controller includes a water temperature setting means 29 that sets a target water temperature T aim of the cooling water circulation system R, and a pump control means 30 that operates the actuator 10 to correct the current water temperature of the cooling water circulation system R to the target water temperature Ta1m. Equipped with the following functions.
ここで、水温設定手段29はクランク角センサ21、エ
アフローセンサ23の各出力より吸入空気量情報A/N
を演算し、回転数情報Nとを取り込み、第6図に示すデ
ータマツプにより、基準水温Tbを演算し、第7図の吸
気温データマツプより吸気補正値Tatを演算し、第8
図の大気圧データマツプより大気圧補正値Tapを演算
し、第9図のノック積分値データマツプよりノック補正
値Tnkを演算し、第10図の湿度データマツプより湿
度補正値Thuを演算し、その上で、目標水温Ta1m
を次式より求めている。Here, the water temperature setting means 29 receives intake air amount information A/N from each output of the crank angle sensor 21 and the air flow sensor 23.
is calculated, the rotational speed information N is taken in, the reference water temperature Tb is calculated from the data map shown in FIG. 6, the intake air correction value Tat is calculated from the intake air temperature data map shown in FIG.
Calculate the atmospheric pressure correction value Tap from the atmospheric pressure data map shown in the figure, calculate the knock correction value Tnk from the knock integral value data map shown in Fig. 9, calculate the humidity correction value Thu from the humidity data map shown in Fig. 10, and then , target water temperature Ta1m
is calculated from the following formula.
Taim=Tb+Tat+Tap+Tnk+Thu次に
、ポンプ制御手段30は、現在の水温Twと、目標水温
Ta1mとの差分ΔTを算出し、しがも、今回と5秒前
の前回との水温差ΔT/dt=Tv−T v ゛を求め
る。さらに、補正デユーティ−値ΔDUTを第11図に
示すデータマツプより求め、現在のDUTY値を補正デ
ユーティ−値ΔDUT値を加算処理して書替え、その上
で電磁弁19をデユーティ−値DUTYにより駆動させ
る。Taim=Tb+Tat+Tap+Tnk+Thu Next, the pump control means 30 calculates the difference ΔT between the current water temperature Tw and the target water temperature Ta1m, and the water temperature difference between this time and the previous time 5 seconds ago is ΔT/dt=Tv- Find T v ゛. Further, a corrected duty value ΔDUT is obtained from the data map shown in FIG. 11, the current DUTY value is rewritten by adding the corrected duty value ΔDUT value, and then the solenoid valve 19 is driven by the duty value DUTY.
ここで、電磁弁駆動のための弁駆動ルーチンと弁停止ル
ーチンとを第12図、第13図により説明する。Here, a valve drive routine and a valve stop routine for driving the electromagnetic valve will be explained with reference to FIGS. 12 and 13.
弁駆動ルーチンは50m5のタイマ割込みにより実行さ
れ、弁停止ルーチンは1msのタイマ割込みにより実行
される。The valve drive routine is executed by a 50m5 timer interrupt, and the valve stop routine is executed by a 1ms timer interrupt.
即ち、50m5毎に、電磁弁はオンされ、カウンタCO
U N T ニは1/2のDUTY値がセットされる。That is, every 50m5, the solenoid valve is turned on and the counter CO
A DUTY value of 1/2 is set for U N T d.
そして、このカウンタは値がゼロになるまでは1ずつ減
算され、その間電磁弁が開作動する。This counter is decremented by 1 until the value reaches zero, and during this time the solenoid valve is opened.
この時アクチュエータを負圧値に応じた量だけ作動させ
て調整盤を摺動させ、これを最大位置P1と最小位置P
2の間に保持する。これにより、ポンプはフィンの有効
幅に相当する吐出量で作動し、冷却水の循環を行わせ、
冷却水の温度を目標水温T aimに近づける。そして
、カウンタC0UNTがゼロに達すると、電磁弁をオフ
し、リターンする。At this time, the actuator is actuated by an amount corresponding to the negative pressure value to slide the adjustment panel, and the adjustment panel is moved between the maximum position P1 and the minimum position P1.
Hold between 2 and 3. As a result, the pump operates with a discharge amount corresponding to the effective width of the fins, circulating cooling water,
Bring the temperature of the cooling water closer to the target water temperature T aim. When the counter C0UNT reaches zero, the solenoid valve is turned off and the process returns.
ここで第14図のメインルーチンを説明する。The main routine shown in FIG. 14 will now be explained.
先ず、ステップa1において水温情報を取り込み、現在
の水温Twを決定する。そして、この値Twが通常値域
内にあるか否かを判断し、異常ではステップa3でデユ
ーティ−値DUTYをOに書替、リターンする。正常値
では、ステップa4に進み、エアフローセンサの出力よ
り異常を判断する。異常では、ステップa5に進み、目
標水温Ta1mを75℃にセットし、ステップa7に進
み、正常ではステップa6に進む。ここでは、吸入空気
量情報A/Nを演算し、回転数情報Nとを取り込み、基
準水温Tbを決定する。更に、吸気補正値Tat、大気
圧補正値Taρ、ノック補正値Tnk、湿度補正値Th
uを取り込み、目標水温T aimを次式より求め、所
定エリアに入力する。First, in step a1, water temperature information is taken in and the current water temperature Tw is determined. Then, it is determined whether or not this value Tw is within the normal value range, and if it is abnormal, the duty value DUTY is rewritten to O in step a3 and the process returns. If the value is normal, the process proceeds to step a4, where abnormality is determined from the output of the air flow sensor. If abnormal, the process proceeds to step a5, the target water temperature Ta1m is set to 75° C., and the process proceeds to step a7, and if normal, the process proceeds to step a6. Here, intake air amount information A/N is calculated, rotation speed information N is taken in, and reference water temperature Tb is determined. Furthermore, intake correction value Tat, atmospheric pressure correction value Taρ, knock correction value Tnk, and humidity correction value Th
Take in u, find the target water temperature T aim from the following formula, and input it into the predetermined area.
Taim=Tb+Tat+Tap+Tnk+Thuステ
ップa7に達すると、現在の水温TII+と、目標水温
T aimとの差分である水温偏差ΔTを求め、更に、
今回と5秒前の前回との水温差ΔT/dt=Tω−Tw
”を求める。更にこれら両値より補正デユーティ−値Δ
DUTYをF(八T、ΔT/dt)として第11図に示
すデータマツプより求め、デユーティ−値DUTYを同
値に補正デユーティ−値ΔDUTY値を加算して、書き
換え、リターンする。Taim=Tb+Tat+Tap+Tnk+Thu When step a7 is reached, the water temperature deviation ΔT, which is the difference between the current water temperature TII+ and the target water temperature T aim, is determined, and further,
Water temperature difference between this time and the previous time 5 seconds ago ΔT/dt=Tω−Tw
”.Furthermore, from these two values, the corrected duty value Δ
DUTY is determined as F (8T, ΔT/dt) from the data map shown in FIG. 11, the corrected duty value ΔDUTY is added to the same value as the duty value DUTY, the process is rewritten, and the process returns.
このように、この内燃機関の冷却水制御装置は、機関の
運転状態に応じて、目標水温T ain+を決定し、こ
の値と、現在の水温Tt+との偏差ΔTを算出し、この
偏差を打ち消す様に冷却水の放熱処理をすべく、可変ウ
ォータポンプ4の吐出量を操作し、水温値を制御してい
る。In this way, this internal combustion engine cooling water control device determines the target water temperature T ain+ according to the operating state of the engine, calculates the deviation ΔT between this value and the current water temperature Tt+, and cancels this deviation. In order to dissipate heat from the cooling water, the discharge amount of the variable water pump 4 is controlled to control the water temperature.
このため、暖機時にはポンプ吐出量を0とすることがで
き、出力ロスを防げ、暖機時間を短縮でき、燃費を下げ
、排ガス性能を早期に改善でき、ヒータ性能も向上する
。しかも、サーモバルブを使用することが無いので、ポ
ンプの吐出路の流路抵抗が低減し、吐出量の増加を図り
やすく、結果としてポンプの容量を小型化し易い。更に
、サーモバルブ廃止により、機関本体のウォータジャケ
ット内の冷却水の流動性も改善され、水量コントロール
が適確になされることより、ラジェータ、ウォータジャ
ケットの容量を低減でき、エンジンの小型化による、ス
ペース確保性も優れる。更に、低速、中速の高負荷運転
時に冷却性能を十分に向上させることが出来、機関の出
力の向上を図れる。Therefore, the pump discharge amount can be set to zero during warm-up, preventing output loss, shortening warm-up time, reducing fuel consumption, improving exhaust gas performance early, and improving heater performance. Moreover, since a thermovalve is not used, the flow path resistance of the discharge path of the pump is reduced, making it easy to increase the discharge amount, and as a result, it is easy to reduce the capacity of the pump. Furthermore, by abolishing the thermo valve, the fluidity of the cooling water in the water jacket of the engine body has been improved, and by accurately controlling the water volume, the capacity of the radiator and water jacket can be reduced, and the size of the engine has been reduced. It is also excellent in securing space. Furthermore, the cooling performance can be sufficiently improved during high load operation at low speeds and medium speeds, and the output of the engine can be improved.
(発明の効果)
本発明によれば、目標水温に現在の冷却水の温度を修正
するよう、可変ウォータポンプをポンプ作動させており
、このポンプの吐出量をゼロより最大流量まで、増減操
作して、最適な吐出さとうにより、冷却水の温度を応答
性良く、増減制御でき、特に、無用な出力ロスを低減出
来、ポンプの容量の小型化を図り易い。(Effects of the Invention) According to the present invention, the variable water pump is operated to correct the current cooling water temperature to the target water temperature, and the discharge amount of this pump is increased or decreased from zero to the maximum flow rate. By optimizing the discharge channel, the temperature of the cooling water can be increased or decreased with good responsiveness, and in particular, unnecessary output loss can be reduced, and the pump capacity can be easily reduced.
第1図は本肴明の一実施例としての内燃機関の冷却水制
御装置の全体構成図、第2図は同上装置のコントローラ
の機能ブロツク図、第3図は同上装置で使用する可変ウ
ォータポンプの断面図、第4図は同上ポンプの回転基体
の平面図、第5図は同上ポンプの調整盤の底面図、第6
図乃至第11図は同上コントローラに内蔵される各々異
なるデータマツプであり、基本水温、吸気温補正値、大
気圧補正値、ノック補正値、湿度補正値、補正デユーテ
ィ−値をそれぞれ求める特性線図、第12図、第13図
は同上コントローラで実行する弁駆動ルーチン、弁停止
ルーチンの各フローチャート、第14図は同上コントロ
ーラで実行するメインルーチンのフローチャートである
。
10・・・アクチュエータ、11・・・いんべら、20
・・・コントローラ、22・・・水温センサ、29・・
・水温設定手段、30・・・ポンプ制御手段、31・・
・電磁弁、E・・・エンジン、R・・・冷却水循環系。
第11図
第12図 第13図
第14図
メインルーチン
5秒毎割込み
水温情報 A/F変換→Tv
a2 YES
Tv 異常か
N。
ES
a4 アフロ−センサ異常
N。
目標水温Tai腸 UTY4−075℃
a 6 Ta1m
4−T b (A/N 、 N )
+Tat
+Tap
+Tnk
十ThuFig. 1 is an overall configuration diagram of a cooling water control device for an internal combustion engine as an embodiment of the present invention, Fig. 2 is a functional block diagram of the controller of the same device, and Fig. 3 is a variable water pump used in the above device. 4 is a plan view of the rotating base of the pump, FIG. 5 is a bottom view of the adjustment panel of the pump, and FIG.
Figures 1 to 11 are different data maps built into the same controller as above, and are characteristic diagrams for determining the basic water temperature, intake temperature correction value, atmospheric pressure correction value, knock correction value, humidity correction value, and correction duty value, respectively; 12 and 13 are flowcharts of a valve drive routine and a valve stop routine executed by the controller, and FIG. 14 is a flowchart of the main routine executed by the controller. 10... Actuator, 11... Invera, 20
...Controller, 22...Water temperature sensor, 29...
・Water temperature setting means, 30... Pump control means, 31...
・Solenoid valve, E...Engine, R...Cooling water circulation system. Fig. 11 Fig. 12 Fig. 13 Fig. 14 Main routine Interrupt every 5 seconds Water temperature information A/F conversion → Tv a2 YES Tv Abnormal or N. ES a4 Afro sensor abnormality N. Target water temperature UTY4-075℃ a 6 Ta1m 4-T b (A/N, N) +Tat +Tap +Tnk 10Thu
Claims (1)
可変インペラ上のフィンの有効幅の増減操作により変化
させる可変ウォータポンプと、上記フィンの有効幅を増
減操作するアクチュエータと、上記冷却水循環系の水温
情報を出力する水温センサと、上記冷却水循環系の目標
水温を設定する水温設定手段と、現在の冷却水循環系の
水温を上記目標水温に修正すべく上記アクチュエータを
操作するポンプ制御手段とを有した内燃機関の冷却水制
御装置。A variable water pump that is attached to a cooling water circulation system of an internal combustion engine and that changes the discharge amount by increasing or decreasing the effective width of fins on a variable impeller; an actuator that increases or decreases the effective width of the fins; It has a water temperature sensor that outputs water temperature information, a water temperature setting device that sets a target water temperature of the cooling water circulation system, and a pump control device that operates the actuator to correct the current water temperature of the cooling water circulation system to the target water temperature. cooling water control system for internal combustion engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6110588A JPH01237315A (en) | 1988-03-15 | 1988-03-15 | Cooling water control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6110588A JPH01237315A (en) | 1988-03-15 | 1988-03-15 | Cooling water control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01237315A true JPH01237315A (en) | 1989-09-21 |
Family
ID=13161467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6110588A Pending JPH01237315A (en) | 1988-03-15 | 1988-03-15 | Cooling water control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01237315A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010190142A (en) * | 2009-02-19 | 2010-09-02 | Hitachi Automotive Systems Ltd | Cooling device for internal combustion engine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296797A (en) * | 1985-10-24 | 1987-05-06 | Aisin Seiki Co Ltd | Water pump for cooling engine |
-
1988
- 1988-03-15 JP JP6110588A patent/JPH01237315A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6296797A (en) * | 1985-10-24 | 1987-05-06 | Aisin Seiki Co Ltd | Water pump for cooling engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010190142A (en) * | 2009-02-19 | 2010-09-02 | Hitachi Automotive Systems Ltd | Cooling device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7128026B2 (en) | Method for controlling the heat in an automotive internal combustion engine | |
US4399776A (en) | System for controlling cooling water temperature for a water-cooled engine | |
JPH0567768B2 (en) | ||
US4399775A (en) | System for controlling cooling water temperature for a water-cooled engine | |
JPH01237315A (en) | Cooling water control device for internal combustion engine | |
JP3570059B2 (en) | Engine cooling system | |
JP2573870B2 (en) | Cooling water flow control device for internal combustion engine | |
JPH04258529A (en) | Liquid clutch | |
JPS64571B2 (en) | ||
JPH094546A (en) | Control device of auxiliary air volume of internal combustion engine | |
JPS5874824A (en) | Cooling device of engine | |
JPH0621590B2 (en) | Internal combustion engine controller | |
JP3994748B2 (en) | Heat engine cooling system | |
JPH0433384Y2 (en) | ||
JPS5862337A (en) | Control device of number of revolution in internal- combustion engine | |
JPS61218714A (en) | Ventilated air quantity controller of radiator | |
JPS60128968A (en) | Suction heating mechanism for internal-combustion engine | |
JPH0749063A (en) | Intake temperature control device of internal combustion engine for vehicle | |
JPS6469753A (en) | Idle revolution speed controller for internal combustion engine | |
JPS6337247B2 (en) | ||
JP4158025B2 (en) | Variable flow rate water pump controller | |
JPS6347886B2 (en) | ||
JP2654593B2 (en) | Idle speed control device for internal combustion engine | |
RU1815359C (en) | System for automatic control of heat carrier temperature in engine | |
JPS632609Y2 (en) |