JPH01236585A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH01236585A
JPH01236585A JP63064301A JP6430188A JPH01236585A JP H01236585 A JPH01236585 A JP H01236585A JP 63064301 A JP63064301 A JP 63064301A JP 6430188 A JP6430188 A JP 6430188A JP H01236585 A JPH01236585 A JP H01236585A
Authority
JP
Japan
Prior art keywords
solute
positive electrode
battery
manganese oxide
licf3so3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63064301A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡辺
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63064301A priority Critical patent/JPH01236585A/en
Publication of JPH01236585A publication Critical patent/JPH01236585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a charge/discharge cycle characteristic by using a manganese oxide as a positive electrode active material, and trifluoromethan sulfonic acid litium (LiCF3SO3) as solute. CONSTITUTION:In the nonaqueous electrolyte secondary battery in which manganese oxide is made to a positive electrode active material, LiCF3SO3 is used as solute. By the way, the range of 0.5-1.5 mol/l is preferable as the density of LiCF3SO3. Thus when LiCF3SO3 is used as the solute, a trifluoromethan sulfonic acid ion (CF3SO3) is difficult to receive the catalytic action of the manganese oxide. This improves a charge/discharge efficiency or a cycle characteristic with an electrolyte decomposition reaction in a positive electrode particularly at the time of charging considerably constrained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は充電可能な活物質を主体とする正極と、リチウ
ム或いはリチウム合金からなる負極と、少くとも一つの
溶媒と少くとも一つの溶質からなる非水電解液とを備え
る非水電解液二次電池に関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention comprises a positive electrode mainly composed of a rechargeable active material, a negative electrode composed of lithium or a lithium alloy, at least one solvent and at least one solute. The present invention relates to a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte comprising:

(ロ)従来の技術 この種電池は高エネルギー密度を有するため注目されて
おり、活発な研究が行なわれている。その中でも特にマ
ンガン酸化物を正極活物質に用いると、放電電圧が高く
、エネルギーの高密度化が更に計れるという利点がある
(b) Prior Art This type of battery has attracted attention because of its high energy density, and active research is being carried out. Among these, especially when manganese oxide is used as the positive electrode active material, there are advantages in that the discharge voltage is high and the energy density can be further increased.

(/今  発明が解決しようとする課題面して、この種
電池を実用化する上で最も重要な課題は擾れた充放電効
率或いはサイクル特性を示す電解液組成の探索である。
(/Now) In terms of the problems to be solved by the present invention, the most important problem in putting this type of battery into practical use is the search for an electrolyte composition that exhibits poor charge/discharge efficiency or cycle characteristics.

即ち、マンガン酸化物を正極活物質に用いた二次電池に
おいては、正極の電圧が高いため或いはマンガン酸化物
の有する触媒作用を受けるため、特に充電時において正
極表面上で電解液の分解が生じる懸念がある。
That is, in a secondary battery using manganese oxide as a positive electrode active material, the electrolyte decomposes on the surface of the positive electrode, especially during charging, due to the high voltage of the positive electrode or due to the catalytic action of manganese oxide. There are concerns.

それにもかかわらず、この種電池の充電時における電解
液の分解を防ぐ手段として有効な方法が見出されていな
いのが実情である。
Nevertheless, the reality is that no effective method has been found to prevent the electrolyte from decomposing during charging of this type of battery.

に)課題を解決するための手段 本発明は上記課題を解決するために、特に電解液組成に
ついて探究した結果なされたものであり、その要旨とす
るところはマンガン酸化物を正極活物質とする非水電解
液二次電池において、溶質としてトリフルオロメタンス
ルホン酸リチウム(LicF3SOa)を用いることに
ある。
B.) Means for Solving the Problems The present invention was made as a result of particularly research into the electrolyte composition in order to solve the above problems, and its gist is to solve the above problems. In an aqueous electrolyte secondary battery, lithium trifluoromethanesulfonate (LicF3SOa) is used as a solute.

尚、LiCFaSOaの濃度としては0.5へ1゜5モ
ル/lの範囲が好ましい。
The concentration of LiCFaSOa is preferably in the range of 0.5 to 1.5 mol/l.

(イ)作 用 充電時に正極表面上で生じる電解液の分解は、溶媒の分
解と溶質としてのリチウム塩の分解とが考えられる。い
ずれの分解も電解液に変化をもたらすと共に充放電効率
の低下を招き、更には分解反応により生じる分解生成物
が正極或いは負極表面上に不活性被膜として付着し電池
の充放電反応を阻害するためにサイクル特性が劣化する
ものと思われる。
(a) Effect The decomposition of the electrolyte that occurs on the surface of the positive electrode during charging is thought to be due to the decomposition of the solvent and the decomposition of the lithium salt as a solute. Any decomposition causes a change in the electrolyte solution and a decrease in charging/discharging efficiency.Furthermore, decomposition products generated by the decomposition reaction adhere as an inert film on the surface of the positive electrode or negative electrode, inhibiting the charging/discharging reaction of the battery. It is thought that the cycle characteristics will deteriorate.

そこで本発明者等は種々の電解液組成について検討を重
ねた結果、溶質としてのリチウム塩の種類、即ちリチウ
ム塩のアニオン種の種類が電池のサイクル特性に大きく
影響することを見出した。
As a result of repeated studies on various electrolyte compositions, the present inventors have found that the type of lithium salt as a solute, that is, the type of anion species of the lithium salt, greatly influences the cycle characteristics of the battery.

そして特に溶質としてLiCF35Oaを用いた場合、
電池のサイクル特性が向上するという結果を得るに至っ
た。
And especially when LiCF35Oa is used as the solute,
The results showed that the cycle characteristics of the battery were improved.

この理由を考察するに、正極活物質であるマンガン酸化
物は、例えば二酸化マンガンが強力な酸化触媒能を示す
ことが知られているように、−船釣に触媒作用を有して
おり、これと接する電解液はその作用を受は易い状態に
ある。又、マンガン酸化物自体が高い電圧を有するため
に、特に充電時においては正極近傍の電解液は強い酸化
算囲気下に置かれていることになる。従って溶媒分子お
よび溶質のリチウム塩のアニオン種の分解反応性が電解
液の分解性に大きく影響すると考えられる。
Considering the reason for this, manganese oxide, which is a positive electrode active material, has a catalytic effect in boat fishing, for example, as manganese dioxide is known to exhibit a strong oxidation catalytic ability. The electrolyte that comes into contact with this is in a state where it is easily affected by the action. Furthermore, since manganese oxide itself has a high voltage, the electrolyte near the positive electrode is placed under a strong oxidizing atmosphere, especially during charging. Therefore, it is considered that the decomposition reactivity of the solvent molecules and the anionic species of the lithium salt of the solute greatly influences the decomposability of the electrolytic solution.

ここで、溶質としてLiCFaSOaを用いた場合、ト
リフルオロメタンスルホン酸イオン(CF3SO3)が
マンガン酸化物の触媒作用を受けにくいため、特に充電
時における正極での電解液分解反応性が大きく抑制され
充放電効率或いはサイクル特性が向上するものと考えら
れる。
Here, when LiCFaSOa is used as the solute, trifluoromethanesulfonic acid ion (CF3SO3) is not easily susceptible to the catalytic action of manganese oxide, so the electrolyte decomposition reactivity at the positive electrode, especially during charging, is greatly suppressed, resulting in charge and discharge efficiency. Alternatively, it is considered that the cycle characteristics are improved.

又、電解液の分解性にリチウム塩の種類が影響する要因
として考えられるのは、リチウム塩のアニオン種の分解
による分解生成物が副反応的に溶媒分子の分解反応を誘
発する可能性のあることである。この点においてもCF
 a So aの分解生成物は不活性なために溶媒分子
の分解反応を引き起こすまでには至らないものと考えら
れる。
In addition, one possible factor that influences the type of lithium salt on the decomposability of the electrolyte is that the decomposition products from the decomposition of the anion species of the lithium salt may induce a decomposition reaction of solvent molecules as a side reaction. That's true. In this respect as well, CF
Since the decomposition products of a So a are inert, it is thought that they do not cause a decomposition reaction of solvent molecules.

(へ)実施例 以下本発明の実施例につき詳述する。(f) Example Examples of the present invention will be described in detail below.

実施例1 第1図は扁平型の非水電解液二次電池の半断面図を示し
、(1)はリチウム−アルミニウム合金からなる負極で
あり負極缶(2)の内底面に固着せる負極集電体(3)
に圧着されている。
Example 1 Figure 1 shows a half-sectional view of a flat non-aqueous electrolyte secondary battery, in which (1) is a negative electrode made of lithium-aluminum alloy, and a negative electrode assembly fixed to the inner bottom surface of a negative electrode can (2). Electric body (3)
is crimped to.

(4)は正極であって、活物質である二酸化マンガン8
5重量部に、4電剤としてのアセチレンブラック10重
示部および結着剤としてのフッ素樹脂5重量部を加え、
充分混合した後成型したものであり、正極缶(5)の内
底面に固着せる正極集電体(6)に圧接されている。
(4) is the positive electrode and the active material is manganese dioxide 8
To 5 parts by weight, 10 parts by weight of acetylene black as a 4-electrode agent and 5 parts by weight of a fluororesin as a binder were added,
It is molded after thorough mixing, and is pressed into contact with a positive electrode current collector (6) that is fixed to the inner bottom surface of the positive electrode can (5).

(7)はポリプロピレン多孔膜よりなるセパレータ、(
8)は絶縁バッキングである。
(7) is a separator made of a porous polypropylene membrane, (
8) is an insulating backing.

そして、非水電解液としてプロピレンカーボネート(P
C)と1,2ジメトキシエタン< DME)との等体積
混合溶媒に溶質としてトリフルオロメタンスルホン酸リ
チウム(LiCFaSOa)を1モル/l溶解させたも
のを用いて本発明電池Aを作成した。尚、電池寸法は直
径24.Off、厚み3.Onである。
Propylene carbonate (P
Battery A of the present invention was prepared using a solution in which 1 mol/l of lithium trifluoromethanesulfonate (LiCFaSOa) was dissolved as a solute in a mixed solvent of equal volume of C) and 1,2 dimethoxyethane < DME). The battery dimensions are 24mm in diameter. Off, thickness 3. It is on.

比較例1 溶質として過塩素酸リチウム(LiCIO4)を用いる
ことを除いて他は実施例1と同様の比較電池Pを作成し
た。
Comparative Example 1 A comparative battery P was prepared in the same manner as in Example 1 except that lithium perchlorate (LiCIO4) was used as the solute.

比較例2 溶質として六フッ化砒酸リチウム(LiAsF6)を用
いることを除いて他は実施例1と同様の比較電池Qを作
成した。
Comparative Example 2 A comparative battery Q was prepared in the same manner as in Example 1 except for using lithium hexafluoroarsenate (LiAsF6) as the solute.

比較例6 溶質として四フッ化ホウ酸リチウム(LiBF4)を用
いることを除いて他は実施例1と同様の比較電池Rを作
成した。
Comparative Example 6 A comparative battery R was prepared in the same manner as in Example 1 except that lithium tetrafluoroborate (LiBF4) was used as the solute.

第2図はこれら電池の充放電サイクル特性図を示す。尚
、充放電条件は充放電電流2mA、充放電時間6時間と
し、放電時間内に電池電圧が1.5■に達したものは電
池寿命とした。
FIG. 2 shows the charge/discharge cycle characteristics of these batteries. The charging and discharging conditions were a charging and discharging current of 2 mA and a charging and discharging time of 6 hours, and when the battery voltage reached 1.5 ■ within the discharging time, the battery life was determined.

実施例2 非水電解液としてエチレンカーボネート(EC)とDM
Eとの等体積混合だ蝶に溶質としてLiCF a SO
aを1モル/l溶解したものを用いることを除いて他は
実施例1と同様の本発明電池Bを作成した。
Example 2 Ethylene carbonate (EC) and DM as non-aqueous electrolyte
LiCF as a solute is mixed in equal volumes with ESO
A battery B of the present invention was prepared in the same manner as in Example 1 except that a solution of 1 mol/l of a was used.

比較例4 溶質としてLiCIO4を用いることを除いて他は実施
例2と同様の比較電池Sを作成した。
Comparative Example 4 A comparative battery S was prepared in the same manner as in Example 2 except that LiCIO4 was used as the solute.

第3図はこれら電池の充放電サイクル特性図を示し、充
放電条件は第2図の場合と同じである。
FIG. 3 shows the charging/discharging cycle characteristics of these batteries, and the charging/discharging conditions are the same as in FIG. 2.

実施例6 非水電解液としてPCと2−メチル−テトラヒドロフラ
ン(2Me−THF ンとの等体lA混合溶媒に溶質と
してLiCF3SO3を1モル/l溶解したものを用い
ることを除いて他は実施例1と同様の本発明電池Cを作
成した。
Example 6 Example 1 except that 1 mol/l of LiCF3SO3 was dissolved as a solute in a mixed solvent of PC and 2-methyl-tetrahydrofuran (2Me-THF) as a non-aqueous electrolyte. A battery C of the present invention similar to the above was prepared.

比較例5 溶質としてLiCIO4を用いることを除いて他は実施
例3と同様の比較電池Tを作成した。
Comparative Example 5 A comparative battery T was prepared in the same manner as in Example 3 except for using LiCIO4 as the solute.

第4図はこれら電池の充放電サイクル特性図を示し、充
放電条件は第2図の場合と同じである。
FIG. 4 shows the charging/discharging cycle characteristics of these batteries, and the charging/discharging conditions are the same as in FIG. 2.

第2図乃至第4図から明らかなように、溶媒が異なって
も溶質としてLiCFaSOaを用いると充放電サイク
ル特性が向上することがわかる。
As is clear from FIGS. 2 to 4, it can be seen that the charge-discharge cycle characteristics are improved when LiCFaSOa is used as the solute even when the solvent is different.

第5図および第6図は本発明電池AおよびBの非水電解
液において、L i CF 3 SOaの各種濃度とサ
イクル数との関係を示す図である。
FIGS. 5 and 6 are diagrams showing the relationship between various concentrations of Li CF 3 SOa and the number of cycles in the non-aqueous electrolytes of Batteries A and B of the present invention.

第5図および第6図より、LiCF35Oaの濃度とし
ては0,5〜1.5モル/lの範囲が特に好ましいこと
がわかる。
From FIGS. 5 and 6, it can be seen that the concentration of LiCF35Oa is particularly preferably in the range of 0.5 to 1.5 mol/l.

(ト)発明の効果 上述した如く、マンガン酸化物を正極活物質とする非水
電解液二次電池において、非水電解液を構成する溶質と
してトリフルオロメタンスルホン酸リチウム(LiCF
aSOa )を用いることにより、この種電池の充放電
サイクル特性を向上しうるものであり、その工業的価値
は極めて大である。
(g) Effects of the invention As mentioned above, in a non-aqueous electrolyte secondary battery using manganese oxide as a positive electrode active material, lithium trifluoromethanesulfonate (LiCF) is used as a solute constituting the non-aqueous electrolyte.
By using aSOa ), the charge/discharge cycle characteristics of this type of battery can be improved, and its industrial value is extremely large.

尚、正極活物質のマンガン酸化物としては、各種結晶構
造のマンガン酸化物や、リチウムを含有せるマンガン酸
化物が適用可能である。
As the manganese oxide of the positive electrode active material, manganese oxides having various crystal structures and manganese oxides containing lithium can be used.

更に、溶媒としては実施例で示したものに限定されず、
ブチレンカーボネート、1,6−ジオキソラン、エトキ
シメトキシエタンなどの溶媒も使用しうる。
Furthermore, the solvent is not limited to those shown in the examples,
Solvents such as butylene carbonate, 1,6-dioxolane, ethoxymethoxyethane and the like may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の半断面図、第2図乃至第4図は電
池の充放電サイクル特性図、第5図および第6図は本発
明電池AおよびBの非水電解液においてLiCF35O
aの各種濃度とサイクル数との関係を示す図である。 (1)・・・負極、(2)・・・負極缶、(4)・・・
正極、(5)・・・正極缶、(A)(B)(C)・・・
本発明電池、(P)(Q)(R)(S)(T)・・・比
較電池。
Figure 1 is a half-sectional view of the battery of the present invention, Figures 2 to 4 are charge/discharge cycle characteristics of the battery, and Figures 5 and 6 are LiCF35O in the non-aqueous electrolyte of batteries A and B of the present invention.
FIG. 3 is a diagram showing the relationship between various concentrations of a and the number of cycles. (1)... Negative electrode, (2)... Negative electrode can, (4)...
Positive electrode, (5)... Positive electrode can, (A) (B) (C)...
Invention battery, (P) (Q) (R) (S) (T)... Comparative battery.

Claims (2)

【特許請求の範囲】[Claims] (1)充電可能な活物質を主体とする正極と、リチウム
或いはリチウム合金からなる負極と、少くとも一つの溶
媒と少くとも一つの溶質からなる非水電解液とを備える
ものであって、正極活物質としてマンガン酸化物を用い
ると共に溶質としてトリフルオロメタンスルホン酸リチ
ウム(LiCF_3SO_3)を用いることを特徴とす
る非水電解液二次電池。
(1) A positive electrode comprising a positive electrode mainly made of a rechargeable active material, a negative electrode made of lithium or a lithium alloy, and a non-aqueous electrolyte made of at least one solvent and at least one solute; A nonaqueous electrolyte secondary battery characterized in that manganese oxide is used as an active material and lithium trifluoromethanesulfonate (LiCF_3SO_3) is used as a solute.
(2)トリフルオロメタンスルホン酸リチウムの濃度が
0.5〜1.5モル/lであることを特徴とする非水電
解液二次電池。
(2) A nonaqueous electrolyte secondary battery characterized in that the concentration of lithium trifluoromethanesulfonate is 0.5 to 1.5 mol/l.
JP63064301A 1988-03-17 1988-03-17 Nonaqueous electrolyte secondary battery Pending JPH01236585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064301A JPH01236585A (en) 1988-03-17 1988-03-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064301A JPH01236585A (en) 1988-03-17 1988-03-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH01236585A true JPH01236585A (en) 1989-09-21

Family

ID=13254290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064301A Pending JPH01236585A (en) 1988-03-17 1988-03-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH01236585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098035A (en) * 2006-10-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109182A (en) * 1983-11-17 1985-06-14 Sanyo Chem Ind Ltd Secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109182A (en) * 1983-11-17 1985-06-14 Sanyo Chem Ind Ltd Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098035A (en) * 2006-10-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPH0746608B2 (en) Non-aqueous secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JPH03152879A (en) Nonaqueous electrolyte secondary battery
JPH01236585A (en) Nonaqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP4159215B2 (en) Lithium secondary battery
JPH06188030A (en) Nonaqueous electrolyte battery
JPS6151387B2 (en)
JPH1197062A (en) Organic electrolyte secondary battery
JPH06111820A (en) Nonaqueous battery
JPH1027627A (en) Lithium secondary battery
JP2000285928A (en) Nonaqueous electrolyte battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0722069A (en) Nonaqueous electrolyte battery
JPH0355770A (en) Lithium secondary battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPH1140197A (en) Polymer electrolyte battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH05159773A (en) Secondary lithium battery
JPH0864239A (en) Nonaqueous electrolyte battery
JP2647909B2 (en) Non-aqueous electrolyte secondary battery
JP2000268858A (en) Nonaqueous electrolyte secondary battery
JPH0357168A (en) Lithium secondary battery